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ABSTRACT

In the traditional reliability evaluation based on the Bayesian method, the failure probability of nodes is usually
expressed by the average failure rate within a period of time. Aiming at the shortcomings of traditional Bayesian
network reliability evaluation methods, this paper proposes a Bayesian network reliability evaluation method
considering dynamics and fuzziness. The fuzzy theory and the dynamic of component failure probability are
introduced to construct the dynamic fuzzy set function. Based on the solving characteristics of the dynamic fuzzy
set and Bayesian network, the fuzzy dynamic probability and fuzzy dynamic importance degree of the fault state of
leaf nodes are solved. Finally, through the dynamic fuzzy reliability analysis of CNCmachine tool hydraulic system
balance circuit, the application of this method in system reliability evaluation is verified, which provides support
for fault diagnosis of CNC machine tools.
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1 Introduction

Owing to the development of mechanical products becoming increasingly complex, relia-
bility evaluation and prediction of such systems have always focused on reliability engineering
research [1,2]. The relationship between the faulty logic and the fault probability of each compo-
nent of the system with time is more and more complex. In the reliability evaluation, whether the
quantification method with uncertain parameters is close to the actual engineering conditions has
an important impact on the accuracy of the evaluation [3,4]. Nowadays, the development theory
of system reliability analysis in static environments has been dramatically developed. A relatively
perfect theoretical system has been formed: binary decision diagram analysis method, binary
decision algorithm, recursive analysis method, fault tree analysis method, and Bayesian analysis
method [4,5]. This static system reliability of the method is based on two fundamental assump-
tions (probability hypothesis and binary hypothesis) and four premises (event definition exists, a
large number of samples with probability repeatability and good distribution, not influenced by
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human factors) [6,7]. However, due to the various performance indicators, working environments
and small-batch customization of the complex system structure, the reliability state of a complex
system is often associated with multiple performance indicators, and there is a specific correlation
between multiple performance indicators [8]. Thus, the failure probability of a complex system has
shown the characteristics of dynamic fuzziness [9–11]. The fuzziness of system and component
behavior and the dynamic operating environment of the system brings additional difficulties to
estimate the failure probability of important events accurately. In these cases, it is unrealistic and
impossible to use determined values to represent component failure behavior.

In order to solve these problems, new theories are developed and applied to reliability analysis,
including fuzzy theory [10–13], confidence interval estimation theory [14], imprecise probability
theory [7], Dempster-Shafer evidence theory (DSET) [15], possibility theory [16], etc. The use of
fuzzy mathematics to deal with the problem of reliability began in the mid-1970s. Kaufmann
et al. [17] introduced the concept of possibility to represent the reliability of components in 1975.
Yao et al. [18] proposed the concept of the structural fuzzy safety measure and proposed using
fuzzy set theory to represent the reliability of structures, which made a significant development
of fuzzy reliability theory. Ayyub et al. [19] reviewed the application of fuzzy mathematics to
structural reliability. Spz et al. [10] used the function approximation method to estimate the ran-
dom interval reliability of structures. In this work, fuzzy random variables are used for reliability
analysis. Bayesian network is a standard method for system reliability analysis [16]. Compared with
other reliability evaluation methods, Bayesian networks possess obvious advantages in modelling,
analysis and calculation. In addition, the Bayesian network also has the advantage of reverse
reasoning [5]. Considering the system’s dynamic characteristics, many scholars have studied the
relationship between dynamic fault trees and dynamic Bayesian networks [6]. By transforming a
dynamic fault tree into a dynamic Bayesian network, the reliability modelling and evaluation of
the dynamic system are realized [12]. Huang et al. [16] analyzed the reliability of fuzzy life data
based on the Bayesian method. Wu [20] and Taheri et al. [21] modelled the system parameters with
fuzzy random variables and established the fuzzy reliability evaluation method based on Bayesian
inference with fuzzy prior distribution parameters. Zhang et al. [22] introduced variables into the
construction of fuzzy support radius and proposed a Bayesian network based on fuzzy support
radius for multi-state fault diagnosis. Simon et al. [23] used the Bayesian network to evaluate
the reliability of complex systems with epistemic uncertainty. In a complex mechanical system,
due to the influence of various factors such as its environment, its material performance, human
operation and so on, its reliability index generally shows a decreasing trend with the increase of
working time. The decreasing process is dynamic, so the influence of the time factor cannot be
ignored in the reliability analysis of the system or components. Moreover, the failure data obtained
is also discrete, so it is difficult to characterize the change rule of failure probability with a simple
function [24–27]. Applying Bayesian networks to realize the reliability evaluation of such complex
multi-state systems is a problem worthy of study.

