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ABSTRACT

A new and computationally efficient version of the immersed boundary method, which is combined with the
coarse-graining method, is introduced for modeling inextensible filaments immersed in low-Reynolds number
flows. This is used to represent actin biopolymers, which are constituent elements of the cytoskeleton, a com-
plex network-like structure that plays a fundamental role in shape morphology. An extension of the traditional
immersed boundary method to include a stochastic stress tensor is also proposed in order to model the thermal
fluctuations in the fluid at smaller scales. By way of validation, the response of a single, massless, inextensible
semiflexible filament immersed in a thermally fluctuating fluid is obtained using the suggested numerical scheme
and the resulting time-averaged contraction of the filament is compared to the theoretical value obtained from the
worm-like chain model.
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1 Introduction

Living cells display a high degree of internal mechanical and functional organization and their
intracellular biopolymeric scaffold, the cytoskeleton, plays a key role in that [1]. The actin cortex
is the part of the cytoskeleton attached to the cell membrane in most eukaryotic cells. The cortical
actin cytoskeleton plays a fundamental role in cell shape, which is maintained through structural
stiffness and rheology. Actin cortex is a thin actomyosin network that underlies the plasma
membrane, consisting of actin filaments cross-linked by actin-binding proteins and containing
motor proteins that generate stress within the network [2]. In order for the actin filaments to
become cross-linked, they undergo thermal fluctuations to find a cross-linking partner and when
cross-links between actin filaments are formed, the amplitudes of filament fluctuations are reduced,
supporting the formation of additional cross-links [3].
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Actin filaments are biopolymers with sufficient contour length to exhibit significant thermal
bending fluctuations, in the order of approximately 1% of their contour length. However, their
diameter can be as large as ten nanometers or more, giving them noteworthy bending rigidity.
Thus, actin filaments are said to be semiflexible in the sense that their bending stiffness is large
enough for the bending energetics—which favors a straight conformation—to just out-compete
the entropic tendency of a chain to crumple up into a random coil [4]. Therefore, semiflexi-
ble polymers exhibit small, yet significant, thermal fluctuations around a straight conformation.
Furthermore, the semiflexible filaments are practically inextensible, i.e., their backbone cannot be
stretched or compressed. On the scale of several nanometers to micrometers, biopolymers are
often effectively modeled as inextensible elastic rods or fibers with finite resistance to bending [5].
This is the essence of the classical worm-like chain (WLC) model by Kratky et al. [6]. The
competition between entropic and energetic effects in semiflexible polymers gives rise to many
physical properties and the semiflexible nature of the actin filaments also has major implications
on how they interact with each other to form cross-linked networks [7,8]. One may think of a
single actin filament as a chain that can respond to forces or thermal fluctuations by bending and
end-to-end compression relative to its full contour length.

There has been deep interest in studying the mechanical response of biological tissues the
past decades, and more specifically, in understanding the mechanical properties of biopolymeric
networks, since they play an important role in cell motility [9,10] and mechanotransduction
[11–13]. Furthermore, the investigation of the behavior of semiflexible filaments in viscous shear
flows at low Reynolds numbers has also gained a lot of interest due to the relevance of its
applications in areas involving biological systems like DNA [14,15], polymers [16] and proteins,
but also in areas such as biotechnology that involve natural and synthetic fibers [17]. These fluid-
structure interaction (FSI) problems are quite challenging because of the complex interplay of
hydrodynamic stresses and the corresponding fiber conformity, however, a two-way interaction
between the immersed filaments and the surrounding fluid is tantamount in order to get a better
understanding of the underlying physical behavior.

