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ABSTRACT

Security weaknesses in web applications deployed in cloud architectures can seriously affect its data confidentiality
and integrity. The construction of the procedure utilized in the static analysis tools of source code security differs
and therefore each tool finds a different number of each weakness type for which it is designed. To utilize the
possible synergies different static analysis tools may process, this work uses a new method to combine several
source codes aiming to investigate how to increase the performance of security weakness detection while reducing
the number of false positives. Specifically, five static analysis tools will be combined with the designed method to
study their behavior using an updated benchmark for OWASP Top Ten Security Weaknesses (OWASP TTSW).
The method selects specific metrics to rank the tools for different criticality levels of web applications considering
different weights in the ratios. The findings show that simply including more tools in a combination is not
synonymous with better results; it depends on the specific tools included in the combination due to their different
designs and techniques.
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1 Introduction

Nowadays organizations and companies use Web Applications (WA) in cloud infrastructures
to manage their handle data from anywhere, Internet, Intranets et al. WA can be accessed from
anywhere and can also be attacked, which means that it is vital to focus on the implementation of
their security. A WA can include security weaknesses in source code that can affect not only the
application but also the server that hosts it, the operating system and even the cloud infrastructure
itself. Therefore, developing new methods to investigate how to preventively eliminate as many
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weaknesses as possible in WA source code from the beginning of the development of the WA is
a priority.

OWASP Top Ten Project (OWASP TTP) [1] is the most know standard that addresses the
main security weaknesses in WA source code. The security weaknesses in WA source code require
a security analyst to develop the optimum selecting the best Static Analysis Security Testing Tools
(SASTT). Numerous investigations [2–4] show that the WA are failing the OWASP TTP. SQL
injection (SQLI) and Cross Site Scripting (XSS) weaknesses are the most frequent and dangerous
weaknesses in source code.

Many studies indicate very good ratios of True Positives (TP) and False Positives (FP) may be
determined by SASTT [5–8]. The work of Yoon et al. [9] shows how static tools can decrease FP
(found weaknesses that may not appear) and False Negatives (FN) (real weaknesses not detected).
FP are not a weakness and may be discarded by the investigator, but a FN is more challenging
to detect by a security analyst it has not been detected. Therefore, it is dangerous. It is concluded
that is required to verify each security weakness appearing in a SASTT report. Related works
deal with how several static tools that work together to take advantage of any synergies between
SASTT to achieve a better performance finding more weaknesses [10,11]. Also, there are several
works that have investigated how combine static and dynamic analysis [12,13].

We list some concerns to analyze:

• The n-SASTT effectiveness finding OWASP TTSW in combination.
• The n-SASTT combinations average effectiveness finding OWASP TTSW taken into account

different metrics.
• The SASTT effectiveness finding OWASP TTSW for each n-tools combination and taken

into account different metrics.
• The optimum way to study the security of WA at various degrees.
• OWASP Top Ten Benchmark (OWASP TTB) suitability for relating SASTT.

The main motivation for this work is the idea that the combination of different SASTTs
can be very beneficial in improving the security of the source code of a web application. A
proper combination of SASTTs can find more security vulnerabilities or TPs while yielding
fewer false alarms or FPs. Therefore, it is necessary to reference comparative work on SASTT
combinations so that auditors and analysts can select the best combinations. Besides, auditors and
analysts need to choose the best SASTT combinations taking into account which combinations
are more adequate having into account different criticality levels. To formalize the use of SASTT
determining the maximum number of weaknesses and later being able to patch them efficiently,
it is necessary to introduce a Software Development Life Cycle (SSDLC) given by Vicente et al.
in [14].

Next, we present out innovations. The first objective is to find out the behaviour of the
combination of commercial n-SASTT (Coverity, Klocwork, Fortify SCA and Xanitizer) and one
open-source tool (FindSecurityBugs) using a new specific methodology. Combining several tools
can improve the overall results but choosing the optimum tools to analyze the security of a WA is
not a simple task. This study has investigated how to determine a repeatable method to combine
several SASTT to achieve more optimal results in terms of true positive (TPR) and false positive
(FPR) ratios. The way of combining tools proposed by the method is novel and uses a testbed
application (with 669 test cases for TP and FP) specifically designed for the weakness classes of
the OWASP TTP widely accepted by the community. The method examines the effectiveness in
combination of 4 relevant commercial SASTT, plus an open source one. It also makes it possible
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to evaluate how they perform against a wide range of weaknesses in OWASP TTSW not covered
by other works. We investigate specifically how is the performance choosing proper metrics.

The second aim in this work is to pick the more proper relations of tools taking into account
various levels of security criticality. As mentioned above, a security analysis with a SASTT must
necessarily include a criticising the results to eliminate possible FP, but sometimes auditors do not
have enough time. In the most critical applications, it is necessary to find the highest number of
TP and it does not matter the number of FP because there is time to eliminate the FP. In less
critical applications there is not as much time to eliminate FP and tools are needed that yield
fewer FP with good results in the TPR. The metrics used allow to distinguish which combinations
of tools are more suitable for auditing the security of WA at various levels.

The tools are used against a new benchmark updated from its first use [15,16] and adapted
to OWASP TTP [1] to obtain the results of n-tools combination effectiveness. We get a strict
rank of combination tools selecting a well established metrics applied to the execution conclusions.
Finally, to fix the effectiveness utilizing the tools in combination, the study gives some practical
recommendations.

Hence, the findings of the work are:

• A specific approach using a concrete benchmark relying on OWASP TTSW [15,16] to
evaluate the effectiveness of n-SASTT combinations detecting weaknesses in WA.

• Categorizing results by SASTT in combination utilizing a method to categorize them based
on various degree levels of WA significance and criticality.

• A study of leading commercial SASTT results in combination to permit researchers to pick
the best tools to accomplish an audit of a WA.

The structure of this work is: Section 2 gives a background in web technologies security with
emphasis in weaknesses, SASTT and related work. Section 3 provides the step of the assessment
approach proposal designed with the steps followed to rank the SASTT in combination using
the selected benchmark. Moreover, Section 4 collects the finding and Section 5 proposes future
research.

2 Preliminaries

A background is given on web technologies security, benchmarking initiatives, SASTT.

2.1 WA Security
The advancement of WA for companies and business related via the Internet and Intranets

implies that there is a need to accomplish some kind of business and simultaneously be a precious
target of attack by exploiting construction, implementation or operation security weaknesses that
WA have to get some kind of privileged information, financial advantage, extortion, denial, etc.