In this paper, the dynamic fuzzy set theory has been proposed in the Bayesian network evalua-
tion. The reliability of the complex multi-state system is studied by considering the fault dynamics
and fuzzy. Section 1 retrospect the theoretical basis of this research. Section 2, introduces the
node definition and network inference of multi-state network, section considering fault dynamics
and fuzzy. Section 3, the presented method is applied to the hydraulic system balance circuit as
an example, and a brief conclusion follows it in Section 4.
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2 Modeling and Evaluation of Multi State Bayesian Networks

2.1 Bayesian Network
Bayesian networks (BN) have the characteristics of bidirectional reasoning, that is, forward

reasoning and reverse reasoning [28]. The inference used to judge the tendency and possibility of
system failure in the system design stage is called positive reasoning, and positive reasoning is
also called causal reasoning. The reasoning used to determine the main reasons for system failure
after a system failure is called reverse reasoning. Reverse reasoning is also known as diagnostic
reasoning, according to which reverse reasoning can find the system’s weak links to provide a
basis for safety management and system design improvement [29,30].

BN is a subjective view based on probability. Suppose X and Y are two random variables,
the probability density function (PDF) is P (Y ) (P (Y ) > 0). According to the Bayesian equation,
the conditional probability of P (X |Y ) can be defined:

P (X |Y )= P (Y |X )P (X)

P (Y )
(1)

where P (X) is the probability prior distribution. If P (X) has n failure states, i.e., x1,x2, · · ·xn,
According to the total probability formula the full probability formula, P (Y ) can be given by:

P (Y )=
∑

P (Y |X = xi )P (X = xi) (2)

BN is a representation and reasoning model of uncertain knowledge based on probability
analysis and graph theory [27]. When the probability distribution of node variables is known,
the Bayesian network can realize qualitative and quantitative uncertainty representation [28]. The
Directed acyclic graphs (DAG) and conditional probability tables (CPT) are two parts of the BN
model. The DAG can explain the logic structure of BN, which is a part of qualitative analysis [29].
Nodes without parents are called root nodes, nodes without sub-nodes are called leaf nodes, and
other nodes are called intermediate nodes. The CPT is used for conditional probabilities under
different fault states. The CPT represents the strength of the relationship between nodes which is
a part of the quantitative analysis of BN [30].

The BN is depicted in Fig. 1. Here, Xi, (i= 1, 2, 3, 4, 5) is the root node, which has marginal
prior probability. A1 and A2 are intermediate nodes. M1,M2 are leaf nodes. According to the
conditional dependence between the events in the Bayesian network, the posterior probability
can be easily derived from the prior probability to realize the system reliability evaluation [29].
Using the BN joint fault inference algorithm, the joint probability of all nodes in Fig. 1 could be
expressed as Eq. (3):

P (M1,M1,A1,A2,X1,X2,X3,X4,X5)

=P (X1) ·P (X2) ·P (X3)P (X4)P (X5) ·P (A1 |X1,X2,X3,X4 ) ·
P (A2 |X3,X4,X5 ) ·P (M1 |A1,A2 ) ·P (M2 |A2 )

(3)
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Figure 1: Bayesian network structure

When the node state in a Bayesian network goes out of the two-state assumption, i.e., the
node has several states, the traditional Bayesian network will be extended to a multi-state Bayesian
network. In practical engineering, systems and components often have various fault modes and
present different fault states. Reliability modelling of multi-state systems is often based on fault
tree analysis using the extended multi-state fault tree analysis method [16]. The CPT of the
Bayesian network is reconstructed by using expert knowledge and practical experience so that
the logic relationship, uncertainty and multi-state component fault, which traditional Bayesian
networks cannot express, are reflected [21]. Therefore, when the Bayesian network is used to deal
with the polymorphism of variables, different state values can be selected to represent different
fault states of nodes, and only the CPT of corresponding nodes needs to be adjusted [22].

2.2 Definition Fuzzy Node of BN
In order to characterize the influence of subjective uncertainty on system reliability due to

the lack of system cognition and limited information, some scholars proposed to further extend
the continuous node variables of Bayesian networks to fuzzy node variables [31]. When the fault
probability of a Bayesian network node is difficult to express with exact value, the fault probability
of the node is expressed with a fuzzy subset. The definition of a fuzzy BN node is divided into
two steps. The first step is to describe the failure state of the fuzzy node, and the second step is
to describe the failure rate of the fuzzy node [32].