Yamamoto et al. [18] proposed a method for simulating the dynamic behavior of rigid and
flexible fibers in a flow field, with the fibers regarded as made up of spheres that are lined up
and bonded to each neighbor. Tornberg et al. [19] studied the dynamics of slender filaments
suspended in Stokesian fluids employing a non-local slender body theory. In most of these studies,
the hydrodynamic interaction was neglected, therefore, there was limited information about the
underlying FSI. The fluid was considered as a passive medium and coupling between fluid and
structure was one-way. The Immersed Boundary Method (IBM) of Peskin [20], which accounts
for the two-way interaction between filament and fluid, has gained substantial popularity the
past years in studying the dynamics of filaments in flow fields. However, in most of the studies
where the dynamics of inextensible semiflexible filaments were studied using IBM, as in [21,22],
a very high stretching stiffness was used for the filaments to approximate inextensibility, which
significantly restricted the time step, thus increasing substantially the computational cost. Wiens
et al. [23] used a generalized IB method which can be viewed as a type of penalty method in
which the rod is only approximately inextensible. Similarly, Huang et al. [24] used a modified
IBM with an extra inextensibility condition to strictly enforce the filament inextensibility. In addi-
tion, Kim et al. [25] introduced a penalty immersed boundary method to simulate the dynamics
of inextensible vesicles in an incompressible viscous fluid by using two Lagrangian immersed
boundaries connected through stiff springs to represent the real immersed boundary for different
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purposes. Also, Ong et al. [26] developed an immersed boundary projection method based on an
unconditionally energy stable scheme to simulate the vesicle dynamics in a viscous fluid.

In the preceding studies the inextensibility constraint is not enforced strongly and this may
lead to numerical errors [24] that cause the filament length to vary over time. On the other
hand, when inextensibility is enforced by Lagrange multipliers, an extended nonlinear system of
equations needs to be solved at every time step, thus again increasing substantially the compu-
tational time. An alternative primal approach, more straightforward and faster computationally,
to deal with the inextensibility of semiflexible filaments is to use the Coarse-Graining Method
(CGM) by Moreau et al. [27]. CGM uses discrete models, where the filament is partitioned into a
discrete number of straight segments and the elastic interaction coupling neighboring nodes/joints
is described via discrete elastic connectors encoding the filament’s resistance to bending. However,
up to now, the CGM for filaments has been used by neglecting the two-way interaction between
the filament and the fluid.

In this study, a new computationally efficient version of the IBM, which is combined with
the CGM, is introduced in this study for modeling inextensible filaments in low-Reynolds number
flows. An extension of the traditional IBM to include a stochastic stress tensor is also proposed
in order to model the thermal fluctuations in the fluid in smaller scales. The proposed numerical
scheme is validated by comparing the response of a single actin filament immersed in a thermally
fluctuating fluid to the theoretical values obtained using the WLC model.

The remainder of the article is organized as follows. The WLC model is reviewed in Section 2
and the theoretical value of the time-averaged contraction for a single inextensible filament under
hydrodynamic thermal fluctuations is derived. The mathematical formulation of the coupled sys-
tem filament-fluid and the suggested numerical procedure are described in Section 3. In Section 4,
the behavior of a single, massless, inextensible, and semiflexible filament immersed in a thermally
fluctuating fluid is obtained using the suggested numerical scheme and the resulting time-averaged
contraction of the filament is compared to the theoretical value obtained from the WLC model
for the sake of validation. This is followed by a concluding reflection on the findings in Section 5.

2 Theoretical Background: The Worm-Like Chain Model

The mechanical behavior of semiflexible filaments is usually described by the WLC model [6].
This assumes that the filament is inextensible, has linearly elastic bending energy, and is subjected
to thermal fluctuations. A homogeneous, inextensible and semiflexible filament of straight length
L and circular cross section of radius a is taken to be fixed at one end and free at the other. The
domain of the filament is parametrized by its arc-length s and the position of a typical point is
denoted y(s). The motion of the filament is assumed to be confined to a plane and its bending
energy is given by

Eb =
κb

2

∫ L

0
κ2 ds= κb

2

∫ L

0

∣∣∣∣∣∂
2y

∂s2

∣∣∣∣∣
2

ds , (1)

where κ =
∣∣∣∣∣∂

2y
∂s2

∣∣∣∣∣ is the (linearized) curvature and κb= EI is the flexural rigidity, expressed in terms

of the Young’s modulus E and the second moment of area I = πa4

4
.
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Using the Equipartition Theorem [28, Chapter 7] one may calculate the thermal average
angular correlation between distant points along the filament, for which

