
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2021.017321

ARTICLE

A GPU-Based Parallel Algorithm for 2D Large Deformation
Contact Problems Using the Finite Particle Method

WeiWang1,2, Yanfeng Zheng1,3, Jingzhe Tang1, Chao Yang1 and Yaozhi Luo1,*

1College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
2Center for Balance Architecture, Zhejiang University, Hangzhou, 310028, China
3Architectural Design and Research Institute of Zhejiang University Co., Ltd., Hangzhou, 310028, China
*Corresponding Author: Yaozhi Luo. Email: luoyz@zju.edu.cn

Received: 01 May 2021 Accepted: 26 July 2021

ABSTRACT

Large deformation contact problems generally involve highly nonlinear behaviors, which are very time-consuming
and may lead to convergence issues. The finite particle method (FPM) effectively separates pure deformation
from total motion in large deformation problems. In addition, the decoupled procedures of the FPM make it
suitable for parallel computing, which may provide an approach to solve time-consuming issues. In this study,
a graphics processing unit (GPU)-based parallel algorithm is proposed for two-dimensional large deformation
contact problems. The fundamentals of the FPM for planar solids are first briefly introduced, including the
equations of motion of particles and the internal forces of quadrilateral elements. Subsequently, a linked-list data
structure suitable for parallel processing is built, and parallel global and local search algorithms are presented for
contact detection. The contact forces are then derived and directly exerted on particles. The proposed method is
implemented with main solution procedures executed in parallel on a GPU. Two verification problems comprising
large deformation frictional contacts are presented, and the accuracy of the proposed algorithm is validated.
Furthermore, the algorithm’s performance is investigated via a large-scale contact problem, and the maximum
speedups of total computational time and contact calculation reach 28.5 and 77.4, respectively, relative to commer-
cial finite element software Abaqus/Explicit running on a single-core central processing unit (CPU). The contact
calculation time percentage of the total calculation time is only 18% with the FPM, much smaller than that (50%)
with Abaqus/Explicit, demonstrating the efficiency of the proposed method.

KEYWORDS

Finite particle method; graphics processing unit (GPU); parallel computing; contact algorithm; large
deformation

1 Introduction

The numerical simulation of large deformation contact problems plays an important role in
engineering fields. These problems generally involve geometric nonlinearity, material nonlinearity,
and contact nonlinearity. Several numerical methods are available for these problems, among which

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2021.017321

596 CMES, 2021, vol.129, no.2

the finite element method (FEM) is one of the most widely used methods. Computational contact
mechanics using the FEM has been developed by many scholars since the 1970s and can be found
in the literature [1,2]. Recently, some elaborated contact algorithms in the FEM context, such
as the mortar method [3] and the surface smoothing method [4], have been developed, mainly
to improve the accuracy of contact constraints; the computational efficiency of these algorithms,
however, has drawn less attention. In fact, contact algorithms generally account for a considerable
proportion of the overall computational cost [5]. Specifically, according to Wriggers [1], the time
complexities of contact search algorithms are generally of the order from O(N) to O(N logN),
where N denotes the number of contact nodes, which is unacceptable when millions of elements
come into contact. In addition, the strong nonlinearities involved in large deformation contact
problems may cause difficulties when using implicit techniques [4], while the time step sizes for
these contact problems are usually very small when using explicit techniques [5], resulting in time-
consuming calculation processes. Other methods, such as the discrete element method (DEM), are
available for solving contact problems, but the DEM is more suitable for modeling contact in
discrete particulate systems [6,7] and contact between rocks [8,9]. Therefore, a more efficient and
stable method is strongly needed in large deformation contact problems.

The finite particle method (FPM) [10], derived from vector mechanics [11–13], is another
feasible method for solving large deformation contact problems. In the FPM, a physical body
is discretized into a number of particles and elements in space, and the motion path of each
particle in time is modeled by a sequence of time steps, as illustrated in Fig. 1. The particles
in the FPM are assumed to carry structural variables such as mass, velocity, and displacement.
Within each time step, Newton’s second law is adopted to formulate the motion of particles,
and explicit time integration schemes are used to solve the equations of motion. In recent years,
numerical methods based on vector mechanics have been successfully applied to various types
of structural analyses, such as the analysis of shell structures [14], multiple body kinematic
movements involving large displacements and rotations [15,16], progressive collapse simulations of
structures [17], shape analysis of tensile structures [18], train-bridge interaction simulation [19],
and fluid-solid interaction simulation [20].

t t+Δt tΔ t

Δt Δt

Figure 1: Discrete model of the FPM in space and time (only elements connected to the high-
lighted particle are depicted for brevity)

When dealing with large deformation problems, the FPM is effective in separating the pure
deformation of elements from their total motion by using the fictitious reverse motion tech-
nique [10], which makes it suitable for solving large deformation contact problems. In addition,

CMES, 2021, vol.129, no.2 597

contact algorithms based on the explicit FEM, such as the one proposed by Hallquist et al. [21],
can easily be adopted by the FPM due to the similar mechanisms of these two methods. However,
contact calculation via the serially computed FPM is still time-consuming, mainly due to the
small time step size for ensuring conditional stability of the method and the time-consuming
contact search process. This problem can be effectively alleviated by using parallel acceleration
for the FPM. In fact, no global stiffness matrix is assembled in the FPM, and the main solution
procedures of the FPM are decoupled in nature; thus, the FPM is intrinsically suitable for parallel
implementation with a high degree of parallelism.

Many parallel architectures are based on central processing unit (CPU) technology, e.g., open
multiprocessing (OpenMP) [22,23] for multiple CPUs and message passing interface (MPI) for
multiple computer hosts. However, the hardware costs of CPU-based parallel architectures are very
high, and the quantitative restriction of CPU cores in personal computers makes concurrently
processing a large number of procedures a difficult task. Recently, thanks to the development
of graphics processing units (GPUs) with unified architectures and the introduction of special-
ized programming models, such as Compute Unified Device Architecture (CUDA) designed by
NVIDIA, general-purpose computing on GPU (GPGPU) has become an increasingly adopted
computing technique in engineering simulations [24–26]. While a CPU is designed to excel at
executing a single thread as fast as possible, a GPU is designed to excel at executing thousands
of threads in parallel [27]. As a result, GPUs provide higher instruction throughput and memory
bandwidth at a lower cost than CPUs [28]. Therefore, the GPU architecture is more appropriate
for parallel implementation of the FPM.

In this paper, a two-dimensional GPU-based parallel contact algorithm using the FPM is
proposed and implemented based on the GPU-accelerated software developed in our previous
study [24]. The algorithm takes full advantage of the parallel architecture of GPUs, and the
main computational procedures of the algorithm, including evaluating elemental internal forces,
searching contact pairs, detecting contact states, calculating contact forces, and solving the equa-
tions of motion, are executed in parallel on a GPU. There are four contributions of the current
work compared to our previous study [24]: (1) two new quadrilateral elements FPM-Q4 and
FPM-Q4R are developed for 2D large deformation problems; (2) a contact algorithm for 2D
large deformation problems is proposed and incorporated into FPM; (3) The proposed contact
algorithm is parallelized based on GPU; (4) the parallel contact algorithm is verified and its
performance is fully tested.

This paper is structured as follows. The fundamentals of the parallelized FPM for planar
solids are briefly introduced in Section 2. The parallel contact algorithm is discussed in Section
3, including the contact detection process and calculation of the contact forces. The GPU imple-
mentation of the proposed algorithm is presented in Section 4. Two verification examples and two
performance tests are presented in Section 5 to demonstrate the accuracy and efficiency of the
proposed contact algorithm. Finally, conclusions are given in Section 6.

2 Fundamentals of the Parallelized FPM for Planar Solids

The fundamentals of the FPM for planar solids are briefly described in this section, including
the equations of motion of particles and the internal forces of quadrilateral elements. Readers are
referred to the literature [12] for more details. The parallel algorithm for planar solids is presented
in Section 2.3.

598 CMES, 2021, vol.129, no.2

2.1 Equations of Motion of Particles
A planar solid, as shown in Fig. 2a, can be discretized into 20 particles and 12 quadrilat-

eral elements. For an arbitrary particle α, the equation of motion can be formulated based on
Newton’s second law:

mα d̈α = Fext
α −Fint

α −Fdmp
α +Fcα (1)

where mα is the mass of particle α, d̈α represents the acceleration vector, Fext
α denotes the external

forces applied to particle α, Fint
α represents the internal forces of particle α passed from the

elements connected to it (see Section 2.2), Fcα denotes the contact forces (derived in Section 3.2),

and Fdmp
α represents the mass-proportional damping force, which is given by

Fdmp
α = ξmα ḋα (2)

where ξ is the damping coefficient and ḋα denotes the velocity vector of particle α. The particle
forces are illustrated in Fig. 2b.