2.2.1 Description of the Fault States of Fuzzy Node
In engineering, due to the limitation of objective conditions and the influence of various

uncertainties, we often encounter the situation of insufficient data or incomplete information.
Therefore, the failure probability of parts is difficult to obtain in the reliability analysis. The
fuzzy set theory provides a suitable modelling tool for some cases where the parameters are fuzzy
numbers. Zadeh put forward the definition of a fuzzy subset in 1965 [13]. Latife introduced the
fuzzy set theory into Bayesian networks to evaluate the fuzzy reliability of production management
systems [33]. A fuzzy set is not a single value but a set of possibilities [17]. In fuzzy BN, we
usually use fuzzy language variables to describe different fault states of the root node [8]. In this
paper, the language information is adopted to describe the fault state, which can be divided into
no fault, half fault and complete fault.

The membership functions of fuzzy subsets are of many forms, such as trapezoidal mem-
bership function, rectangular membership function, normal distribution membership function and
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lognormal membership function, etc. Because the triangle membership function is the most widely
used and algebraic operation is simple, the triangular fuzzy number is considered in this paper.

PL, PU represent the upper and lower bounds supported by P̃ respectively, and 0 < PL ≤
PM ≤ PU , PM represents the median of P̃, then P̃ is a triangular fuzzy number, and its
membership function is shown in Fig. 2 which expressed as [24]:

μP̃ (P)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 0<P<PL

P−PL

PM −PL
PL ≤P≤PM

PU −P
PL−PU

PM <P<PU

0 PU <P

(4)

Figure 2: The membership function of triangular fuzzy number P̃

The fuzziness and multi-state of nodes are considered in the above analysis. Due to the
influence of various factors such as its environment, its material performance, human operation
and so on, its reliability index generally shows a decreasing trend with the increase of working
time. The decreasing process is dynamic, so the influence of the time factor cannot be ignored
in the reliability analysis of the system or components. When the system reliability analysis is
carried out, if any system’s characteristic is ignored, the analysis result will produce an enormous
error [8].

2.2.2 Quantification of Uncertainty of Root Node
In practice engineering, the failure probability of each component in the system varies with

time, and the time variable is introduced, so the fuzzy dynamic function is used to describe the
fuzzy state of each root node in this paper.

For a BN with finite nodes, the set of nodes is Xi = {X1,X2, · · ·Xi, · · · ,Xn} (i = 1, 2, · · · ,n).
Assuming the node Xi have ki fuzzy fault state, its state space is Xi =

{
x1i ,x

2
i , · · ·xji, · · · ,xkii

}
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(j = 1, 2, · · · ,ki). Assuming the fault state of node Xi at any time t is xkii , the dynamic fuzzy set

of failure possibility P̃iki (t) is expressed as [26]:⎧⎪⎪⎨⎪⎪⎩
PLiki (t)= aLikit+ bLiki
PMiki (t)= aMikit+ bMiki
PUiki (t)= aUikit+ bUiki

(5)

where aLiki , a
M
iki
, aUiki , b

L
iki
, bMiki , b

U
iki

are constants, which based on data fitting to determine combined

with expert experience and historical data.
[
bLiki ,b

U
iki

]
represents the fuzzy subset at time t = 0,

PMiki (t) is the central variable of the dynamic fuzzy subset at time t, PMiki (t)−PLiki (t) and PUiki (t)−
PMiki (t) represent the left and right fuzzy regions respectively at time t, with the increase of the

fuzzy region, the fuzziness becomes stronger and stronger. Its membership function is given by
Zhang et al. [22]:

μ̃̂̃Piki (P)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0<P<PLiki (t)
P−PLiki (t)

PMiki (t)−PLiki (t)
PLiki (t)≤P≤PMiki (t)

PUiki (t)−P

PUiki (t)−PMiki (t)
PMiki (t)≤P≤PUiki (t)

0 PUiki (t) <P

(6)

where P represents the failure rate of nodes at any time t. As shown in Fig. 3.

Figure 3: The membership function of P̃iki (t)

According to the characteristics of node failure probability changing with time and combining
with the fuzzy subset of triangle membership function, a dynamic fuzzy set was established to
describe the function relation of root node failure probability changing with time t, as shown in
Fig. 4.
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Figure 4: The failure probability of node with time t

2.3 Analysis of Node Failure Possibility
In a multi-state BN system, which have n root nodes Xi = {X1,X2, · · ·Xi, · · · ,Xn} (i =

1, 2, · · · ,n). The intermediate node is Yj =
{
Y1,Y2, · · ·Yj, · · · ,Ym

}
(j = 1, 2, · · · ,m). The leaf node

is Tv = {v= 1, 2, · · · l}. The fuzzy numbers xkii , y
kj
j and Tv are used to describe the fault states of

corresponding nodes at time t. When dynamic fuzzy set of the root node is P̃
(
xkii

)
at time t, the

dynamic fuzzy possibility of the leaf node T at state Tv can be computed by:

P̃T=TV (t)=∑
X1, . . .Xn,Y1, . . .Ym

P̃ (X1, . . .Xn,Y1, . . .Ym,TV )

=∑
π(T) P̃ (T =TV |π (T))

∏m
j=1

∑
π(Yj) P̃

(
Yj

∣∣π (
Yj

)) ∏n
i=1 P̃

(
xkii

)
=∑

π(T) P̃ (T =TV |π (T))
∑

π(Y1)
P̃ (Y1|π (Y1))× · · ·

×∑
π(Ym) P̃ (Ym|π (Ym))× P̃

(
xk11

)
× · · · P̃

(
xknn

)
(7)

in which π (T) is the set of parents of leaf node T . π
(
Yj

)
is the set of parents of intermediate

node Yj. If the state of Xi is x
ki
i , the fuzzy conditional probability of leaf node T at state Tv is

given by equation:

P̃(
T=Tv|Xi=xkii

) (t)=
P̃

(
T =Tv,Xi = xkii

)
P̃

(
Xi = xkii

) (8)

where P̃
(
T =T ,Xi = xkii

)
is the fuzzy joint distribution when the state of Xi is x

ki
i and T is Tv.

Bayesian network is used to calculate the posterior probability of the failure of the parent node
when the failure of the child node is known. While T = Tv, the posterior probability of root

Xi = xkii could be concluded as follows:

P̃(
Xi=xkii

∣∣∣T=Tv) (t)=
P̃

(
T =Tv,Xi = xkii

)
P̃ (T =Tv)

(9)
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2.4 Importance Analysis of Fuzzy Dynamic Root Node
The fuzzy importance degree of BN describes the evaluation of the importance degree when

the leaf node is in a certain fault state, and the root node is in different fuzzy states in the multi-
state system. The importance of the root node is an important part of quantitative analysis in
system reliability analysis [24,27]. It represents the importance of components in the system and
aims to quantify the contribution of the component failure to system failure [28]. The importance
degree of the root node in the Bayesian network can be obtained by using the inference algo-
rithms, such as graph reduction method, clique tree propagation and bucket elimination inference
method [33–35]. In this paper, the clique tree reasoning method is used for calculation, and
the clique tree is constructed according to the variable elimination method. According to the
calculation process of variable elimination, the information is transferred to the root node for
calculation [16].

If the failure state of Xi is xkii (i = 1, 2, · · · ,n) at time t, the probability of failure of the

dynamic fuzzy subset is P̃
x
ki
i

(t), the membership function is μ̃P̃
x
ki
i

(t). When T = Tv, the fuzzy

importance of failure state xkii is given by equation:

IPr
x
ki
i

(t)=E
[
P̃

(
T =Tv|Xi = xkii

)
− P̃ (T =Tv|Xi = 0)

]
=E

[
P̃

(
T=Tv,Xi=xkii

)
P̃

(
Xi=xkii

) − P̃(T=Tv,Xi=0)
P̃(Xi=0)

]
(10)

in which P̃
(
T =Tv,Xi = xkii

)
is the fuzzy posterior probability of the leaf nodes T on the state

Tv, and the state of Xi is x
ki
i .

According to the definition of a triangular fuzzy number, each triangular fuzzy number has a
non-fuzzy number corresponding to it. The process of finding a value that can best characterize
this fuzzy number is called deblurring, which is also commonly called deblurring. At present, there
are many methods to remove ambiguity, including the mean area method, gravity center method,
integration value method, etc. In this paper, we use the center of gravity method to de-fuzzily, so
the fuzzy importance IPr

x
ki
i

(t) can be gotten by Li et al. [28]:

IPr
x
ki
i

(t)=

∫ 1
0 xμ̃P̃

x
ki
i
,Tv (t)dx∫ 1

0 μ̃P̃
x
ki
i
,Tv (t) dx

−

∫ 1
0 xμ̃P̃

x
ki
i
,0 (t)dx∫ 1

0 μ̃P̃
x
ki
i
,0 (t)dx

(11)

when failure state of T is Tv, The fuzzy importance of Xi can be calculated by Eq. (12).

IPrTv (t)=
∑λ

ki=1 I
Pr
x
ki
i

(t)

λ
=

∫ 1
0 xμ̃P̃

x
ki
i

,Tv(t)dx∫ 1
0 μ̃P̃

x
ki
i

,Tv (t)dx
−

∫ 1
0 xμ̃P̃

x
ki
i

,0(t)dx∫ 1
0 μ̃P̃

x
ki
i

,0(t)dx

λ
(12)

where λ is the amount of state Xi excluding state 0. When state of T is TV , the node fuzzy
importance of BN IPrTv (t) reflects the average importance of the node Xi, the state varies from 0
to 1 [30,32,33,35]. Importance refers to the contribution of basic events to the occurrence of the
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system, which reflects the important measure of basic events in the system and provides the basis
for improving the reliability of the system.