.NET framework with languages such as C# or iOS, PHP, Visual Basic, NodeJs and Java
are the most chosen today. Java is the most used language, according to several studies [17,18].
Other publications address the security problems of the new generation of WA: WA use HTML5
or flash technologies, asynchronous JavaScript and Xml (AJAX) [19–22] and JavaScript libraries
such as Angular, Bootstrap, Jquery, React, Vaadin, Vue, and other.

One form of security prevention in relation to the development of WA source code is for
practitioners to have knowledge in secure source code development [23]. The using of secure
languages typing and memory length verifications at compile time is another form of prevention.
C#, C-dialects such as Ccure and Cyclone, and Java are some of these languages [24].



544 CMES, 2021, vol.129, no.2

The OWASP TTP puts together the most interesting security weakness classes and there are
several studies that show that WA tested failed the OWASP TTP [2–4]. SANS Top 25 [25] is
another weakness project for software in general including 25 CWE specific weaknesses. OWASP
TTP is related to weakness classes and each of them includes different specific weaknesses related
to WA.

2.2 Testing: Static Analysis Security
A sound technique to prevent security weaknesses in source code is avoidance [26]. Weaknesses

are avoided, if practitioners are qualified in source code design to prevent “mistakes” leading
to security weaknesses [23]. Clearly, avoidance prevents some of the weaknesses, but program-
ming errors can exist although the preventive measures of employing secure best practices and
other related security analysis techniques are in place once the source code is structured. These
approaches contain the use of SASTT, dynamic analysis security tools (DAST) or interactive real-
time analysis tools (IAST). Manual static analysis demands highly trained staff and time. To make
an analysis of WA security, by some technique, it is important to deal with the entire attack sur-
face taking into account all pieces and layers of application and utilizing devices for automating
security analysis. To achieve better results, some tools of similar king may combine [11] or various
types of tools [27].

SASTTs are a type of security tools that analyze the entire source code of a web application
in several steps. First, they compile the source code and from the parse tree they transform it
into a model that is checked against the specific rules or models of each security weakness. In
summary, SASTT successively performs lexical, syntactic, semantic, intra-procedural, local analysis
of each function and inter-procedural analysis between the different functions of the source code.
SASTT provide a clear security analysis, and they analyze both source code and object code, as
necessary. SASTT initiate with a problem because of the act of finding out, if a design attains
its final state, or not [28]. Although, security code analysis can aid to reduce the analysis time
and to improve the effectiveness of results [29]. SASTT are thought one of the most important
security activities inside a SSDLC [14,30]. SASTT cover all attack surface, also they can audit the
configuration files of the WA.

A final audit of each weakness included in a SASTT report is needed to reduce the FP and
locate the FN (more difficult). Security auditors are required to improve how to recognize all
types of weaknesses in the source code for a particular programming language [31]. In [5] tools
such as Fortify SCA, Coverity, Checkmarx or Klocwork are excellent cases of tools that give way
for reducing FP. SASTT has distinct possibilities in terms of the error trace facilities to audit a
security weakness.

The works [6,32], evaluates SASTT vs. DAST tools against web services benchmarks. SASTT
provide better TPR and worse FPR than DAST tools. For this reason, static analysis spe-
cially requires a manual revision of the results to discard the FP. But several works verify that
different SAST tools use distinct algorithm designs as Abstract Interpretation [33–35], Taint Anal-
ysis [36], Theorem Provers [37], SAT Solvers [38] or Model Checking [39,40]. Therefore, combining
SASTT can detect distinct types of weaknesses and obtain a better result in combination [10,11].
Also, [6,32] verify that SAST and DAST may detect different types of weaknesses and both
types of analysis can improve the TPR and FPR by correlating their results. Other studies
combine SASTT with IAST tools to monitor attacks in runtime with the information of static
analysis [41,42]. Other approximations combine static analysis with machine learning procedures
for finding of security weaknesses in WA decreasing the number of FP [43,44].
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2.3 Related Work
Nguyen et al. [45] investigate desirable features for SASTT, how derive new SASTT criteria

with assisting components for warnings analysis and fix. Moreover, they enhanced the research in
static analysis using collaborative user interfaces in a continuous integration environment.

Muske et al. [46] study how to eliminate the number of FP that a SASTT generates. They
propose the using of a model checker to automatically eliminate FP and show experimental results
using several applications for array index out of bounds or arithmetic overflow weaknesses.

A comparison of 9 SASTT for C language is determined categorizing them by appropriate
metrics using SAMATE tests suites for C language. This comparison includes several leadersá
commercial tools which it is important for the security analyst to select the best tool to audit
source code security [5].

The work of Ye et al. [47] conducts a comparative research of commercial (Fortify SCA and
Checkmarx) and open-source (Splint) SASTT focused on the analysis of one of the most exploited
weaknesses, Buffer Overflow. In particular they give a relation of these devices, giving 63 open-
source projects including 100 bugs of this type. Their work includes various tools two to two,
where they try to make the comparison of tools working by themselves, or by combining them.

Another study shows a conceptual, performance-based ranking framework that prioritizes
the output of several SASTT, to enhance the tool effectiveness and usefulness [48]. The frame-
work weights the performance of SASTT per defect type and cross-validates the results between
different SASTT reports. The proposed framework shows the potential benefits in an initial
validation.

Another paper [10] is based on data that came from the use of five distinct SASTT to find
SQL Injections (SQLi) and Cross-Site Scripting (XSS), in 132 WordPress Content Management
System (CMS) plugins. This can be extended using a benchmark with more weakness classes and
including leader commercial tools.

Ferrara et al. [49] study how taint analyses and backward slicing techniques might be
combined to generate improved security analysis for GDPR compliance.

The work of Flynn et al. [50] uses the tool SCALe for aggregating and evaluating static
analysis weaknesses findings from several static tools. The goal is to help in the auditing process of
the merged SASTT weakness reports. The security weaknesses of the merged report are inspected
by auditors to determine whether they are TP or FP. Audit determinations, along with source
code metrics, were processed into a training dataset. Training data from all software projects
was put together to use diverse classification techniques to create models to classify alarms as
expected-true-positive (e-TP), expected-false-positive (e-FP), or indeterminate (I).

The work of Vasallo et al. [51] explores in which development contexts practitioners use
SASTT; How developers configure SASTT in distinct development contexts and if developers pay
attention to the same warnings in distinct development contexts. An important reason to merge
several SASTT is that they cover different rulesets or security weaknesses.