Element Particle

(a) (b)

x

y

extf
y

f
y

f
y

f
x

intf
x

dmpf
x

cf
x

cf
y

ext

int

dmp

Figure 2: Discretization of a planar solid: (a) Particles and elements; (b) Particle forces

The central difference method is adopted to solve Eq. (1) because of its low computational
cost and sufficient accuracy. According to the literature [29], the central difference method has
the highest accuracy and maximum stability limit for any second-order accurate explicit method.
Other explicit time integration algorithms such as generalized-α algorithm [30] can also be utilized
in the FPM, but more computational time will be taken when using those algorithms. Thus, the
central difference method is adopted in this paper to solve the equations of motion of particles.
Given the particle displacements at times t−�t and t, where �t is the time step size, the particle
displacement at time t+�t can be explicitly expressed as follows:

t+�tdα = c1�t
2 1
mα

(
tFext

α − tFint
α +tFcα

)
+ 2c1

tdα − c2
t−�tdα (3)

where c1 = (1+ ξ�t/2)−1 and c2 = c1(1− ξ�t/2).

2.2 Internal Forces of Quadrilateral Elements
The internal forces of quadrilateral elements are derived in this section. First, the pure

deformation is approximated by using fictitious reverse motion, and a local coordinate system

CMES, 2021, vol.129, no.2 599

(LCS) is introduced based on the pure deformation vector. Subsequently, the strain and stress
increments are computed in the LCS, and the internal forces are derived using the principle of
virtual work.

2.2.1 Pure Deformation
As shown in Fig. 3a, a quadrilateral element moves from time ta to tb, where tb = ta+�t. The

corresponding configurations are denoted as �a and �b, respectively, and the position vectors of
each particle are represented as Xa

i and Xb
i (i= 1, 2, 3, 4), respectively. The incremental displacement

vectors of the particles from time ta to tb are denoted as

�di =Xb
i −Xa

i , (i= 1, 2, 3, 4) (4)

(a) (b) (c)

Figure 3: Fictitious reverse motion for calculating pure deformation: (a) Configurations �a and
�b; (b) Fictitious configuration �′; (c) Fictitious configuration �′′ and the local coordinate system

To separate the rigid-body motion from the total displacement, a fictitious reverse motion
technique based on vector mechanics [12] is adopted, and the procedures are described as follows:

Step 1: Fictitious reverse translation. In the following, particle 1 is chosen as a reference particle.
The configuration �b is translated to a fictitious configuration �′, as shown in Fig. 3b, by a vector
of −�d1, and the corresponding position vector X′

i is expressed as

X′
i =Xb

i −�d1, (i= 1, 2, 3, 4) (5)

Step 2: Fictitious reverse rotation. The configuration �′ is rotated to another fictitious configu-
ration �′′, as shown in Fig. 3c, where the rotation axis is orthogonal to the plane containing the
elements, and the rotation angle is obtained by

θ = 1
4

4∑
i=1

asin
e′ci× eaci
e′ci× eaci

, (i= 1, 2, 3, 4) (6)

where eaci and e′ci are the unit vectors pointing from the centroid of the element to particle i based
on configurations �a and �′, respectively. The position vector of the particles in configuration �′′
is obtained by

X
′′
i =X′

1+R1(X′
i−X′

1), (i= 1, 2, 3, 4) (7)

600 CMES, 2021, vol.129, no.2

where R1 is the matrix representing the rotation from �′ to �′′, which is calculated using
Rodrigues’ rotation formula [31]:

R1 =
[
cos θ − sin θ

sin θ cos θ

]
(8)

Step 3: Pure deformation approximation. Since the rigid motion is separated from the total
displacement through the fictitious reverse motion, the pure deformation matrix of the element is
approximated as

�U= [
�u1 �u2 �u3 �u4

]T (9)

with

�ui =X
′′
i −Xa

i , (i= 1, 2, 3, 4) (10)

Step 4: Definition of the LCS. An LCS with axes ê1, ê2, and e3, as shown in Fig. 3c, is
introduced to reduce the total number of independent variables and simplify the process of
internal force calculation; here, the unit vector e3 is orthogonal to the plane, ê1 = [ê1x, ê1y] is
parallel to �ui with the greatest magnitude (e.g., �u3 in Fig. 3c), and ê2 = [ê2x, ê2y]= e3× ê1. The

corresponding pure deformation matrix in the LCS, denoted as �Û, is obtained by

�Û=R2�U (11)

where R2 is the transformation matrix from the global coordinate system (GCS) to the LCS:

R2 =
[
ê1x ê1y
ê2x ê2y

]
(12)

2.2.2 Strain and Stress Increments
After obtaining the pure deformation, the concepts of shape function and isoparametric

transformation developed in the conventional FEM are introduced to the FPM to describe the
strain and stress distributions within each quadrilateral element. The strain increment vector at
each integration point in the LCS is given as

�ε̂i = B̂i�Û, (i= 1, 2, . . . ,Nint) (13)

where Nint is the number of integration points and B̂i denotes the strain-displacement matrix at
the ith integration point in the LCS. The details of isoparametric transformation for quadrilateral
elements are omitted here for brevity but can be found in the literature [32].

The stress increment vector at each integration point in the LCS can be evaluated as

�σ̂ i =De�ε̂i, or �σ̂ i =Dep�ε̂i (i= 1, 2, . . . ,Nint) (14)

where De and Dep denote the elastic and elastoplastic constitutive matrices, respectively. For plastic
materials, the combined isotropic-kinematic hardening is utilized in the FPM based on the J2 flow
theory [33]. The yield function is

f (σ ,α,κ)= ‖ξ‖− κ ≤ 0, ξ = s−α

where σ is a Cauchy stress tensor, s is a deviatoric stress tensor, α is a deviatoric back stress tensor,
ξ is called the effective stress, and κ is the plastic internal variable. The radial return algorithm

CMES, 2021, vol.129, no.2 601

for J2 theory is adopted to determine the actual form of Dep in Eq. (14), which can be found in
the literature [34].

2.2.3 Internal Forces
The principle of virtual work is adopted to derive the internal forces of elements. For each

element, the variation of the external work, δUext, done by the elemental internal force F̂e is

δUext = (δ�Û)TF̂e (15)

and the variation of the internal work, δU int, done by the element stress σ̂ is

δU int =
∫
V

(δ�ε̂)Tσ̂dV = (δ�Û)T
∫
V
B̂Tσ̂dV (16)

Considering that δUext = δU int, the elemental internal force in the LCS can be evaluated as

F̂e =
∫
V
B̂Tσ̂dV (17)

Note that the internal forces of elements in the LCS should be transformed back to the GCS
by

Fe =R−1
2 R−1

1 F̂e (18)

The equivalent internal force of particle α is a sum of the internal forces of the elements
connected to it, i.e.,

Fint
α =

n∑
i=1

Fei (19)

where n denotes the number of elements connected to particle α.

2.2.4 Integration Schemes
Two integration schemes of elemental internal forces are adopted in this paper. The first one

is the selective integration technique (also called the B bar method) proposed by Hughes [35],
which provides good accuracy for both compressible and nearly incompressible media by using
a onepoint integration for volumetric stresses and a twopoint quadrature in each direction for
the deviatoric stresses. The corresponding elements of the B bar method are called FPM-Q4
and used in Section 5.1. The other integration scheme is the uniform reduced integration with
hourglass control developed by Flanagan et al. [36]. The corresponding elements with this reduced
integration technique are called FPM-Q4R and used in Section 5.2.

2.3 Parallel Algorithm for Planar Solids
The parallel algorithm for planar solids is presented in Algorithm 1. Note that the keyword

pair “parallel for . . . end parallel” indicates that the codes within it are executed in parallel on GPU
threads. The equation of motion of each particle is solved individually, and the evaluations of the
elemental internal forces are self-reliant between elements; thus, the FPM can be accelerated by
GPGPU techniques with a high degree of parallelism. The corresponding GPU implementation
for planar solids is given in Section 4.

602 CMES, 2021, vol.129, no.2

Algorithm 1: Parallel algorithm for planar solids
// Comments:
// Ne—the number of elements
// Np—the number of particles
1: // Parallel computing of evaluating elemental internal forces
2: parallel for 0 ≤ iElem≤ (Ne − 1) do
3: Obtain pure deformation vector in the LCS, �Û, using Eq. (11)
4: Compute strain increments �ε̂i using Eq. (13)
5: Compute stress increments �σ̂ i using Eq. (14)
6: Evaluate elemental internal force Fe using Eq. (18)
7: end parallel
8: // Parallel computing of solving equations of motion of particles
9: parallel for 0 ≤ iParticle≤ (Np − 1) do
10: Assemble equivalent internal force of particle, Fint

α , using Eq. (19)
11: Solve the equation of motion of particle using Eq. (3)
12: end parallel

3 Parallel Contact Algorithm Based on the FPM

3.1 Contact Detection
The contact between two deformable bodies is considered. The contact surface on one body

is selected as the master and the contact surface on the other body as the slave, as shown in
Fig. 4, and this master-slave pair is called a contact surface pair. The node-to-segment (NTS) [21]
technique is adopted for discretizing contact surfaces into contact particles and contact segments,
as shown in Fig. 4. After discretizing contact bodies, the particles on the master surface are
defined as master particles while the particles on the slave surfaces as slave particles. Note that
proper selection of the master and slave surfaces is significant for NTS contact discretization.
According to the literature [4], the selection of master and slave surfaces should satisfy that the
slave nodes cannot penetrate into the master surface, while the master nodes are free to penetrate
into the slave surface. Thus, the contact surface of the stiffer body should be the master surface.
More details about choosing the master and slave surfaces can be found in the literature [4].