3 Numerical Results and Comparative Analysis of Hydraulic System Balance Circuit

Hydraulic systems are widely used in aerospace, metallurgy, machinery, engineering, machinery
and other fields. This paper takes the balance circuit of a heavy CNC machine tool as the research
object, and analyzes and studies the reliability of the hydraulic system [24].

3.1 Hydraulic System Balance Circuit
Through the reliability distribution and FMECA analysis of a heavy CNC machine, it can be

seen that there are serious reliability problems in the hydraulic system of the beam moving gantry
machining center. In the hydraulic system, the valve core of the one-way valve is stuck. Usually, it
is not completely stuck, and there is still fluid flow. The piston of the hydraulic cylinder does not
fail, and it is not that the piston cannot act completely, but that the action is often incomplete;
For the system as a whole, the failure of insufficient pressure is fuzzy. Therefore, it is necessary to
introduce the method of fuzzy theory when doing fault tree analysis for the system. Moreover, the
faults cannot be described by two states: normal and fault, and use fuzzy probability to describe
the probability of component fault (occurrence of the bottom event) and system fault (occurrence
of the top event) [32–36].

The balance circuit is composed of filter (j1), motor (r), hydraulic pump (p), filter (j2), pres-
sure indicator (n1), cut-off valve (k1), pressure reducing valve (f1), one-way valve (a1), pressure
indicator (n2), pressure relay (b2), cut-off valve (k2) and (k3), relief valve (i1), accumulator group
(m1) and balance cylinder (h1). Any component failure can result in a system failure.

After the system starts, the hydraulic pump (p) provides oil and pressure to the whole
system. During the operation of the hydraulic pump, the system presses the accumulator group.
When the pressure reaches the range set by the pressure relay (b2), the hydraulic pump stops
supplying pressure. During the operation of the balancing cylinder, when the pressure decreases,
the accumulator group (m1) will make up the pressure and maintain the pressure of the whole
system. Here, the accumulator group is regarded as series of components for fault tree modelling
analysis.

According to the FMEA analysis results of the whole machine tool and hydraulic system,
“no pressure or low pressure lift in the balance circuit” has been chosen as the top event. On
the basis of the modelling rules of the fault tree, the fault mode of the system is analyzed
from top to bottom. Causes leading to no pressure or low pressure lift in the top event balance
loop include insufficient oil supply pressure, oil filter (j2) blocking, oil branch 1 fault, hydraulic
cylinder (h1) fault and energy storage system failing to store energy. Secondly, the failure mode
of each hydraulic component and the failure state of the components in the hydraulic component
is analyzed. The fault mode and codes of the entire balance loop are shown in Tab. 1. The fault
tree is presented in Fig. 5.

Based on the characteristics of the BN, the FTA is transformed into the BN model. Fig. 6
depicts the BN model of hydraulic system balance circuit fault accident. Here T ′ is the leaf node,
X1 ∼X15 are the root nodes, M1 ∼M4 are the intermediate nodes.
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Table 1: The codes and names of basic events

Code Event name

T No pressure or pressure insufficient in the balance circuit
M1 The oil supply pressure is insufficient
M2 Oil branch failure
M3 Energy storage system failure
M4 Insufficient quantity of oil
X1 The oil filter (j2) is damaged or the outlet is blocked by dirt
X2 Hydraulic cylinder (h1) malfunction
X3 Hydraulic pump failure
X4 Fuel tank (q) is damaged and sealed loosely, resulting in leakage
X5 Motor (r) fault
X6 Pressure relay (b2) is out of order and the motor is not operating
X7 The oil temperature is too high, the viscosity decreases and the internal leakage increases
X8 The oil filter (j1) is damaged or the outlet is blocked by dirt
X9 Pressure reducing valve (f1) output pressure is insufficient
X10 The check valve (a1) malfunction, leak or plug make the oil pressure cannot rise
X11 Pressure relief valve (i1) is seriously relieved
X12 Leakage of pipes and joints
X13 Accumulator (m1) malfunction
X14 Stop valve (k2) malfunction
X15 Liquid level switch (b1) malfunction

Figure 5: The FTA of the balance circuit
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Figure 6: The BN model of the balance circuit

Due to the different structure and function of each root node itself, different root nodes have
different influences on the system even under the same failure state. Therefore, this paper considers
nodes X1 ∼ X15, M1 ∼M4 and T have three failure states, respectively, normal operation, partial
failure and failure. State 0, 0.5, and 1 represent normal operation, partial failure, and failure,
respectively. Comprehensive historical data and expert experience, the CPT are listed in Tabs. 2–
6 [22–37].