In the work [11], diverse SASTT are combined to enhance the detection of weaknesses in
WA, taking into account 4 cases of different criticality levels. It tested five SASTT against two
benchmarks, one with real WordPress plugins and another with synthetic test cases. This research
can improve using test benchmarks with increased weakness classes than SQLI and XSS and
containing leaders’ commercial tools.
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In the work [6] the authors work in a benchmarking technique to study the appropriateness
of security tools in Web Services environments. This technique provided two solid benchmarks
for SQL Injection weakness analysis tools. But it could greatly improve its representativeness with
respect to the inclusion of security weaknesses for other security weaknesses besides SQLI.

Nunes et al. [8] design another benchmarking approach to choose sufficient SASTT for
weakness detection in WA. They suggested a technique for evaluating such SASTT considering
distinct levels of criticality. The results show that the metrics could be better to balance TPR
and FPR. But it could better their representative with respect to security weaknesses coverage for
others besides SQLI and XSS.

The main related work conclusions are that the existing comparatives do not include an
adequate number of leading commercial tools and the benchmarks used are not representatives
with respect to OWASP TTP. It is very important that the benchmark includes the security
weaknesses more frequent and dangerous in each weakness class, However, given the significant
cost of commercial tools, it can be examined a study that deals with seven static tools (five
commercial tools) by a new approach proposal with a new representative benchmark constructed
for weakness classes included in the OWASP TTP [15,16].

3 A Way to Compare SASTT in Combination

It is developed a repeatable approach to relate and rank the SASTT.

• Choose the OWASP TTB constructed.
• Choose the SASTT. We select five commercial and open-source SASTT according to the

analysis of the corresponding works in Section 2.3 and official lists of SASTT and run the
selected SASTT against the OWASP TTB designed in [16] with the default configuration
for each tool.

• Choose appropriate metrics to scrutinize results based on three different levels of WA
criticality.

• Metrics calculation.
• Discussion, analysis and ranking of the results.

Fig. 1 presents the proposed method in graphic form:

Select the OWASP Top Ten
Benchmark designed

Select SAST tools
Run selected SAST tools

against OWASP
TopTen Benchmark 

Select metrics Metrics calculation Analysis and 
discussion

Figure 1: Method proposal for analyzing analysis security testing SASTT combinations

3.1 Benchmark Selection
A proper bench test must be portable, credible, representative, require minimum modifications,

easy to implement and run and the tools execution must be under the same conditions [6].
We have investigated several security benchmarks for WA as Wavsep used in the comparisons
of [52,53]; Securebench Micro Project using in the works of [54,55]; Software Assurance Metrics
And Tool Evaluation (SAMATE) project of National Institute of Standards and Technology
(NIST) used in several works [5,8,56–59]; OWASP benchmark project [60]; Delta-bench by [61]
and OWASP TTB [15,16] adapted for OWASP Top Ten 2013 and 2017 weakness classes projects.
It has been used in [15].
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Taking into account statistics of security weaknesses reported by several works [2–4], the
benchmark chosen [16] meets these properties and it is designed for the most frequent and
dangerous security weaknesses of WA according to OWASP TTP 2013, 2017. It has been updated
from its first use in [15] to this work. The benchmarking solution chooses the most appropriate
test cases for the main weakness classes of OWASP TTP 2013 and 2017 from SAMATE Juliet
benchmark. The result is a set of weakness classes (for example Cross Site Scripting) each one
with a set of weakness types (for example XSS, XSS error message, XSS attrubute, etc.) with a
number of test cases to OWASP Top Ten test SASTT behavior and effectiveness with respect to
security weaknesses classes. The benchmark is representative according to OWASP TTP, it does
not need modifications with any tool and it is easily portable as a java project.

public void bad(HttpServletRequest request, HttpServletResponse response) throws Throwable

{

String data;

Logger log_bad = Logger.getLogger("local-logger");

/* read parameter from request */

data = request.getParameter("name");   // SOURCE

String root = "C:\\uploads\\";

/* POTENTIAL FLAW: no validation of concatenated value */

File fIn = new File(root + data);    // SINK

if( fIn.exists() && fIn.isFile() )

{

IO.writeLine(new BufferedReader(new FileReader(fIn)).readLine()); 

}

}

private void goodG2B1(HttpServletRequest request, HttpServletResponse response) throws Throwable

{

String data;

/* FIX: Use a hardcoded string */

data = "file";

String root = "C:\\uploads\\";

File fIn = new File(root + data);

if( fIn.exists() && fIn.isFile() )

{

IO.writeLine(new BufferedReader(new FileReader(fIn)).readLine());

}

}

Figure 2: CWE23_Relative_Path_Traversal__getParameterServlet_07 test case

Each case includes a function named bad () designed with a concrete weakness having an
input source that is not justified or verified (badsource) and a code line not verified where the
weakness appends (badsink). See Fig. 2 with a reduced version of a Relative Path Traversal
security weakness. Each test case has distinct variants in code complexity, flow complexity and
different input sources to the application as forms, database, console, etc. The final structure of
OWASP TTB contains 207 test cases with bad functions for determinating the TPR and 462 test
cases with good functions for determining the FPR. Each test case includes bad function, but



548 CMES, 2021, vol.129, no.2

a test case can have various versions of good functions of the bad function (from 1, 2, 3 or 4
depending on each test case) with nice source input, (goodsource), or nice sink (goodsink). Tab. 1
shows the test cases distribution by weakness classes.

Table 1: Benchmarking approach for OWASP top ten [16]

Weakness classes and types by category TP test cases FP test cases

Injection 84 218
Broken_authentication_and_Sessions 24 52
Sensitive_Data_Exposure 12 26
Broken_Access_Control 25 44
Security_Misconfiguration 6 9
Cross_Site_Scripting 32 62
Using_Components_with_Known_Weaknesess 6 11
Cross_Site_Request_Forgery 7 22
Redirects_not_validated 11 18
N◦ Test cases 207 462

Injection weakness class includes weakness types such as SQL Injection, LDAP Injection,
Access Through SQL Primary, Command Injection, HTTP Response Splitting and Unsafe Treat-
ment XPath Input. Broken Authentication and Sessions weakness class includes weakness types
such as Hard Coded Passwords, Plaintext Storage in a Cookie, Using Referer Field for Authenti-
cation, Insufficient Session Expiration and other. Sensitive Data Exposure weakness class includes
weakness types such as Information Leak error, Leftover Debug Code, Info Leak by Comment
and other. Broken Access Control weakness class includes weakness types such as Relative Path
Traversal, Absolute Path Traversal, Unsynchronized Shared Data TOCTOU and other. Security
Misconfiguration weakness class includes weakness types such as Reversible One Way Hash, Insuf-
ficiently Random Values and Same Seed in PRNG. Using Components with Known Vulnerabilities
includes weakness types such as Use Broken Crypto, Weak PRNG and Predictable Salt One Way
Hash.