Slave

Master

Master

Particles Segments

Slave

(a) (b)

Figure 4: Discretization of contact surfaces: (a) Separation state; (b) Penetration state

The contact search algorithms of contact surfaces are typically decomposed into two distinct
phases: global search and local search. The purpose of global search is to first collect master
segment candidates for each slave particle, and the aim of local search is to choose the exact

CMES, 2021, vol.129, no.2 603

master segment for each slave particle and detect the contact state. Note that global search can
be performed every n time steps to reduce the computational time, while local search needs to
be performed at every time step. To make this contact search algorithm more suitable for parallel
computing, a linked-list data structure represented by two arrays [37] is used.

3.1.1 Data Structure
For a two-body contact problem, the potential range of a contact surface pair in space is

represented by a bounding box, as illustrated in Fig. 5. The coordinates of the bottom-left and
top-right corners of the bounding box are denoted as (xmin,ymin) and (xmax,ymax), respectively.
The bounding box is divided into several square cells of the same size, and the size of each cell
is determined by

Lc = λL̄ (20)

where L̄ is the average length of all contact segments, λ is a cell size scale factor with a default
value of 1.0. The number of cells in each direction is obtained by

Nx = floor
(
xmax−xmin

Lc

)
+ 1 (21)

Ny = floor
(
ymax− ymin

Lc

)
+ 1 (22)

where floor(·) is an operator used to round a number downwards to the nearest integer. The total
number of cells is calculated by

Nc =NxNy (23)

Subsequently, each particle of the contact surface pair can be mapped into a cell, and the cell
index is calculated by

ic = ix+ iyNx (24)

where ix= floor((x−xmin)/Lc) and iy= floor((y− ymin)/Lc) are indices of the cell along the x and
y directions, respectively, and (x,y) is the coordinate of the particle.

Algorithm 2: Parallel algorithm for constructing the data structure
1: parallel for 0 ≤ iCell≤ (Nc − 1) do
2: initialize the array d_head: d_head[iCell] =−1
3: end parallel
4: parallel for 0 ≤ iParticle≤ (Np - 1) do
5: initialize the array d_next: d_next[iParticle] =−1
6: end parallel
7: parallel for 0 ≤ iParticle≤ (Np - 1) do
8: compute the cell index, iCell, of this particle by Eq. (24)
9: modify array d_head: iHead = atomicExch(d_head + iCell, iParticle)
10: update array d_next: d_next[iParticle] = iHead
11: end parallel

604 CMES, 2021, vol.129, no.2

x

y (xmin , ymin) Lc

(xmax , ymax)

Figure 5: Space decomposition of the bounding box of a contact surface pair

A linked-list data structure [37] is adopted to store the particles in each cell. This data
structure is beneficial to the parallel global search process and suitable for the coalescence access
of GPU memory. A bounding box that is divided into 16 cells is taken as an example, as shown
in Fig. 6, with 20 contact particles located within these cells. Two arrays are used to construct
the linked list, as illustrated in Fig. 7a. The array d_head is used to store the first contact particle
index in each cell, and the array d_next is used to link the remaining particle indices in the same
cell [38]. Note that each element in array d_next indicates the index of the next particle until −1
is encountered. For example, particles 10, 8, and 7 are located in the 6th cell (ix = 2, iy= 1);
therefore, particle 10 is stored in the 6th element of array d_head, while particles 8 and 7 are
stored in the 10th and 8th elements of array d_next, respectively, and the 7th element of array
d_next is set to −1 to indicate the end of the linked list. The lengths of these two arrays are Nc
and Np, respectively, where Np denotes the number of contact particles.

ix

iy

0

1

2

3

0 1 2 3

0

10

11 12 13
14

15 16
17

18

19

1
2

3

4

5

6

7
8 9

Contact particle

Figure 6: Mapping of contact particles into cells

The main steps for constructing the data structure for a contact surface pair are described
in Algorithm 2. The elements of arrays d_head and d_next are initialized to −1. The indices of
particles located in the same cell are stored in the linked list one by one. Note that the function
b= atomicExch(addr, a) is an atomic function in the CUDA toolkit to replace the value at the
address addr with value a and then return the old value b, which performs a read-modify-write
atomic operation in a thread and guarantees no interference with other threads [27]. For multiple

CMES, 2021, vol.129, no.2 605

surface pairs, the contact particles of all pairs can be stored in a single linked-list data structure, as
shown in Fig. 7b. This data structure ensures the efficiency of parallel contact search for contact
problems with multiple surface pairs, which is validated in Section 5.2.

-1 -1 -1 -1 1 -1 2 -1 7 -1 8 ...

...0 4 6 3 -1 5 10 9

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8 9 10

d_head

d_next

iPart ic le

iCe ll

Nc

Np

...

...

...

...

...

...

...

...

d_head

d_next

Nc,0 N Nc,1 c,n

Np,0 N Np,1 p,n

(a) (b)

Figure 7: Linked-list data structure: (a) One surface pair; (b) Multiple surface pairs

3.1.2 Parallel Global Search
The global search consists of two steps: (1) find the closest master particle for each slave

particle and (2) choose the segments connected to this master particle as master segment candi-
dates. The closest master particle can be identified by looping for all master particles, which is
time-consuming. To improve the efficiency, only particles located in the nine (3 × 3) neighboring
cells are detected in this study [39]. The loop of the particles in each cell takes advantage of
the well-organized data structure built above. Note that this approach will miss some segment
candidates if the cell size is too small. As shown in Fig. 8, if the two particles of a segment are
located outside of the nine cells, this segment cannot be detected. Therefore, the cell size should
satisfy the following condition:

Lc ≥Lmax/3 (25)

where Lmax is the maximum length of all master contact segments. The parallel global search
procedures for each slave particle are summarized in Algorithm 3.

L max

Lc

Slave particle

Master particle

Figure 8: Minimum cell size length requirement

606 CMES, 2021, vol.129, no.2

Algorithm 3: Parallel algorithm for global search
// Comments:
// Ns—the number of slave particles
// [cell_min_x, cell_max_x]—index range of detected cells along the x direction
// [cell_min_y, cell_max_y]—index range of detected cells along the y direction
1: parallel for 0 ≤ iSlave≤ (Ns – 1) do
2: initialize minimum distance, d_min, to a large value
3: initialize index of closest particle: iClosest=−1
4: for cell_min_y ≤ iCell_y ≤ cell_max_y do
5: for cell_min_x ≤ iCell_x ≤ cell_max_x do
6: compute the cell index, iCell, using Eq. (24)
7: get the first particle in this cell: iParticle= d_head[iCell]
8: while iParticle≥ 0 do
9: if iParticle is a master particle then
10: compute distance, d, between iSlave and iParticle
11: if d< d_min then
12: update the minimum distance: d_min = d
13: update closest particle: iClosest= iParticle
14: end if
15: end if
16: get the next particle in this cell: iParticle= d_next[iParticle]
17: end while
18: end for
19: end for
20: end parallel

3.1.3 Parallel Local Search
To choose the exact master segment, projections of the slave particle onto each segment

candidate should be performed first. Fig. 9 illustrates the projection of a slave particle S onto a
master segment candidate CM. Particle C is the closest master particle to particle S. The position
vectors of these three particles are denoted by XS, XC, and XM, respectively.

gn

gt

S

MC

g

t

n
gn

g t

S

MC

g
t

n

(a) (b)

Figure 9: Projection of slave particle onto a master segment candidate: (a) Open gap (gn > 0); (b)
Closed gap (gn ≤ 0)

CMES, 2021, vol.129, no.2 607

An LCS with unit vectors t, n and e3 is introduced. The tangent vector t is parallel to the
master segment

t= m
‖m‖ (26)

where m = XM − XC is the master segment vector, the vector e3 is orthogonal to the plane
containing contact bodies, and the normal vector n = e3 × t. The gap normal and tangential
projections, gn and gt, are determined by

gn= g · n, gt = g · t (27)

where g= XS − XC is the gap vector. In addition, a normalized gap tangential projection, ζ , is
introduced by

ζ = gt
‖m‖ (28)

and the range of ζ is

−ζtol ≤ ζ ≤ 1+ ζtol (29)

where ζtol is a tolerance that can be set to 1/50 [40].

Generally, three projection cases exist, as illustrated in Fig. 10, i.e., a regular case and two
special cases: the “in-of-both” case and “out-of-both” case. For the regular case shown in Fig. 10a,
gn is calculated by Eq. (27). For the other two special cases shown in Figs. 10b and 10c, the
contact between the slave particle and its master segments is simplified to the contact between
the slave particle and its closest master particle. Note that more accurate treatments for these two
special cases can be found in the literature [40].