Table 2: The CPT of node M4

X6 X15 p (M4 = 0|X6,X15) p (M4 = 0|X6,X15) p (M4 = 0|X6,X15)

0 0 1 0 0
0 0.5 0.1 0.4 0.5
0 1 0 0.3 0.7
...

...
...

...
...

1 1 0 0 1
1 1 0 0.6 0.4
1 1 0 0 1
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Table 3: The CPT of node M1

X3 X4 X5 M4 X6 X7 X8 p (M1 = 0|X3 ∼X8,M4) p (M1 = 0.5|X3 ∼X8,M4) p (M1 = 1|X3 ∼X8,M4)

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0.5 0.1 0.5 0.4
0 0 0 0 0 0 1 0 0.7 0.3
...

...
...

...
...

...
...

...
...

...
1 1 1 1 1 1 0 0 0 1
1 1 1 1 1 1 0.5 0 1 0
1 1 1 1 1 1 0 0 1

Table 4: The CPT of node M2

X9 X10 X11 X12 p (M2 = 0|X9 ∼X12) p (M2 = 0.5|X9 ∼X12) p (M2 = 0.5|X9 ∼X12)

0 0 0 0 0 0 1
0 0 0 0.5 0.2 0.4 0.4
0 0 0 1 0 0.7 0.3
...

...
...

...
...

...
...

1 1 1 0 0 0 1
1 1 1 0.5 0 1 0
1 1 1 1 0 0 1

Table 5: The CPT of node M3

X13 X14 p (M3 = 0|X13,X14) p (M3 = 0.5|X13,X14) p (M3 = 1|X13,X14)

0 0 1 0 0
0 0.5 0.1 0.4 0.5
0 1 0 0.3 0.7
...

...
...

...
...

1 1 0 0 1
1 1 0 0.6 0.4
1 1 0 0 1

Table 6: The CPT of node T

X1 X2 M1 M2 M3 p (T = 0|X1,X2,M1 ∼M3) p (T = 0.5|X1,X2,M1 ∼M3) p (T = 1|X1,X2,M1 ∼M3)

0 0 0 0 0 0 0 1
0 0 0 0 0.5 0.2 0.4 0.4
0 0 0 0 1 0 0.7 0.3

(Continued)
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Table 6 (continued)

X1 X2 M1 M2 M3 p (T = 0|X1,X2,M1 ∼M3) p (T = 0.5|X1,X2,M1 ∼M3) p (T = 1|X1,X2,M1 ∼M3)

0 0 0 0 0 0 0 1
0 0 0 0 0.5 0.2 0.4 0.4
0 0 0 0 1 0 0.7 0.3
...

...
...

...
...

...
...

...
1 1 1 1 0 0 0 1
1 1 1 1 0.5 0 0
1 1 1 1 1 0 0 1

3.2 Dynamic Fuzzy Possibility Analysis of Leaf Nodes
Due to components in the hydraulic loop system having different performance and different

working environments, the failure probability of each component varies with time. The dynamic
fuzzy subset of failure probability of root node is obtained when the failure state of root node is
1 and 0.5 by analyzing the historical data and expertise, as shown in Tabs. 7 and 8.

Table 7: Dynamic fuzzy possibility subset of Xi at fault state 1

Xi Dynamic fuzzy possibility subset of Xi(10
−6

h )

X1 [9+ 5t, 10.5+ 8t, 18.2+ 12t]
X2 [0.03+ 0.04t, 0.04+ 0.06t, 0.05+ 0.08t]
X3 [40.5+ 5t, 50+ 15t, 60+ 25t]
X4 [4.1+ 2t, 5.5+ 3t, 6+ 4t]
X5 [8+ 6t, 10.5+ 8t, 18.5+ 12t]
X6 [0.15+ 0.05t, 0.20+ 0.15t, 0.25+ 0.02t]
X7 [0.39+ 0.03t, 0.45+ 0.05t, 0.60+ 0.08t]
X8 [9+ 3t, 12+ 5t, 15+ 8t]
X9 [6.4+ 8t, 8+ 10t, 12+ 12t]
X10 [15+ 2t, 18+ 4t, 20+ 6t]
X11 [17+ 2t, 20+ 4t, 25+ 6t]
X12 [0.09+ 0.02t, 0.15+ 0.04t, 0.25+ 0.05t]
X13 [20.16+ 12t, 41.5+ 14t, 60+ 18t]
X14 [25.5+ 8t, 28+ 11t, 32.4+ 13t]
X15 [6.4+ 8t, 8+ 10t, 12+ 12t]
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Table 8: Dynamic fuzzy possibility subset of Xi at fault state 0.5