3.2 SASTT Selection
SASTT are chosen with respect to J2EE, one the most popular technology in web advancing,

the programming language utilized by J2EE, Java, is one of the considered as more secure [24]
Next, is the picking of four (4) commercial and one (1) open-source static analysis tool for
source code to find weaknesses in WA constructed using the J2EE specification. Under these
comparations and investigating the availability of commercial and open-source tools are chosen
four commercial and one open-source relevant tools. Chosen tools:

• Fortify SCA (Commercial) includes 18 different languages, the most known OS platforms
and provides SaaS (Software as a service) and it finds more than 479 weaknesses.

• Coverity (Commercial) provides numerous languages, as Javascript, HTML5, C/C++, Java,
C#, Typescript and others.

• Xanitizer (Commercial) includes only Java language, but it provides to auditors of sanitizing
the inputs variables in source code.
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• FindSecurityBugs. (Open source). Plugins are provided for IntelliJ, Android Studio, Sonar-
Qube, Eclipse, and NetBeans. Command line integration is possible with Ant and Maven.

• Klocwork (Commercial) supports C, C++, C#, and Java languages. It has it has compliance
with OWASP Top Ten project and others.

3.3 Metrics Selected to Analyze Results
The metrics have been selected taking into account the related works of the state of the art

investigated [5,6,8,15,32,59,62,63]. It is essential to select the appropriate metrics that relate the
base metrics: TP, FP, true negatives (TN) and false negatives (FN) according to the safety analysis
objective to be achieved: Find the highest number of false TP, obtain the lowest number of FP,
obtain the best balance between TP and FP or give more weight to finding a higher number of
TP vs. FP or give more weight to finding a lower number of FP vs. having a higher TP ratio.
These different security analysis objectives relate to different levels of security required in the
analyzed web applications. In Section 3.4 all the selected metrics are calculated and in Section 3.5
of Analysis and discussion the selected metrics are studied according to the different objectives.
The summary of metrics used is:

• Precision (1). Proportion of the total TP findings penalized by number or FP:

TP/(TP+FP) (1)

TP (true positives) is the number of true weaknesses found in the code and FP (false
positives) is the number of weaknesses found that they are false alarms.

• True positive rate/Recall (2). Ratio of detected weaknesses to the number that really appears
in the code:

TP/(TP+FN) (2)

FN (false negatives) is the total number of existing weaknesses not detected in the code.
• False positive rate (3). Ratio of false alarms for weaknesses that not really appear in the
code:

FP/(FP+TN) (3)

• F-measure (4) is harmonic mean of precision and recall:

(2× precision× recall)
(precision+ recall)

(4)

• Fβ-score (6) is a particular F-measure metric for favor to recall or precision. For example,
a value for β of 0,5 gives more weight to precision metric. But a value or 1, 5 gives more
weight to recall precision:
(
1+β2

)
× precision× recall

((β2× precision)+ recall)
(5)

3.4 Metrics Calculation
Once SASTT and metrics have been chosen, SASTT are executed against the OWASP TTB,

we get the TP and FP results for each kind of weakness. Next, the metrics chosen in Section 3.3
are used to find adequate explanation of the results and to obtain the conclusions.
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To determine all metrics a program in C language is developed to process the results of
each tool. After executing each tool against OWASP TTB the findings are carefully analyzed and
formatted in a file that the C program process to get the chosen metrics.

The strategy of 1-out-of-N (1ooN) is used for merging the findings of the SASTT. The
technique suggested to obtain the merged results for two or more tools depends on several
automated steps. 1ooN in SASTT combinations for TP detection: Any TP detection (alarm) from
any of the n-SASTT in a bad function of a test case will lead to an alarm for a 1ooN system.
1ooN in SASTT combination for FP detection: Any TN (non-alarm) from any of the n-SASTT
in a good function of a test case would go to a TN in a 1ooN system if the same tool detected
a TP in the bad function of the same test case. If the same tool did not detect a TP means that
it not properly detect this weakness, or it is not designed to detect it (see Tab. 2).

Table 2: Logic used on the combination of tools∗

Tool A Tool N N-SASTT

Positives cases (P) (Bad functions) TP or TP TP
TP or FN TP
FN or TP TP
FN and FN FN

Negative cases (N) (Good functions) FP or FP FP
FP or TN FP
TN or FP FP
FP (TP bad ()) or TN TN∗
TN or FP (TP bad ()) TN∗
TN and TN TN

Note: ∗If any of the tools in a combination obtains a TN in a good function and it also obtain a TP in the associated bad function of the
same test case.

The number of found weaknesses (TP) is accounted in Tab. 3 XSS error message, XSS
attribute. The total of TP test cases was 207. Also, Tab. 4 gives results in the total of 462 FP test
cases.

The test cases weaknesses vary in a weakness classification. To normalize findings in each class
of weakness (e.g., Cross Site Scripting) we compute the TPR for each type of weakness (XSS error
message, XSS attribute, etc.) included in a particular category (for example Injection). Following
the arithmetic mean of TPR of all types of weaknesses is computed for each weakness category.
Finally, last file of Tab. 3 proves also the arithmetic mean of TPR for all classes of weaknesses
for each tool. To normalize the finding of FP results in each weakness category (for example
Cross Site Scripting) we calculate the FPR for each type of weakness (XSS error message, XSS
attribute, etc.) included in a concrete category (for example Injection). According to the arithmetic
mean of TPR of all types of weaknesses is computed for each weakness case. Finally, last file of
Tab. 4 gives the arithmetic mean of TPR for all classes of weaknesses for each tool.