C C

C

S S
S

M1 M1

M1
M2

M2

M2

gn

gn

gn

gg
g

(a) (b) (c)

Figure 10: Projection cases: (a) Regular case; (b) “In-of-both” case; (c) “Out-of-both” case

Once the master segment has been identified, the gap status (open or closed) can be deter-
mined by checking the sign of gn, as shown in Fig. 9. An open gap indicates that the contact
surfaces are separated with no need to enforce contact constraints, while a closed gap indicates
that the contact forces should be calculated and exerted on the contact particles, which is discussed
in Section 3.2. The parallel local search procedures for each slave particle are summarized in
Algorithm 4.

3.2 Contact Forces
The penalty method is adopted to calculate the contact forces of particles due to its simplicity

and ease of implementation. The calculations of the normal contact force and tangential contact
force (i.e., friction force) using the penalty method are discussed in Sections 3.2.1 and 3.2.2,
respectively. Note that the contact forces are calculated in parallel for each slave particle, and then
the reaction forces are applied in parallel to the corresponding master particles.

608 CMES, 2021, vol.129, no.2

Algorithm 4: Parallel algorithm for local search
// Comments:
// Ns—the number of slave particles
1: parallel for 0 ≤ iSlave≤ (Ns − 1) do
2: read the index of closest master particle: iClosest
3: get the number of segments, nSeg, connected to the particle iClosest
4: if nSeg= 1 then
5: calculate ζ using Eq. (28)
6: if ζ satisfies Eq. (29) then
7: regular projection case
8: else then
9: the master segment for this particle is not exist
10: end if
11: elseif nSeg= 2 then
12: calculate ζ0 and ζ1 using Eq. (28)
13: if both ζ0 and ζ1 satisfy Eq. (29) then
14: in-of-both case
15: elseif ζ0 satisfies Eq. (29) then
16: regular projection case, the master segment is the first one
17: elseif ζ1 satisfies Eq. (29) then
18: regular projection case, the master segment is the second one
19: else then
20: out-of-both case
21: end if
22: end if
23: end parallel

3.2.1 Normal Contact Force
The magnitude of the normal contact force calculated by the penalty method is proportional

to the amount of penetration, as shown in Fig. 11. For a contact pair composed of slave particle
S and master segment CM, assuming that its projection case is regular (see Fig. 10a), the normal
contact force is determined by

Fn= εn|gn| · n (30)

where εn is the normal penalty parameter of the master segment CM, gn is the normal gap, and n
is the normal unit vector of CM. The penalty parameter is obtained using the following equation
proposed by Hallquist et al. [5,21]:

εn= sn
KA2

V
(31)

where K is the bulk modulus of segment CM, A is the area of the segment, V is the volume of
the element that contains segment CM, sn is a scale factor to adjust the normal penalty parameter.
Note that appropriate penalty parameters are important for contact force calculation, because too
large penalty parameter leads to non-convergent results, while too small penalty parameter results
in unrealistic large penetration. In this paper, the scale factor sn is initially set to default value of
1.0 and then adjusted via a trial-and-error process until a satisfying result is obtained.

CMES, 2021, vol.129, no.2 609

0 gn

Fn

Open gap

Closed gap

Figure 11: The relation between the normal contact force and normal gap

For the other two special projection cases, as shown in Figs. 10b and 10c, εn in Eq. (30) is
set to the average value of the penalty parameters of segments CM1 and CM2. This approach is
used to consider the contact stiffness contributions of both segments and reduce the variation of
contact stiffness when the slave particle slides from one master segment to the other.

3.2.2 Friction Force
The most commonly used friction model is the classic Coulomb friction model [41]. However,

the friction force of the Coulomb model is discontinuous at zero velocity, which may lead to
oscillation results. A smoothed friction model [5] is adopted in this study. The friction force
calculation is an adaptation of the radial return algorithm for elastic-perfectly plastic materials
and can be described as follows:

Let tFn represent the normal contact force of slave particle S at time t calculated by Eq. (30),
μ denote the coefficient of friction, and t−�tFs represent the friction force at time t−�t. Then,
the friction force at time t is calculated by the following steps:

(1) Compute the magnitude of the maximum static friction force:
tFs,max =μ‖tFn‖ (32)

(2) Calculate the trial friction force:
tF∗
s = t−�tFs− εt

(tdr− t−�tdr
)

(33)

where t−�tdr and tdr denote the relative displacements between slave particle S and master segment
CM at times t−�t and t, respectively; εt is the tangential penalty parameter of master segment
CM, which is determined by:

εt = st
KA2

V
(34)

where st is a scale factor with a defau value of 1.0 and is used to adjust this penalty
parameter.

(3) If the trial force does not exceed the maximum friction force, the friction is identified as
static, and the friction force at time t is equal to thitrial force; otherwise, the friction is
identified as kinetic, and the magnitude of the friction force at time t should equal tFs,max.

610 CMES, 2021, vol.129, no.2

tFs =
{

tF∗
s if ‖tF∗

s‖ ≤ tFs,max
tFs,max

tF∗s
‖tF∗s ‖ if ‖tF∗

s‖> tFs,max
(35)

Note that the friction force is considered only in the regular projection case (see Fig. 10a).

Once the normal and tangential contact forces of slave particle S have been obtained, the
resultant contact force, as shown in Eq. (1), is cculated by

FcS = Fn+Fs (36)

As shown in Fig. 12a, the reaction contact forces applied to the particles of the master
segment CM in the regular case can be calculated by

FcC =−(1− ζ)FcS, FcM =−ζFcS (37)

In the other two special projection cases, the reaction force applied to the closest master
particle C has the same magnitude but opposite direction compared to FcS, as shown in Figs. 12b
and 12c.

S
SS

C

C

C M

F
c
MF

c
C

F
c
S

F
c
S

F
c
S

- F
c
S

- F
c
S

gt

(a) (b) (c)

Figure 12: Reaction contact force of master particles: (a) Regular case; (b) “In-of-both” case; (c)
“Out-of-both” case

4 GPU Implementation

The proposed contact algorithm based on the FPM is suitable for parallel implementation, as
described in Sections 2 and 3. The GPU architecture is more appropriate than the CPU architec-
ture for the parallel implementation of the FPM, as mentioned in Section 1. The parallel contact
algorithm is implemented in the GPU-accelerated software developed in our previous study [24].
The algorithm is executed on NVIDIA GPUs powered by CUDA. The CUDA programming
model is briefly introduced in Section 4.1, and the GPU implementation of the algorithm is
presented in Section 4.2.

4.1 CUDA Programming Model
A generic CUDA application mainly consists of two parts: host code, running serially on a

CPU, and device code, running in parallel on a GPU, as illustrated in Fig. 13. The host code is
responsible for organizing host and device memories and managing the transfer of data between
them. The device code consists of several device functions, named kernels, that are executed on
GPU threads. The threads are organized into n-dimensional blocks, which are then organized into
an n-dimensional grid (where n can be 1, 2, or 3), as depicted in Fig. 13. For a more detailed
description of the CUDA programming model, the reader is referred to the literature [27].

CMES, 2021, vol.129, no.2 611

Host (CPU)

Host (CPU)

Device (GPU)

Grid

Block (0,1)

Block (0,0)

Block (1,1)

Block (1,0)

Block (2,1)

Block (2,0)

Block (2,0)

Thread (0,0)

Thread (0,1)

Thread (0,2)

Thread (1,0)

Thread (1,1)

Thread (1,2)

Serial code

Serial code

C/C++ Program
Sequential Execution

Parallel code
kernel()

Figure 13: Schematic illustration of the CUDA programming model

4.2 GPU Implementation of the Algorithm
The flowchart of the parallel contact algorithm implemented in the FPM software is presented

in Fig. 14. After preprocessing, the model data and variables are organized in the host memory
and transferred to the device memory. A sequence of time steps is then performed for the analysis.
Within each time step, the computational procedures are executed in a series of CUDA kernels
managed by three FPM solvers: element solver, contact solver, and particle solver. Typically, the
solution procedures consist of four main steps:

(1) Element solver: evaluate the elemental internal forces in parallel for each element, as
described in Section 2.2.

(2) Contact solver:
i. Parallel global search: search for master segment candidates for each slave particle, as

discussed in Section 3.1.2.
ii. Parallel local search: choose the master segment for each slave particle from the

candidates, and calculate the gap vector, as described in Section 3.1.3.
iii. Parallel contact force calculation: calculate the normal and tangential contact forces for

each slave particle, and apply the reaction contact forces to the corresponding master
particles, as discussed in Section 3.2.

(3) Particle solver: solve the equation of motion in parallel for each particle using Eq. (3).
(4) Time step controller: if the current time step is the last one, stop the calculation; otherwise,

go to Step (1) and start the iteration for the next time step.