Xi Dynamic fuzzy possibility subset of Xi(10
−6

h )

X1 [8+ 5t, 9.5+ 8t, 15.2+ 12t]
X2 [0.02+ 0.04t, 0.03+ 0.06t, 0.04+ 0.08t]
X3 [35.5+ 5t, 45+ 15t, 50+ 25t]
X4 [3.5+ 2t, 4.5+ 3t, 5+ 4t]
X5 [6+ 6t, 7.5+ 8t, 14.5+ 12t]
X6 [0.12+ 0.05t, 0.18+ 0.15t, 0.25+ 0.02t]
X7 [0.25+ 0.03t, 0.35+ 0.05t, 0.45+ 0.08t]
X8 [7+ 3t, 8+ 5t, 13+ 8t]
X9 [5.4+ 8t, 8+ 10t, 10+ 12t]
X10 [10+ 2t, 13+ 4t, 15+ 6t]
X11 [12+ 2t, 16+ 4t, 20+ 6t]
X12 [0.09+ 0.02t, 0.15+ 0.04t, 0.25+ 0.05t]
X13 [15.16+ 12t, 20.5+ 14t, 35+ 18t]
X14 [15.5+ 8t, 25+ 11t, 30.4+ 13t]
X15 [5.4+ 8t, 6+ 10t, 12+ 12t]

According to Tabs. 2–6 and Eq. (7), when T = 1, the dynamic fuzzy possibility is calculated
as shown below:

P̃T=1 (t)=∑
X1, . . .X14
M1, . . .M4

P̃ (X1,X2,X3 . . .X14,M1,M2,M3,M4,T = 1)

=∑
X1,X2
M1,M2,M3

P̃ (T = 1|X1,X2,M1,M2,M3)× P̃ (X1)× P̃ (X2)×
∑

X3,X4...X8,M4
P̃ (M1|X3,X4, · · ·X8,M4)× P̃ (X3)× P̃ (X4)× · · · P̃ (X8)×∑

X6,X15
P̃ (M4|X6,X15) P̃ (X6)× P̃ (X15)

∑
X9...X12

P̃ (M2|X9 . . .X12)×
P̃ (X9)× · · · P̃ (X12)×

∑
X13,X14

P̃ (M3|X13,X14)× P̃ (X13)× P̃ (X14)

(13)

when T = 0.5, the dynamic fuzzy subset of failure probability of root node is listed in Tab. 8.
The dynamic fuzzy possibility is given as follows:

P̃T=1 (t)=∑
X1, . . .X14
M1, . . .M4

P̃ (X1,X2,X3 . . .X14,M1,M2,M3,M4,T = 0.5)

=∑
X1,X2
M1,M2,M3

P̃ (T = 0.5|X1,X2,M1,M2,M3)× P̃ (X1)× P̃ (X2)×
∑

X3,X4...X8,M4
P̃ (M1|X3,X4, · · ·X8,M4)× P̃ (X3)× P̃ (X4)× · · · P̃ (X8)×∑

X6,X15
P̃ (M4|X6,X15) P̃ (X6)× P̃ (X15)

∑
X9...X12

P̃ (M2|X9 . . .X12)×
P̃ (X9)× · · · P̃ (X12)×

∑
X13,X14

P̃ (M3|X13,X14)× P̃ (X13)× P̃ (X14)

(14)
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The comparison between the results of the method presented in this paper and the results of
the fault tree analysis method is obtained by using MATLAB software simulation, as depicted in
Figs. 7 and 8.

Figure 7: Comparison of the results (The state node T is 1)

Figure 8: Comparison of the results (The state node T is 0.5)

Based on the above system possibility analysis, it can be concluded that: the dynamical fuzzy
possibility analysis results of leaf nodes include the dynamical fuzzy subsets of upper variable,
center variable and lower variable. The central variable is almost the same as the one obtained
by the traditional fault tree method. For a simple system with sufficient information and a clear
fault logic relationship, the fault tree analysis method can be used; for the complex system with a
lack of fault information and uncertain fault logic relationship, this method can clearly quantify
and express the impact of cognitive uncertainty on system reliability. It does not need fault tree
analysis and minimum cut set calculation, and it does not need to determine the complex algebraic
expression of system reliability. It can be found that the method proposed in this paper can
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effectively deal with the fuzziness caused by the lack of data or cognition in the engineering
system.