The execution of tools vs. the benchmark is achieved computing the metrics selected in
Section 3.3, TPR, FPR, Precision, F-measure, F1,5-score and F0,5-score.
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Table 3: Calculation metrics for 1-tools. Fortify (ft), FindSecBugs (fb), Xanitizer (xn), Coverity
(co), Klocwork (kw)

Fortify FsecBugs Xanitizer Klocwork Coverity

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

Injection 0.798 0.665 0.643 0.349 0.655 0.385 0.405 0.330 0.298 0.252
Broken auth 0.292 0.269 0.208 0.038 0.250 0.288 0.083 0.058 0.083 0.154
Sensitive data 0.500 0.231 0.000 0.000 0.000 0.077 0.167 0.077 0.000 0.038
Broken A.C 0.800 0.614 0.720 0.250 0.320 0.159 0.800 0.659 0.640 0.250
Broken conf 0.667 0.667 0.667 0.333 1.000 0.333 0.333 0.222 1.000 0.333
XSS 0.500 0.258 0.906 0.484 0.938 0.500 0.625 0.355 0.531 0.258
Comp. Vuln. 0.667 0.545 0.667 0.182 0.667 0.182 0.333 0.364 0.667 0.182
CSRF 1.000 0.864 0.143 0.000 0.000 0.000 0.714 0.545 0.000 0.000
Open redirect 0.545 0.389 0.909 0.333 0.818 0.333 0.818 0.667 0.818 0.222
TPR/FPR 0.641 0.500 0.540 0.219 0.516 0.251 0.475 0.364 0.449 0.188
Precision 0.562 0.712 0.673 0.566 0.705
F-measure 0.599 0.614 0.584 0.517 0.548
F0,5-score 0.691 0.803 0.761 0.655 0.759
F1,5-score 0.472 0.449 0.428 0.385 0.389

Table 4: Calculation metrics for 2-tools combinations. Fortify (ft), FindSecBugs (fb), Xanitizer
(xn), Coverity (co), Klocwork (kw)

xnft ftfb coft ftkw xnkw fbkw cokw xnfb cofb coxn

Injection TPR
FPR

0.952
0.651

0.893
0.757

0.798
0.638

0.857
0.711

0.762
0.463

0.714
0.399

0.512
0.372

0.726
0.422

0.655
0.372

0.702
0.431

Broken auth TPR
FPR

0.333
0.442

0.417
0.308

0.292
0.346

0.292
0.269

0.250
0.288

0.292
0.077

0.167
0.192

0.333
0.250

0.250
0.154

0.250
0.250

Sensitive data TPR
FPR

0.500
0.231

0.500
0.231

0.500
0.231

0.500
0.231

0.167
0.077

0.167
0.077

0.167
0.077

0.000
0.077

0.000
0.038

0.000
0.077

Broken A.C TPR
FPR

0.800
0.545

0.800
0.614

0.840
0.477

0.920
0.727

0.880
0.636

0.840
0.364

0.840
0.477

0.800
0.318

0.760
0.250

0.720
0.341

Broken conf TPR
FPR

1.000
0.333

0.667
0.667

1.000
0.333

0.667
0.667

1.000
0.333

0.667
0.333

1.000
0.333

1.000
0.333

1.000
0.333

1.000
0.333

XSS TPR
FPR

0.938
0.500

0.906
0.484

0.656
0.355

0.656
0.355

0.938
0.500

0.906
0.484

0.750
0.387

0.938
0.500

0.906
0.333

0.938
0.452

Comp. vuln. TPR
FPR

0.667
0.182

0.667
0.545

0.667
0.182

0.667
0.545

0.667
0.182

0.667
0.182

0.667
0.182

0.667
0.182

0.667
0.182

0.667
0.182

CSRF TPR
FPR

1.000
0.864

1.000
0.864

1.000
0.864

1.000
0.864

0.714
0.545

0.714
0.364

0.714
0.545

0.143
0.000

0.143
0.000

0.000
0.000

Open redirect TPR
FPR

0.909
0.333

0.909
0.556

0.818
0.222

0.818
0.667

0.909
0.333

0.909
0.333

0.818
0.222

0.909
0.333

0.909
0.278

0.909
0.278

TPRFPR 0.789
0.454

0.751
0.558

0.730
0.405

0.709
0.560

0.698
0.373

0.653
0.290

0.626
0.310

0.613
0.268

0.613
0.229

0.576
0.260

Precision 0.635 0.574 0.643 0.559 0.652 0.692 0.669 0.695 0.720 0.689
F-measure 0.704 0.650 0.684 0.625 0.674 0.672 0.647 0.652 0.647 0.627
F0,5-score 0.793 0.722 0.790 0.700 0.793 0.821 0.792 0.813 0.827 0.795
F1,5-score 0.565 0.527 0.539 0.503 0.526 0.511 0.491 0.489 0.479 0.467
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Tab. 3 shows a first categorization for TPR score going from left to right for 1-tool, Tab. 4
for 2-tools combinations and Tab. 5 for 3-tools and Tab. 6 for 4 and 5-tools combinations. The
abbreviations used for the tools are: Fortify (ft), FindSecBugs (fb), Xanitizer (xn), Coverity (co).

Table 5: Calculation metrics for 3-tools combinations. Fortify (ft), FindSecBugs (fb), Xanitizer
(xn), Coverity (co), Klocwork (kw)