As described in our previous study [24], memory management is important to achieve satis-
factory performance of the FPM solvers. Among all memory spaces available in CUDA, global
device memory is the most widely used for all FPM solvers because it has the largest storage
capacity. The global memory can be accessed by all threads using aligned memory transactions.
The optimization of global memory throughput can be achieved if the memory access patterns
are suitable for coalescence [25], which requires adjacent threads to access successive memory

612 CMES, 2021, vol.129, no.2

addresses. To achieve this coalescence of memory accesses, an adaptation of the structure-of-
arrays (SoA) storage pattern [42] is adopted to manage all data buffers in global memory. In
addition to memory management, the thread block size impacts the kernel performance. Based on
performance tests for most of the kernels implemented in this study, 128 threads per block results
in the best efficiency; thus, for convenience, the thread block size is set to a constant value of 128
for all kernels.

Figure 14: Flowchart of the GPU-based parallel contact algorithm

5 Numerical Examples

The effectiveness of the proposed contact algorithm is verified by two examples as presented
in Section 5.1. Subsequently, the performance of the algorithm is tested in Section 5.2. All
examples are computed under the assumption of a plane strain condition with a unit thickness
of 1.0.

CMES, 2021, vol.129, no.2 613

5.1 Verification
In this section, two verification examples are presented to demonstrate the accuracy of the

proposed contact algorithm. These two examples focus on the frictional contact between two
deformable bodies undergoing large sliding and large deformation. The first example involves
elastic behavior, while the second example involves elastoplastic behavior. Fictitious mass damping
is used in the verification examples to obtain static solutions. The quadrilateral element FPM-Q4,
as described in Section 2.2.4, is used for the analyses in this section.

5.1.1 Contact in Elastic Problem
This numerical example is the so-called frictional ironing problem, which was previously

studied in the literature [4,43]. The example comprises the sliding of a deformable block along
an elastic slab, as illustrated in Fig. 15. The slab is fixed at its bottom surface, whereas the
block is subjected to an imposed displacement at its upper surface. There are two load steps.
From 0 to 1 s, a downward displacement uy = −10 mm is applied to the block, while from 1 to
2 s, the block slides horizontally along the slab with a displacement ux = 250 mm. The material
parameters are given in Fig. 15, and the mass damping coefficient is set to ξ = 1.0× 105. The
friction coefficient between the contact surfaces is μ= 0.3. The block and slab are discretized into
136 and 3,840 quadrilateral elements, respectively. The scale factors for the normal and tangential
penalty parameters are set to sn = 20.0 and st = 0.7, respectively.

Figure 15: Geometry and material properties of the ironing problem (unit of length: mm)

The deformed configurations with a shear stress distribution are presented in Fig. 16 for three
typical instants. In addition, the evolution of the total contact force components between the
contacting bodies is presented in Fig. 17. From 0 to 1 s, as the vertical displacement of the block
increases, the normal contact force gradually increases. The deformed configuration of the slab
is not symmetrical; thus, the horizontal force component is not equal to zero. Starting from 1 s,
the block begins to slide on the slab. The normal contact force increases slightly and remains
constant afterwards. The horizontal force increases sharply after 1 s due to the contribution of
the friction force and remains constant afterwards. Both contact force components drop slightly
when the block reaches the right end of the slab. The results calculated by the FPM agree well
with those obtained by Neto et al. using the surface smoothing method [4]. Thus, this example
demonstrates the effectiveness of the proposed contact algorithm in elastic problems.

614 CMES, 2021, vol.129, no.2

21.2

17.5

13.9

10.2

6.6

2.9

-0.7

-4.4

-8.0

-11.7

SXY(a)

(b)

(c)

Figure 16: Contour plots of shear stress (unit: MPa) at three instants: (a) 1.0 s; (b) 1.5 s; (c) 2.0 s

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

100

200

300

400

500

600

700

800

Horizontal force

Time (s)

FPM
Neto et al. 2017 Vertical force

T
ot

al
 c

on
ta

ct
 fo

rc
e

(N
)

Figure 17: Contact forces obtained by the FPM and surface smoothing method [4]

CMES, 2021, vol.129, no.2 615

5.1.2 Contact in Elastoplastic Problem
The second example was proposed by Yang et al. [44] and comprises contact between two

curved beams, as shown in Fig. 18. The lower beam is fixed at its bottom surface, while the upper
beam is subjected to a horizontal displacement ux = 31.5 mm at its upper surface. Both beams are
modeled using an elastoplastic material with isotropic hardening. The elastic material properties
are given by Young’s modulus E = 689.56 MPa and Poisson’s ratio ν = 0.32, while the plastic
properties are given by the yield stress σ0 = 31 MPa and the plastic modulus h= 261.2 MPa. The
density of the material is ρ = 50 kg/m3, and the mass damping coefficient is set to ξ = 1.0 × 104.
Each beam is discretized into 240 quadrilateral elements. Both frictionless and frictional cases are
investigated, and two different values of the friction coefficient are considered: µ = 0.3 and µ =
0.6. The scale factors for the normal and tangential penalty parameters are set to sn= 10.0 and
st = 1.0, respectively.

u x ux

8 10

17

10 12
x

y

Figure 18: Geometry of the contact problem between two curved beams (unit of length: mm)

Deformed configurations of the beams for 15 mm of prescribed displacement on the upper
beam are depicted in Fig. 19 for both frictionless and frictional cases, with the arrows illustrating
the nodal contact forces subjected by the lower beam. The contact forces in the frictionless case
are normal to the contact surface, while the contact forces in the other two frictional cases
comprise tangential components. A higher friction coefficient leads to a higher friction force.

0.00
0.81
1.63
2.44
3.25
4.07
4.88

5.70
CF

(a) (b) (c)

Figure 19: Deformed configurations of the beams and nodal contact forces (unit: N) of the lower
beam: (a) µ= 0.0; (b) µ= 0.3; (c) µ= 0.6

The evolution of the total contact force components for the upper beam is presented in
Fig. 20. Both the horizontal and vertical contact forces calculated by the FPM agree well with
the results obtained by Neto et al. using the surface smoothing method [45]. Given higher values
of friction coefficient, the amplitude of contact forces increases, the inflection points of the curves
occur later, and contact forces decrease faster. These phenomena are related to the deformation
mode of the lower beam due to the friction force.

616 CMES, 2021, vol.129, no.2

0 5 10 15 20 25 30
-30

-25

-20

-15

-10

-5

0

5

10

15

Displacement in x-direction (mm)

FPM (µ = 0.0) Neto et al. 2016 (µ = 0.0)

FPM (µ = 0.3) Neto et al. 2016 (µ = 0.3)

FPM (µ = 0.6) Neto et al. 2016 (µ = 0.6)

(a)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

55

Displacement in x-direction (mm)

FPM (µ = 0.0) Neto et al. 2016 (µ = 0.0)

FPM (µ = 0.3) Neto et al. 2016 (µ = 0.3)

FPM (µ = 0.6) Neto et al. 2016 (µ = 0.6)

(b)

T
ot

al
 c

on
ta

ct
 fo

rc
e

in
 y

-d
ire

ct
io

n
(N

)

T
ot

al
 c

on
ta

ct
 fo

rc
e

in
 x

-d
ire

ct
io

n
(N

)

Figure 20: Contact forces obtained by the FPM and surface smoothing method [45]): (a) x-
direction; (b) y-direction

The deformed configuration of the beams with contour plots of equivalent plastic strain is
presented in Fig. 21, which is similar to the results in the literature [45,46]. The plastic regions
mainly appear in the lower beam due to its larger diameter. Besides, the equivalent plastic strain
in the region near the contact area is lower given higher values of friction coefficient. This can
be explained by the different deformation shapes of the lower beam, as shown in Fig. 19.

PEEQ

1.41E-1
1.17E-1
9.37E-2

7.03E-2
4.69E-2
2.34E-2
0.00E-2

1.64E-1

(a) (b) (c)

Figure 21: Contour plots of equivalent plastic strain: (a) µ= 0.0; (b) µ= 0.3; (c) µ= 0.6

In conclusion, the proposed contact algorithm is also effective in analyzing elastoplastic
problems.

5.2 Performance Test
The performance of the proposed method is tested in this section. The performances of

parallel element and particle solvers are studied first via a benchmark problem without contact
calculation in Section 5.2.1. Then the performance of the parallel contact solver is investigated
via a large-scale contact problem in Section 5.2.2. The performances of the parallel FPM solvers
are compared with the performances of Abaqus/Explicit solvers and our serial FPM solvers. Note

CMES, 2021, vol.129, no.2 617

that the kernel codes in the serial FPM solvers are almost identical to the codes in the parallel
solvers, but they run serially on a CPU. The efficiency of the parallel implementation is quantified
by introducing speedup ratio S, which is defined as

S= TS
TP

(38)

where TS is the computational time of a serial algorithm, and TP is the computational time of a
parallel algorithm.

The quadrilateral element FPM-Q4R in the FPM as described in Section 2.2.4 is used in
the performance test, while the 4-node quadrilateral element with reduced integration CPE4R in
Abaqus/Explicit is used for comparison. The performance test is carried out on a PC equipped
with an Intel® CoreTM i7-4790 K quad-core 4.00 GHz CPU, an NVIDIA Titan V GPU with 5120
CUDA cores and 12 GB HBM2 memory, and a Windows 10 (64-bit platform) operating system.