3.3 Importance Analysis of Fuzzy Dynamic Root Node

According to Eq. (10), when T is 1, the fuzzy importance of failure state xkii = 1 is expressed
by equation:

IPr11 (t)=E
[
P̃ (T = 1|Xi = 1)− P̃ (T = 1|Xi = 0)

]
=

∫ 1
0 xμ̃P̃11,1

(t)dx∫ 1
0 μ̃P̃11,0

(t)dx
−

∫ 1
0 xμ̃P̃11,0

(t)dx∫ 1
0 μ̃P̃11,0

(t) dx

(15)

Similarly, when T is 1, the fuzzy importance of failure state xkii = 0.5 could be expressed as:

IPr11 (t)=E
[
P̃ (T = 0.5|Xi = 1)− P̃ (T = 0.5|Xi = 0)

]
=

∫ 1
0 xμ̃P̃11,0.5

(t) dx∫ 1
0 μ̃P̃11,0.5

(t)dx
−

∫ 1
0 xμ̃P̃11,0

(t)dx∫ 1
0 μ̃P̃11,0

(t)dx

(16)

According to Eqs. (10)–(12), when T is 1, the probability importance of Xi can be expressed
as Eq. (17):

IPr1 (t)=
∑2

ki=1 I
Pr
1,ki

(t)

2
(17)

Similarly, when leaf node T is 0.5, the probability importance of Xi could be concluded as
Eq. (18):

IPr0.5 (t)=
∑2

ki=1 I
Pr
0.5,ki

(t)

2
(18)

According to Eqs. (17) and (18), the fuzzy importance of root nodes at t = 3000 h are
calculated and also listed in Tab. 9.

Table 9: The fuzzy importance of Xi at t= 3000 h

The root nodeXi IPr0.5 (t) IPr1 (t)

X1 0.262 0.36
X2 0.12 0.32
X3 0.082 0.123
X4 0.086 0.098
X5 0.15 0.078
X6 0.17 0.42
X7 0.45 0.53
X8 0.47 0.62
X9 0.19 0.89
X10 0.24 0.074
X11 0.019 0.027
X12 0.71 0.08
X13 0.57 0.10
X14 0.54 0.14
X15 0.02 0.07
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According to the fuzzy importance of nodes, the system fault diagnosis and maintenance
detection can be effectively carried out. Firstly, the most important components are inspected and
maintained. The qualitative and quantitative evaluation methods proposed in this paper can also
provide a theoretical basis for system fault diagnosis and maintenance strategy formulation.

According to Eqs. (17) and (18), The importance of X1 presented in Fig. 9, while the leaf
node is in state 0.5 and 1.

It can be concluded that the system dynamic fuzzy importance analysis method is based on
BN proposed in this paper. When the leaf nodeT is in different fault states, the importance of
the root node Xi is a curve changing with time. As shown in Fig. 9, when the leaf nodes are
in different fault states of 1 and 0, the importance curves of the root nodes are different. The
importance of T-S analysis is used to analyze the importance of the system, and the fixed value
independent of time is obtained. When the importance of the components changes little with time,
the difference between the result and the result of fault tree analysis is very small. For those with
a large variation over time, if the T-S fuzzy importance analysis method is used to approximate
the calculation, the results would have a large error, or even errors. Compared with the traditional
reliability methods, the proposed method can make better use of the existing information and
effectively deal with the fuzziness caused by a lack of data or insufficient cognition. Moreover, it
can analyze the reliability of the multi-state system with dynamic problems, and the results are
closer to the objective reality.

Figure 9: The importance of X1 while T is in state 0.5 and 1

4 Conclusion

In this paper, the dynamic fuzzy theory is used to represent the cognitive uncertainty in the
system. Combined with the advantages of the Bayesian network in system structure expression
and probabilistic reasoning, fuzzy theory and the Bayesian network are integrated to realize the
logical relationship expression and probabilistic reasoning of complex multi-state systems with
cognitive uncertainty. The linear fuzzy subset function is introduced into the Bayesian network,
and the dynamic fuzzy subset is established to describe the variety of node failure probability with
time instead of the exact value, which can effectively solve the fuzziness and dynamics of fault
information. The fuzzy multi-state CTP is used to describe the fault relationship between compo-
nents. Compared with the traditional system reliability analysis, the multi-state of system faults
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and the uncertainty of the logic relationship between faults are considered. We can apply this
method to many practical problems that cannot be expressed in exact mathematics. In addition,
the time-varying fault probability is considered. This method can make better use of the existing
information of the system, and the analysis result is closer to the actual situation. This method
makes full use of the advantages of the Bayesian network in probabilistic reasoning and can
effectively represent and quantify the impact of cognitive uncertainty on system reliability without
calculating the minimum cut set or determining the complex algebraic expression of system failure
probability, which meets the actual needs of engineering. Therefore, the method proposed in this
paper has certain significance in engineering.
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