xnftkw xnftfb coxnft coftfb ftfbkw coftkw xnfbkw coxnkw cofbkw coxnfb

Injection TPR
FPR

0.976
0.665

0.952
0.651

0.952
0.679

0.893
0.729

0.929
0.775

0.857
0.683

0.786
0.468

0.786
0.495

0.726
0.422

0.726
0.445

Broken auth TPR
FPR

0.333
0.442

0.417
0.404

0.333
0.404

0.417
0.346

0.417
0.308

0.292
0.346

0.333
0.250

0.250
0.250

0.333
0.192

0.333
0.212

Sensitive data TPR
FPR

0.500
0.231

0.500
0.231

0.500
0.231

0.500
0.231

0.500
0.231

0.500
0.231

0.167
0.077

0.167
0.077

0.167
0.077

0.000
0.077

Broken A.C TPR
FPR

0.920
0.659

0.800
0.545

0.840
0.477

0.840
0.477

0.920
0.727

0.920
0.568

0.920
0.432

0.920
0.568

0.840
0.341

0.840
0.341

Broken conf TPR
FPR

1.000
0.333

1.000
0.333

1.000
0.333

1.000
0.333

0.667
0.667

1.000
0.333

1.000
0.333

1.000
0.333

1.000
0.333

1.000
0.333

XSS TPR
FPR

0.938
0.500

0.938
0.500

0.938
0.452

0.906
0.452

0.906
0.484

0.750
0.387

0.938
0.500

0.938
0.452

0.906
0.452

0.938
0.452

Comp. vuln. TPR
FPR

0.667
0.182

0.667
0.182

0.667
0.182

0.906
0.452

0.667
0.545

0.667
0.182

0.667
0.182

0.667
0.182

0.667
0.182

0.667
0.182

CSRF TPR
FPR

1.000
0.864

1.000
0.864

1.000
0.864

1.000
0.864

1.000
0.864

1.000
0.864

0.714
0.364

0.714
0.545

0.714
0.364

0.143
0.000

Open redirect TPR
FPR

0.909
0.333

0.909
0.333

0.909
0.278

0.909
0.278

0.909
0.556

0.818
0.222

0.909
0.333

0.909
0.278

0.909
0.278

0.909
0.278

TPRFPR 0.805
0.468

0.798
0.449

0.793
0.433

0.792
0.432

0.768
0.573

0.756
0.424

0.715
0.327

0.706
0.353

0.696
0.293

0.617
0.258

Precision 0.632 0.640 0.647 0.647 0.573 0.641 0.686 0.666 0.703 0.706
F-measure 0.708 0.710 0.713 0.712 0.656 0.694 0.700 0.685 0.700 0.658
F0,5-score 0.793 0.799 0.806 0.806 0.724 0.793 0.830 0.809 0.842 0.823
F1,5-score 0.571 0.570 0.570 0.570 0.535 0.551 0.543 0.533 0.537 0.494

3.5 Analysis and Discussion
We elaborate on the research concerns enumerated in Section 1 based on the proposed method

with the relevant technique, giving the findings.

3.5.1 n-SASTT Effectiveness in Combination
Fig. 3 shows five graphics (a–e) to show how is the behavior of the distinct n-tool combina-

tions with the data obtained from the TPR and FPR averages of two-tool, three-tool, four-tool
and five-tool combinations vs. the use of only one tool. Comparing graphic (a) for TPR and
FPR results of tools in isolation with graphic (b) for TPR and FPR results of two tools in
combination it can be observed that the all TPR averages for each weakness are higher for 2-tool
combinations. On the other side, having into account FPR average for each weakness category
in 2-tool combination is slightly higher for Injection, Broken Authentication, Sensitive Data, XSS
and CSRF, but it is lower for Components with Known Weaknesses, Broken Configurations, and
Open Redirect. Another clear conclusion is that the difference between TPR and FPR averages
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of 2-tool combinations (b) is higher than the difference between TPR and FPR averages of tools
executed in isolation (a) except for Broken Authentication weakness category. This means that
there is a clear improvement in detection efficiency by combining two tools as opposed to using
only one tool. Comparing graphic (b) 2-tool combinations with graphic (c) 3-tool combinations
TPR and FPR average results for each weakness category, all TPR average are slightly higher for
the 3-tool combinations. All FPR average are slightly higher for the 3-tool combinations except
for Broken Configurations and Components with Known Weaknesses. This means that there is
a slightly improvement in detection efficiency by combining three tools as opposed to combining
two tools. Comparing graphic (c) 3-tool combinations with graphic (d) 4-tool combinations TPR
and FPR average results for each weakness category, only TPR average for Sensitive Data and
CSRF are slightly higher for the 4-tool combinations. The improvement in the combination of 5
tools with respect to 4 tools is not very significant, All FPR average are similar for the 4-tool
combinations except for Injection, Sensitive Data and CSRF that are higher than for the 3-tools
combinations. This means that there is a very slightly improvement in detection efficiency by
combining four tools as opposed to combining three tools. Also, the improvement in the 5-tool
combination over the 4-tool combination is not very significant, some better scores for TP are
offset by some worse FP scores.

Table 6: Calculation metrics for 4 & 5-tools combinations. Fortify (ft), FindSecBugs (fb), Xanitizer
(xn), Coverity (co), Klocwork (kw)

xnftfbkwco xnftfbkw coftfbkw coxnftkw coxnftfb coxnfbkw

Injection TPR
FPR

0.976
0.665

0.976
0.665

0.929
0.748

0.976
0.693

0.952
0.679

0.786
0.491

Broken auth TPR
FPR

0.417
0.404

0.417
0.404

0.417
0.346

0.333
0.404

0.417
0.365

0.333
0.212

Sensitive data TPR
FPR

0.500
0.231

0.500
0.231

0.500
0.231

0.500
0.231

0.500
0.231

0.167
0.077

Broken A.C TPR
FPR

0.920
0.659

0.920
0.659

0.920
0.568

0.920
0.568

0.840
0.477

0.920
0.432

Broken conf TPR
FPR

1.000
0.333

1.000
0.333

1.000
0.333

1.000
0.333

1.000
0.333

1.000
0.333

XSS TPR
FPR

0.938
0.500

0.938
0.500

0.906
0.452

0.938
0.452

0.938
0.452

0.938
0.452

Comp. vuln. TPR
FPR

0.667
0.182

0.667
0.182

0.667
0.182

0.667
0.182

0.667
0.182

0.667
0.182

CSRF TPR
FPR

1.000
0.864

1.000
0.864

1.000
0.864

1.000
0.864

1.000
0.864

0.714
0.364

Open redirect TPR
FPR

0.909
0.333

0.909
0.333

0.909
0.278

0.909
0.278

0.909
0.278

0.909
0.278

TPRFPR 0.814
0.463

0.814
0.463

0.805
0.445

0.805
0.445

0.802
0.429

0.715
0.313

Precision 0.637 0.637 0.644 0.644 0.652 0.695
F-measure 0.715 0.715 0.716 0.715 0.719 0.705
F0,5-score 0.799 0.799 0.805 0.805 0.813 0.839
F1,5-score 0.577 0.577 0.575 0.575 0.576 0.545
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Figure 3: TPR and FPR results obtained by n-tools and weakness classes (a) 1-tools by vulnerabli-
ties (b) 2-tools by weaknesses (c) 3-tools by weaknesses (d) 4-tools by weaknesses and (e) 5-tools
by weaknesses
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In summary, the graphs in Figs. 3 and 4 show how the number of tools included in a
combination influences the TPR and FPR ratios. There is always a degree of improvement when
a tool is added to a combination, although this degree of improvement in the TPR and FPR
ratios is a function of each weakness category and is generally decreasing as a tool is added
to the combination. Fig. 2 shows that depending on each security weakness category, the degree
of improvement obtained is lower up to combinations of three tools a significant incremental
improvement is obtained, but with more than three tools the improvement is generally less
significant.