5.2.1 Test on Parallel Element and Particle Solvers
As shown in Fig. 22, a cantilever beam is fixed at one edge and subjected to a tip load.

The load (P= 100 N) is applied at time t= 0 and then kept constant during the whole simulation.
The beam is 100 mm long and 20 mm height. It is made of an elastic material characterized
by Young’s modulus E =2000 MPa, Poisson’s ratio ν = 0.3, and density ρ = 3 × 103 kg/m3. A
dynamic analysis of the beam is carried out for 8 ms of simulation. The deformed configuration
of the cantilever beam at time t=8 ms obtained by FPM is presented in Fig. 23. The evolution
of the vertical displacement of the cantilever tip obtained by FPM agrees well with that obtained
by Abaqus, as shown in Fig. 24.

P

L

H

Figure 22: Geometry of cantilever beam

14.1812.6011.039.457 88.6 30.4 73.3 15.1.580.00
UY

Figure 23: Vertical displacement contour of cantilever beam (unit of length: mm)

618 CMES, 2021, vol.129, no.2

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

50

Time (ms)

FPM-Q4R
Abaqus-CPE4R

D
is

pl
ac

em
en

t (
m

m
)

Figure 24: Vertical displacement of the tip node of the cantilever beam

To compare the performances of parallel FPM solvers relative to serial FPM solvers and the
Abaqus/Explicit solver, different meshes of the cantilever are tested. Each mesh is performed with
a simulation of 0.1 ms with a fixed time step size of 1.0 × 10−5 ms, resulting in 10,000 time
increments in total. The computational times taken by Abaqus and FPM are listed in Tab. 1 and
compared in Fig. 25. As the number of elements increases, the computational time required by
parallel FPM solvers grows at a much lower rate than that of serial FPM solvers and Abaqus
solvers. The speedup of parallel FPM solvers relative to serial FPM solvers reaches 35.0 when
the number of elements approaches 3,000,000, and the speedup relative to Abaqus reaches 21.7
when the number of elements approaches 4,000,000. The maximum GPU utilization of the parallel
element and particle solvers is obtained when the speedup reaches its saturation point, which
means that all GPU threads cannot be concurrently processed due to the limitation of GPU
memories and cores, and the time consumed by synchronization of threads and other processes
leads to the slight decrease of the speedup ratio. If a more advanced GPU with larger memories
and more CUDA cores is used, the speedup can be further improved.

Table 1: Computational time for calculating the cantilever beam (unit of time: s)

Elements Abaqus (CPU) FPM (CPU) FPM (GPU)

20,480 24.0 43.5 6.7
81,920 104.0 167.1 12.2
163,840 207.0 374.7 16.9
327,680 412.0 744.6 27.4
655,360 829.0 1528.9 47.7
1,310,720 1636.0 3019.2 87.1
2,621,440 3253.0 5538.6 158.0
3,932,160 4913.0 8409.4 241.7
5,242,880 6437.0 10864.2 320.0

CMES, 2021, vol.129, no.2 619

0 1000 2000 3000 4000 5000

0

2000

4000

6000

8000

10000

12000

Number of elements (×103)

TFPM - CPU

TAbaqus - CPU

TFPM - GPU

0

5

10

15

20

25

30

35

40
TFPM - CPU / TFPM - GPU

TAbaqus - CPU / TFPM - GPU

S
pe

ed
up

C
om

pu
ta

tio
na

l t
im

e
(s

)

Figure 25: Comparison of computational time for calculating the cantilever beam

5.2.2 Test on Parallel Contact Solver
A two-dimensional simplification of the dynamic impact problem proposed by [38] is consid-

ered in this test, as shown in Fig. 26. A half-tube is moving toward a multilayer sheet with a
prescribed displacement uy. The sheet is divided into n layers with the same thickness tl, and the
gap between two adjacent layers is denoted by gl. The nodes on both the leftmost and rightmost
sides of the sheet are fixed only along the vertical direction.

6

Figure 26: Contact between a half-tube and a multilayer sheet: Geometry and material properties
(unit of length: mm; unit of density: kg/m3; unit of modulus: MPa)

A three-layer sheet is taken as an example to demonstrate the results, where tl = 0.4 mm and
gl = 0.02 mm. The scale factor for the normal penalty parameter is set to sn = 1.0. The deformed
shapes at three instants obtained by FPM are shown in Fig. 27, and they are very similar to the
results obtained by Abaqus/Explicit, which are omitted here for brevity.

To test the performance and efficiency of the proposed contact algorithm, sheets with different
numbers of layers are tested. The layer thickness is set to tl = 0.01 mm and the gap is set to gl =
0.001 mm. The tube is discretized with a fixed mesh size of 0.02 mm, and each layer of the sheet
is discretized with a fixed mesh size of 0.01 mm. Each case is performed with a simulation time
of 1.0 ms with a fixed time step size of 1.0× 10−4 ms, resulting in 10,000 time increments in total.

620 CMES, 2021, vol.129, no.2

Figure 27: Vertical displacement contour at three instants (unit of length: mm)

The times of both total calculation and contact calculation taken by Abaqus/Explicit and
both serial and parallel FPM solvers are listed in Tab. 2. Note that the time of contact calculation
taken by Abaqus/Explicit cannot be extracted directly, and it is approximated by subtracting the
time of calculation without contact from the time of calculation with contact.

Table 2: Contact between tube and sheet: total computational time and time of contact calculation
(unit of time: s)

Layers Elements Contact segments Abaqus (CPU) FPM (CPU) FPM (GPU)

Contact Total Contact Total Contact Total

10 70,450 77,218 56.0 152.0 24.4 144.1 3.0 12.9
50 230,450 397,218 300.0 622.0 127.3 511.5 5.7 28.2
100 430,450 797,218 595.0 1174.0 252.2 963.4 8.8 45.3
150 630,450 1,197,218 866.0 1711.0 380.0 1410.1 12.3 66.8
200 830,450 1,597,218 1154.0 2255.0 495.2 1861.9 15.0 82.9
250 1,030,450 1,997,218 1432.0 2803.0 644.2 2332.4 19.1 103.8
300 1,230,450 2,397,218 1674.0 3351.0 758.1 2778.3 21.6 117.6
350 1,430,450 2,797,218 1949.0 3900.0 893.5 3263.7 25.2 138.3
400 1,630,450 3,197,218 2198.0 4462.0 1031.4 3782.5 28.5 158.2

The computational time of contact calculation and the corresponding speedups are shown in
Fig. 28. As the number of contact segments increases, the speedup of the parallel FPM contact
solver relative to the serial one increases accordingly and reaches 36.1 when the number of contact
segments exceeds 3,000,000, and the speedup relative to the Abaqus contact solver reaches 77.4

CMES, 2021, vol.129, no.2 621

when the number of contact segments exceeds 2,000,000. It can be concluded that the serial
FPM contact solver is more efficient than the Abaqus contact solver due to the proposed contact
algorithm that consists of efficient global search and local search processes. The efficiency of the
parallel FPM contact solver is further dramatically improved due to its high degree of parallelism.

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

Number of contact segments (×103)

TAbaqus - CPU

TFPM - CPU

TFPM - GPU

0

10

20

30

40

50

60

70

80

90TAbaqus - CPU / TFPM - GPU

TFPM - CPU / TFPM - GPU

S
pe

ed
up

C
om

pu
ta

tio
na

l t
im

e
of

 c
on

ta
ct

 c
al

cu
la

tio
n

(s
)

Figure 28: Contact between tube and sheet: computational time of contact calculation

The total computational time and the corresponding speedups are shown in Fig. 29. The
speedup of the parallel FPM solvers relative to the serial ones reaches 23.9, and that relative to
Abaqus reaches 28.5. Figs. 28 and 29 also indicate that when the number of contact segments
exceeds 3,000,000, the GPU cores are fully used. Note that the maximum speedup depends heavily
on the GPU hardware, and higher speedup can be achieved by using more advanced GPUs.

0 500 1000 1500 2000 2500 3000

0

1000

2000

3000

4000

5000

Number of contact segments (×103)

TAbaqus - CPU

TFPM - CPU

TFPM - GPU

10

15

20

25

30
TAbaqus - CPU / TFPM - GPU

TFPM - CPU / TFPM - GPU

S
pe

ed
up

C
om

pu
ta

tio
na

l t
im

e
(s

)

Figure 29: Contact between tube and sheet: total computational time

The percentages of contact calculation time in total calculation time are compared in Fig. 30.
As the number of contact segments increases, the three curves remain nearly constant. Contact
calculation accounts for approximately 50% of the total computational time in Abaqus, while the
percentages in serial and parallel FPMs are only 27% and 18%, respectively. This indicates that the

622 CMES, 2021, vol.129, no.2

proposed GPU-based parallel contact algorithm can remarkably decrease the time consumption
of contact calculation compared to the CPU-based serial contact algorithm.

0 500 1000 1500 2000 2500 3000
15

20

25

30

35

40

45

50

Number of contact segments (×103)

Abaqus (CPU)
FPM (GPU)
FPM (CPU)

T
im

e
co

ns
um

pt
io

n
pe

rc
en

ta
ge

 (
%

)

Figure 30: Contact between tube and sheet: time consumption percentages of contact calculation

The time consumption percentages of both serial and parallel FPM solvers are given in
Fig. 31. In both serial and parallel cases, the element solvers are the most time-consuming solvers,
while the particle solvers account for the smallest proportion. The serial contact solver accounts
for a larger proportion than the parallel contact solver, demonstrating the effectiveness of the
proposed parallel contact algorithm.

0 500 1000 1500 2000 2500 3000

20

30

40

50

60

70

Number of contact segments (×103)

Element (GPU)
Particle (GPU)
Contact (GPU)
Element (CPU)
Particle (CPU)
Contact (CPU)

T
im

e
co

ns
um

pt
io

n
pe

rc
en

ta
ge

 (
%

)

Figure 31: Contact between tube and sheet: time consumption percentages of serial and parallel
FPM solvers

CMES, 2021, vol.129, no.2 623

6 Conclusions

This paper presents a 2D GPU-based parallel contact algorithm using the FPM. A data
structure suitable for parallel contact detection is introduced, and parallel global search and local
search procedures are proposed. The main computational procedures, including elemental internal
forces calculation, contact calculation, and solution of equations of motion, are executed in
parallel on a GPU. Two verification examples and two performance tests are demonstrated, and
the following conclusions can be made:

• Two typical verification examples involving large deformation frictional contacts and both
elastic and elastoplastic behaviors are presented, and the results obtained by FPM agree
well with those in the literature, indicating the accuracy of the FPM quadrilateral elements
and the proposed contact algorithm.

• The performances of parallel element and particle solvers are studied first via a benchmark
problem without contact calculation, and a maximum speedup of approximately 21.7 is
achieved relative to Abaqus/Explicit when the number of elements approaches 4,000,000,
and a maximum speedup of approximately 35.0 is achieved relative to serial FPM solvers
when the number of elements approaches 3,000,000. Thus, the efficiency of the parallel
element and particle solvers is proven.

• A large-scale contact problem is investigated. The speedup of the parallel FPM contact
solver relative to the serial FPM contact solver reaches 36.1 when the number of contact
segments exceeds 3,000,000, and that relative to the Abaqus contact solver reaches 77.4
when the number of segments exceeds 2,000,000. Thus, the efficiency of the parallel FPM
contact solver has been proven. With respect to the total computational time, the speedup
of parallel FPM solvers relative to serial FPM solvers reaches 23.9, and that relative to
Abaqus reaches 28.5, demonstrating the efficiency of the parallel FPM solvers for solving
large-scale contact problems.

• The percentages of contact calculation time in the total calculation time are 18% in parallel
FPM, 27% in serial FPM and 50% in Abaqus/Explicit, which indicates the effectiveness
of the proposed GPU-based parallel contact algorithm in reducing the time consumption
proportion of contact calculation in the total calculation.

Funding Statement: This work was supported by the National Key Research and Development
Program of China [Grant No. 2016YFC0800200]; the National Natural Science Foundation of
China [Grant Nos. 51778568, 51908492, and 52008366]; and Zhejiang Provincial Natural Science
Foundation of China [Grant Nos. LQ21E080019 and LY21E080022]. This work was also sup-
ported by the Key Laboratory of Space Structures of Zhejiang Province (Zhejiang University)
and the Center for Balance Architecture of Zhejiang University.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Wriggers, P. (2006). Computational contact mechanics. Berlin: Springer-Verlag.
2. Laursen, T. A. (2003). Computational contact and impact mechanics: Fundamentals of modeling interfacial

phenomena in nonlinear finite element analysis. Berlin, Heidelberg: Springer-Verlag.
3. Puso, M. A., Solberg, J. M. (2020). A dual pass mortar approach for unbiased constraints and self-contact.

ComputerMethods in AppliedMechanics andEngineering, 367(1),113092.DOI 10.1016/j.cma.2020.113092.

http://dx.doi.org/10.1016/j.cma.2020.113092

624 CMES, 2021, vol.129, no.2

4. Neto, D. M., Oliveira, M. C., Menezes, L. F. (2017). Surface smoothing procedures in computa-
tional contact mechanics. Archives of Computational Methods in Engineering, 24(1), 37–87. DOI
10.1007/s11831-015-9159-7.

5. Benson, D. J., Hallquist, J. O. (1990). A single surface contact algorithm for the post-buckling analy-
sis of shell structures. Computer Methods in Applied Mechanics and Engineering, 78(2), 141–163. DOI
10.1016/0045-7825(90)90098-7.

6. Zhang, R., Pang, H., Dong, W. C., Li, T., Liu, F. et al. (2020). Three-dimensional discrete element method
simulation system of the interaction between irregular structure wheel and lunar soil simulant. Advances in
Engineering Software, 148(1), 102873. DOI 10.1016/j.advengsoft.2020.102873.

7. Wang, S. Q., Zhang, Q., Ji, S. Y. (2021). GPU-Based parallel algorithm for super-quadric discrete element
method and its applications for non-spherical granular flows. Advances in Engineering Software, 151(1),
102931. DOI 10.1016/j.advengsoft.2020.102931.

8. Fu, T. F., Xu, T., Heap, M. J., Meredith, P. G., Mitchell, T. M. (2020).Mesoscopic time-dependent behavior
of rocks based on three-dimensional discrete element grain-based model. Computers and Geotechnics,
121(1), 103472. DOI 10.1016/j.compgeo.2020.103472.

9. Xu, T., Fu, T. F., Heap, M. J., Meredith, P. G., Mitchell, T. M. et al. (2020). Mesoscopic damage and frac-
turing of heterogeneous brittle rocks based on three-dimensional polycrystalline discrete element method.
Rock Mechanics and Rock Engineering, 53(12), 5389–5409. DOI 10.1007/s00603-020-02223-y.

10. Yu, Y., Paulino, G., Luo, Y. Z. (2010). Finite particle method for progressive failure simulation of truss struc-
tures. Journal of Structural Engineering, 137(10), 1168–1181.DOI 10.1061/(ASCE)ST.1943-541X.0000321.

11. Ting, E. C., Shih, C., Wang, Y. K. (2004). Fundamentals of a vector form intrinsic finite element:
Part I. Basic procedure and a plane frame element. Journal of Mechanics, 20(2), 113–122. DOI
10.1017/S1727719100003336.

12. Ting, E. C., Shih, C., Wang, Y. K. (2004). Fundamentals of a vector form intrinsic finite element: Part II.
Plane solid elements. Journal of Mechanics, 20(2), 123–132. DOI 10.1017/S1727719100003348.

13. Shih, C., Wang, Y. K., Ting, E. C. (2004). Fundamentals of a vector form intrinsic finite ele-
ment: Part III. Convected material frame and examples. Journal of Mechanics, 20(2), 133–143. DOI
10.1017/S172771910000335X.

14. Wu, T. Y. (2013). Dynamic nonlinear analysis of shell structures using a vector form intrinsic finite element.
Engineering Structures, 56(Supplement C), 2028–2040. DOI 10.1016/j.engstruct.2013.08.009.

15. Zheng, Y. F., Yang, C., Wan, H. P., Luo, Y. Z., Li, Y. et al. (2020). Dynamics analysis of spatial mechanisms
with dry spherical joints with clearance using finite particle method. International Journal of Structural
Stability and Dynamics, 20(3), 2050035. DOI 10.1142/S0219455420500352.

16. Zheng, Y. F., Wan, H. P., Zhang, J. Y., Yang, C., Luo, Y. Z. et al. (2021). Local-coordinate representation
for spatial revolute clearance joints based on a vector-form particle-element method. International Journal
of Structural Stability and Dynamics, 21(7), 2150093. DOI 10.1142/S0219455421500930.

17. Yu, Y., Zhu, X. Y. (2016). Nonlinear dynamic collapse analysis of semi-rigid steel frames based on the finite
particle method. Engineering Structures, 118(1), 383–393. DOI 10.1016/j.engstruct.2016.03.063.

18. Yang, C., Shen, Y. B., Luo, Y. Z. (2014). An efficient numerical shape analysis for light weight membrane
structures. Journal of Zhejiang University Science A, 15(4), 255–271. DOI 10.1631/jzus.A1300245.

19. Duan, Y. F., Wang, S. M., Wang, R. Z., Wang, C. Y., Shih, J. Y. et al. (2018). Vector form intrinsic finite-
element analysis for train and bridge dynamic interaction. Journal of Bridge Engineering, 23(1), 04017126.
DOI 10.1061/(ASCE)BE.1943-5592.0001171.

20. Liu, F. H., Yu, Y., Wang, Q. H., Luo, Y. Z. (2020). A coupled smoothed particle hydrodynamic
and finite particle method: An efficient approach for fluid-solid interaction problems involving free-
surface flow and solid failure. Engineering Analysis with Boundary Elements, 118(1), 143–155. DOI
10.1016/j.enganabound.2020.03.006.