3.5.2 n-SASTT Combinations Average Effectiveness Computing Metrics
Fig. 4 provides a comparative considering the calculation of metric averages for all combina-

tions with a given number of tools: 1-tool, 2-tools, 3-tools, 4-tools and 5-tools. Having int account
the average metric precision for n-tools combinations, adding one more tool to the combination
fails to improve the balance between TP and FP. However, TPR, FPR, F-measure, F0,5-score
and F1,5-score average metrics increase their value in a directly proportional way the higher the
number of tools in the combination. By each addition of one more tool to the combination the
overall average improvement in detection effectiveness is lower than in (n − 1) and so on for
(n + 2) combination, where overall average improvement in detection effectiveness is lower than in
(n + 1) with respect to (n).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TPR FPR Precision F-measure F05score F15score

Comparing metrics by n-tools

1-tool 2-tools 3-tools 4-tools 5-tools

Figure 4: Comparing metrics obtained by n-tools combinations

3.5.3 SASTT Effectiveness for Each n-Tools Combination
Figs. 5–8 give the calculation metrics for tools executed in isolation, 2-toos, 3-tools and 4-tools

combinations ordered from left to right by TPR metric having into account each concrete combi-
nation. Each metric has a different objective when classifying tools as explained in the Section 4.4.
For example, TPR or F1,5-score are more adequate to classify the tools combinations for analyzing
high critical applications supposing that there is enough time to discard FP. F-measure is the more
appropriate metric for heightened-critical applications because it chooses the tool that finds a high
number of weaknesses while providing a low number of FP for an optimum effort. F0,5-score
metric rewards on precision and is an appropriate metric for non-critical applications where the
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construction way be shorter as it permits to favor the tools with better precision. F0,5score and
precision are more sufficient for non-critical applications with lesser time to discard FP.

Fig. 5 shows that Fortify has the best TPR but also the worst FPR, also it has the best
F1,5-score result. Coverity has the best FPR but the worst TPR. The results of FPR are about
0,200 on average except Fortify that obtains 0,500. The average result of TPR of the four tools is
0,536. FindSecurityBugs has the best precision, F-measure and F0,5-score results because it has
good results for TPR and FPR. Fortify has the best F1,5-score result. The order obtained by the
tools is similar for TPR and F1,5-score because F1,5-score rewards on TPR metric. The order
obtained by the tools is the same for TPR and F1,5-score because F1,5-score rewards on TPR
metric. The order obtained by the tools is similar for precision and F0,5-score because F1,5-score
rewards on precision metric.
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TPR FPR Precision F-measure F05score F15score
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Figure 5: Comparing metrics obtained by tools executed in isolation

It can be seen that each metric obtains a different ranking for each tool. Each of the
metrics will be associated to a different security analysis objective that will be analyzed later in
Section 3.5.4 according to different levels of criticality of the web applications.

Fig. 6 shows that the combination Xanitizer-Fortify has the best TPR, F-measure and F1,5-
score results. The combination Coverity-FindSecurityBugs has the best precision and F0,5-score
results. The combination Coverity-Xanitizer has the best FPR result but the worst TPR result.
Comparing the metric results of the 1-tools combinations and 2-tools combinations it can be
observed the TPR improve between one and two tenths and the FPR results are in the same band.

In summary, Fig. 6 that 2-tools combinations generally improve all results metrics except for
FPR that are slightly higher than the results of the tools in isolation, which is worse because it
yields a higher number of false positives, i.e., there is a small penalty with respect to FPR.

Fig. 7 shows that by combining four and three tools there is hardly any difference when
comparing the metrics of the results obtained, only the Coverity-Xanitizer-FindSecurityBugs com-
bination obtains a significantly worse result than those obtained by the other combinations. The
results of TPR are better with respect to the one obtained by 2-tools combinations, there are four
combinations that almost reach 0,800 score of TPR.
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Figure 6: Comparing metrics obtained by 2-tools combinations. Fortify (ft), FindSecBugs (fb),
Xanitizer (xn), Coverity (co), Klocwork (kw)
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Figure 7: Comparing metrics obtained by 3-tools combinations. Fortify (ft), FindSecBugs (fb),
Xanitizer (xn), Coverity (co), Klocwork (kw)

Fig. 8 shows that four combinations reach 0,800. The Coverity-Xanitizer-FindSecurityBugs-
Klocwork combination has the best precision and makes it a candidate for evaluating less critical
applications where less time is available to audit and eliminate FP. The Coverity-Xanitizer-
FindSecurityBugs-Klocwork combination has the best precision and makes it a candidate for
evaluating less critical applications where less time is available to audit and eliminate FP. The rest
of the combinations yield similar results by combining 4 or 5 tools.

3.5.4 Ranking of n-Tools Combinations by Different Metrics
We develop three cases of the n-tool effectiveness related to F-measure, F0,5-score and Recall

metrics and having into account all n-tools combinations. Each metric permits to classify SASTT
combinations according to distinct levels of criticality. the Tab. 7 gives the ranking of SASTT
combinations by F-measure, TPR and F0,5-score metrics.
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Figure 8: Comparing metrics obtained by 5-tools and 4-tools combinations. Fortify (ft), Find-
SecBugs (fb), Xanitizer (xn), Coverity (co), Klocwork (kw)

Recall (TPR) metric considers applications categorized as critical. since it shows the capability
of a SASTT to find the largest number of weaknesses. Recall (TPR) is the most appropriate
metric for crucial applications. since it permits to pick tools with the optimum TP ratio. As
alternative to recall. F1,5-score metric can be used as it rewards the tools with better gain than
precision metric. The combinations Xanitizer-Fortify-FindsecBugs-Klocwork. Xanitizer-Fortify-
FindsecBugs-Klocwork-Coverity and Xanitizer-Fortify-Klocwork have the best results. Xanitizer-
Fortify is the best 2-tool combination and Fortify the best tool in isolation. Fig. 9 shows a
visualization graphic of the n-tool combinations ranking by Recall metric.

F-measure metric (Tab. 7) has been chosen for heightened-critical WA. This case represents
the building and evaluation of not critical application with smaller importance having time con-
straints to market or may have a conservative budget. F-measure stands for the optimum effort
and it indicates that the goal for fewer important WA is to find a large number of TPs with
the least the smallest number of FPs. The combinations Coverity-Xanitizer-Fortify-FindsecBugs.
Coverity-Fortify-FindsecBugs-Klocwork and Coverity-Fortify-FindsecBugs have the best results.
Xanitizer-Fortify is the best 2-tool combination and FindSecBugs the best tool in isolation.
Fig. 10 shows a visualization graphic of the n-tool combinations ranking by F-Measure metric.

This case provides for non-critical applications the building and evaluation of applications
without relevant information and/or are not exhibited to threats. F0,5-score metric rewards
on precision and is appropriate for non-critical applications where the time of development
may be shorter. since it permits to favor the tools with better precision. That leads to
tools with high precision to get better results. Precision metric can be used as alternative to
F0,5-score. The combinations Coverity-FindsecBugs-Klocwork. Coverity-Xanitizer-FindSecBugs-
Klocwork and Xanitizer-FindsecBugs-klocwork have the best results. FindSecBugs the best tool in
isolation. Fig. 11 shows a visualization graphic of the n-tool combinations ranking by F0,5-score
metric.

The results show that simply adding more tools in a possible combination is not synonymous
with obtaining better results in any of the three classifications. There are combinations with fewer
tools. even of a single tool that outperforms combinations with more tools.
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Table 7: Categorizing the tools by F0,5-score, F-measure and Recall metrics. Fortify (ft), Find-
SecBugs (fb), Xanitizer (xn), Coverity (co), Klocwork (kw)

n-tools
non-critical

F0,5-score n-tools
heightened
critical

F-measure n-tools
business
critical

TPR (Recall)

cofbkw 0.842 coxnftfb 0.719 xnftfbkw 0.814
coxnfbkw 0.839 coftfbkw 0.716 xnftfbkwco 0.814
xnfbkw 0.830 xnftfbkwco 0.715 xnftkw 0.805
cofb 0.827 xnftfbkw 0.715 coftfbkw 0.805
fbkw 0.821 coxnftkw 0.715 coxnftkw 0.805
coxnfb 0.823 coxnft 0.713 coxnftfb 0.802
Xnfb 0.813 coftfb 0.712 xnftfb 0.798
coxnftfb 0.813 xnftfb 0.710 coxnft 0.793
coxnkw 0.809 xnftkw 0.708 ftfbkw 0.792
coxnft 0.806 coxnfbkw 0.705 coftfb 0.792
coftfb 0.806 xnft 0.704 xnft 0.789
coxnftkw 0.805 xnfbkw 0.7 coftkw 0.756
coftfbkw 0.805 cofbkw 0.7 ftfb 0.751
fb 0.803 coftkw 0.694 coft 0.730
xnftfbkw 0.799 coxnkw 0.685 xnfbkw 0.715
xnftfbkwco 0.799 coft 0.684 coxnfbkw 0.715
xnftfb 0.799 xnkw 0.674 ftkw 0.709
coxn 0.795 fbkw 0.672 coxnkw 0.706
xnftkw 0.793 Coxnfb 0.658 xnkw 0.698
xnft 0.793 ftfbkw 0.656 cofbkw 0.696
coftkw 0.793 xnfb 0.652 fbkw 0.653
xnkw 0.793 fbft 0.650 ft 0.641
cokw 0.792 cokw 0.647 cokw 0.626
coft 0.790 cofb 0.647 coxnfb 0.617
xn 0.761 coxn 0.627 xnfb 0.613
co 0.759 ftkw 0.625 cofb 0.588
ftfbkw 0.724 fb 0.614 coxn 0.576
ftfb 0.722 ft 0.599 fb 0.540
ftkw 0.700 xn 0.584 xn 0.516
ft 0.691 co 0.548 kw 0.475
kw 0.655 kw 0.517 co 0.449

3.5.5 OWASP Top Ten Benchmark Suitability
This benchmark provides representativeness of security weaknesses for WA depending on the

OWASP TTP and relies on realistic code including distinct source inputs and flow complexity.
Besides. it permits to increase number of classes and types of weaknesses making them expand-
able. It has been updated from its first use in [15]. The benchmark gives similar findings when
executing more than once with the same tool. The benchmark is straight forward use even utilizing
default tool arrangements giving short run times with the SASTT and is portable to any operative
systems containing 4 Gigabytes of RAM memory.
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4 Conclusions

An analysis has been made of how SASTT behaves in combination to improve weakness
detection efficiency results when using a single tool. To compare the distinct n-SASTT combina-
tions, we have used an OWASP Top Ten weaknesses benchmarking technique recently constructed
for the evaluation of the security performance of SASTT containing a complete of distinct
weakness types of test cases in each weakness OWASP Top Ten class. The evaluation uses a new
and repeatable approach for assessment and classifying the n-SASTT combinations.

In general, it is better to include more than one tool in combination to obtain better results
with respect to the selected metrics. Although this is not always the case according to the results
obtained for each metric and combination. Their different designs make it necessary to study
how each combination behaves. TPR results of over 0.800 are achieved in combination. The FPR
results of the combinations never exceed the worst result obtained by a tool included in the
combination in an isolated way without combining. It is necessary an audit phase of the weakness
findings performed by a trained user or team for the used WA languages and for a security
weakness for each language.

The analysis of the results shows that simply adding more tools in a possible combination is
not synonymous with obtaining better results in a classification for the selected metrics. There are
combinations with fewer tools, even of a single tool, that outperforms combinations with more
tools. The results depend on each concrete combination and the synergies between the SASTT
included in a combination.

The evaluation process gives a strict classification of n-SASTT combinations taking into
account appropriate and widely acceptable metrics applied to the findings of tools execution
vs. chosen benchmark. Besides, the approach ranks the n-tools combinations according to three
different metrics for various levels of importance for WA. Four leaders commercial SASTT have
been contained in the assessment and ranked giving their findings vs. the new benchmarking
technique.

In general, the weakness detections in the classes of weaknesses related to Disclosure of
Information in WA source code and Broken Authentication and Sessions are improving for all
tools. Changes in WA technologies make necessary alterations in the weakness classes over time.
It needs a continuous study to update and adapt the tools to determine the most usual and
interesting weakness classes. Hence, OWASP Top Ten must be updated frequently.

This work has evaluated four commercial and one open-source SASTT in combination. It is
essential to analyze the behavior of commercial tools in combination with open-source tools to
establish differences between then detecting weaknesses in combination and be able to reduce the
economic costs when you can include a free tool like FindSecurityBugs which obtains excellent
results.

It is important to build new benchmarks for all classes of weaknesses and for mores languages
to perform new comparative that assist practitioners and companies choose the optimum SASTT.

5 Future Directions

We currently study ways to improve SASTT results with machine learning techniques to
discover security weaknesses in source code of WA and reducing the false positive ratio. To reach
this objective it is necessary to develop a labeled dataset with source code test cases to be trained
with diverse machine learning algorithms.
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