21. Hallquist, J., Goudreau, G., Benson, D. (1985). Sliding interfaces with contact-impact in large-scale
lagrangian computations.ComputerMethods in AppliedMechanics andEngineering, 51(1–3),107–137.DOI
10.1016/0045-7825(85)90030-1.

http://dx.doi.org/10.1007/s11831-015-9159-7
http://dx.doi.org/10.1016/0045-7825(90)90098-7
http://dx.doi.org/10.1016/j.advengsoft.2020.102873
http://dx.doi.org/10.1016/j.advengsoft.2020.102931
http://dx.doi.org/10.1016/j.compgeo.2020.103472
http://dx.doi.org/10.1007/s00603-020-02223-y
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000321
http://dx.doi.org/10.1017/S1727719100003336
http://dx.doi.org/10.1017/S1727719100003348
http://dx.doi.org/10.1017/S172771910000335X
http://dx.doi.org/10.1016/j.engstruct.2013.08.009
http://dx.doi.org/10.1142/S0219455420500352
http://dx.doi.org/10.1142/S0219455421500930
http://dx.doi.org/10.1016/j.engstruct.2016.03.063
http://dx.doi.org/10.1631/jzus.A1300245
http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0001171
http://dx.doi.org/10.1016/j.enganabound.2020.03.006
http://dx.doi.org/10.1016/0045-7825(85)90030-1

CMES, 2021, vol.129, no.2 625

22. Yu, P. C., Peng, X. Y., Chen, G. Q., Guo, L. X. (2020). Openmp-based parallel two-dimensional dis-
continuous deformation analysis for large-scale simulation. International Journal of Geomechanics, 20(7),
04020083. DOI 10.1061/(ASCE)GM.1943-5622.0001705.

23. Peng, X. Y., Chen, G. Q., Yu, P. C., Zhang, Y. B., Zhang, H. et al. (2020). A full-stage parallel architecture of
three-dimensional discontinuous deformation analysis using OpenMP. Computers and Geotechnics, 118(1),
103346. DOI 10.1016/j.compgeo.2019.103346.

24. Tang, J. Z., Zheng, Y. F., Yang, C., Wang, W., Luo, Y. Z. (2020). Parallelized implementation of the finite
particle method for explicit dynamics in GPU. ComputerModeling in Engineering & Sciences, 122(1), 5–31.
DOI 10.32604/cmes.2020.08104.

25. Bartezzaghi, A., Cremonesi, M., Parolini, N., Perego, U. (2015). An explicit dynamicsGPU structural solver
for thin shell finite elements. Computers& Structures, 154(1), 29–40. DOI 10.1016/j.compstruc.2015.03.005.

26. Cao, X. G., Cai, Y., Cui, X. Y. (2020). A parallel numerical acoustic simulation on a GPU using an
edge-based smoothed finite element method. Advances in Engineering Software, 148(1), 102835. DOI
10.1016/j.advengsoft.2020.102835.

27. NVIDIA (2021). CUDA C++ programming guide. Santa Clara, CA: NVIDIA.
28. Cai, Y., Wang, G. P., Li, G. Y., Wang, H. (2015). A high performance crashworthiness simulation system

based on GPU. Advances in Engineering Software, 86(1), 29–38. DOI 10.1016/j.advengsoft.2015.04.003.
29. Chung, J. T., Lee, J. M. (1994). A new family of explicit time integration methods for linear and non-linear

structural dynamics. International Journal for Numerical Methods in Engineering, 37(23), 3961–3976. DOI
10.1002/nme.1620372303.

30. Hulbert, G. M., Chung, J. T. (1996). Explicit time integration algorithms for structural dynamics with
optimal numerical dissipation. ComputerMethods in Applied Mechanics and Engineering, 137(2), 175–188.
DOI 10.1016/S0045-7825(96)01036-5.

31. Chen, S. Y., Wang, G. H., Li, X. M., Zhang, Q. Y., Shi, Z. P. et al. (2020). Formalization of camera pose
estimation algorithm based on rodrigues formula. Formal Aspects of Computing, 32(4), 417–437. DOI
10.1007/s00165-020-00520-5.

32. Liu, G. R., Quek, S. S. (2013). The finite element method: A practical course. Oxford: Butterworth-
Heinemann.

33. Simo, J. C., Hughes, T. J. (1998).Computational inelasticity. New York: Springer-Verlag.
34. Borja, R. I. (2013). Plasticity: Modeling & computation. Berlin, Heidelberg: Springer-Verlag.
35. Hughes, T. J. R. (1980). Generalization of selective integration procedures to anisotropic and non-

linear media. International Journal for Numerical Methods in Engineering, 15(9), 1413–1418. DOI
10.1002/nme.1620150914.

36. Flanagan, D. P., Belytschko, T. (1981). A uniform strain hexahedron and quadrilateral with orthogonal
hourglass control. International Journal for Numerical Methods in Engineering, 17(5), 679–706. DOI
10.1002/nme.1620170504.

37. Munjiza, A., Andrews, K. R. F. (1998). NBS contact detection algorithm for bodies of similar size.
International Journal for Numerical Methods in Engineering, 43(1), 131–149.DOI 10.1002/(SICI)1097-0207
(19980915)43:1<131::AID-NME447>3.0.CO;2-S.

38. Chen, H., Lei, Z., Zang, M. Y. (2014). LC-Grid: A linear global contact search algorithm for finite element
analysis. ComputationalMechanics, 54(5), 1285–1301. DOI 10.1007/s00466-014-1058-5.

39. Zang, M. Y., Gao, W., Lei, Z. (2011). A contact algorithm for 3D discrete and finite element con-
tact problems based on penalty function method. Computational Mechanics, 48(5), 541–550. DOI
10.1007/s00466-011-0606-5.

40. Zavarise, G., de Lorenzis, L. (2009). The node-to-segment algorithm for 2D frictionless contact: Classical
formulation and special cases.ComputerMethods in AppliedMechanics and Engineering, 198(41–44),3428–
3451. DOI 10.1016/j.cma.2009.06.022.

41. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P. P. (2016). Review and comparison of dry friction force
models. Nonlinear Dynamics, 83(4), 1785–1801. DOI 10.1007/s11071-015-2485-3.

http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0001705
http://dx.doi.org/10.1016/j.compgeo.2019.103346
http://dx.doi.org/10.32604/cmes.2020.08104
http://dx.doi.org/10.1016/j.compstruc.2015.03.005
http://dx.doi.org/10.1016/j.advengsoft.2020.102835
http://dx.doi.org/10.1016/j.advengsoft.2015.04.003
http://dx.doi.org/10.1002/nme.1620372303
http://dx.doi.org/10.1016/S0045-7825(96)01036-5
http://dx.doi.org/10.1007/s00165-020-00520-5
http://dx.doi.org/10.1002/nme.1620150914
http://dx.doi.org/10.1002/nme.1620170504
http://dx.doi.org/10.1002/(SICI)1097-0207(19980915)43:1$<$131::AID-NME447>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1097-0207(19980915)43:1$<$131::AID-NME447>3.0.CO;2-S
http://dx.doi.org/10.1007/s00466-014-1058-5
http://dx.doi.org/10.1007/s00466-011-0606-5
http://dx.doi.org/10.1016/j.cma.2009.06.022
http://dx.doi.org/10.1007/s11071-015-2485-3

626 CMES, 2021, vol.129, no.2

42. Lacasta, A.,Morales-Hernández,M.,Murillo, J., García-Navarro, P. (2014). An optimized GPU implemen-
tation of a 2D free surface simulation model on unstructured meshes. Advances in Engineering Software,
78(1), 1–15. DOI 10.1016/j.advengsoft.2014.08.007.

43. Hammer, M. E. (2013). Frictional mortar contact for finite deformation problems with synthetic contact
kinematics. Computational Mechanics, 51(6), 975–998. DOI 10.1007/s00466-012-0780-0.

44. Yang, B., Laursen, T. A., Meng, X. (2005). Two dimensional mortar contact methods for large deformation
frictional sliding. International Journal for Numerical Methods in Engineering, 62(9), 1183–1225. DOI
10.1002/nme.1222.

45. Neto, D. M., Oliveira, M. C., Menezes, L. F., Alves, J. L. (2016). A contact smoothing method for arbitrary
surface meshes using nagata patches. Computer Methods in Applied Mechanics and Engineering, 299(1),
283–315. DOI 10.1016/j.cma.2015.11.011.

46. Areias, P., Rabczuk, T., de Melo, F. Q., de Sá, J. C. (2015). Coulomb frictional contact by explicit projection
in the cone for finite displacement quasi-static problems. Computational Mechanics, 55(1), 57–72. DOI
10.1007/s00466-014-1082-5.

http://dx.doi.org/10.1016/j.advengsoft.2014.08.007
http://dx.doi.org/10.1007/s00466-012-0780-0
http://dx.doi.org/10.1002/nme.1222
http://dx.doi.org/10.1016/j.cma.2015.11.011
http://dx.doi.org/10.1007/s00466-014-1082-5