< t(s) · t(s′) >= e−kBT |s−s
′|

2L , (2)

where t(s)= ∂y(s)
∂s

is the (unit) tangent vector along the filament, kB is the Boltzmann constant,

and T is the absolute temperature of the fluid. The persistence length lp is a characteristic
length over which the relative orientation of two such tangent vectors along the filament remains

correlated, and is defined as lp= 2κb
kBT

for a planar motion [1, Section 3.2.3] [5]. In simple terms,

a filament in thermal equilibrium inside a fluid will appear rather straight over lengths that are
short compared with this persistence length, while it will begin to exhibit a random, contorted
shape otherwise.

For the filament under consideration here, it is assumed that L≤ lp, therefore it is expected
to remain nearly straight with small transverse fluctuations. Let the x-axis define the average
orientation of the filament segment, and let u represent the transverse displacement taken to be
a function of x and time t. The function u(x, t) may be represented by a Fourier series as

u(x, t)=
∑
q

uq sin(qx) , (3)

where q are the wave numbers defined as q = nπ /L, where n = 1, 2, 3,. . ., and uq are the
corresponding amplitudes. Such a representation is appropriate for the case of a nearly straight
filament with boundary condition u = 0 at x = 0 and no restraint at x = L, as in Fig. 1. Since
the transverse displacement is assumed infinitesimal, the local orientation and curvature of the

filament are given by
∂u
∂x

and
∂2u
∂x2

, respectively. In view of (1) and (3), the bending energy is given

by

Eb=
κb

2

∫ L(t)

0

(
∂2u
∂x2

)2

dx= L
4

∑
q

κbq
4u2q , (4)

as also in [29].

Figure 1: Configuration of filament fixed at one end, where u(x; t) denotes the transverse dis-
placement u from an initial straight line (dashed). The magnitude of u is exaggerated for
illustration

Since the filament is inextensible, the total arc-length of the filament remains unchanged under
the influence of the fluctuations. Thus, the arc length ds of a short segment is approximately given
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by
√

(dx)2+ (du)2 = dx
√
1+ |∂u/∂x|2. The contraction of the chain relative to its full contour

length in the presence of thermal fluctuations in u is then

�L=
∫ L

0

(
1− dx

ds

)
ds=

∫ L

0

(
1−

[√
1+ (∂u/∂x)2

]−1/2)
ds

.= 1
2

∫ L

0

(
∂u
∂x

)2

dx , (5)

where use is made of the approximation (
√
1+α2)−1 = 1 − 1

2
α2, for any α, as well as of the

absence of distinction between integrals over the arc-length and its projection on the x-axis. In
view of (3), the contraction in (5)3 is expressed as

�L= 1
2

∫ L

0

∑
q

u2qq
2 cos2(qx)dx= L

4

∑
q

u2qq
2 . (6)

By way of background, recall that the ensemble average < A(t)> of an observable quantity
A, which is a function of a variable � at time t, is defined as

<A(t) >=
∫

γ

A(�)f (�, t) d� , (7)

see, e.g., [30, Chapter 3]. Here, γ is the phase space of � and f (�, t) is the phase-space distribution
function, defined as the probability that the system will be in state � at time t. The probability
density function satisfies the standard consistency condition

∫
γ
f(�, t) d� = 1.

In the context of the present problem, if the filament is in equilibrium at temperature T , the
ensemble average value < u2q > of the amplitude-squared is then deduced in accordance with the
canonical distribution [28, Chapter 6], and is expressed as

< u2q >=
∫
u2qe
−β L

4
∑

q κbq4u2q duq

e−β L
4
∑

q κbq4u2q duq
, (8)

where β = 1
kBT

and the integral is taken over the phase space of uq. Setting q= qi, with qi being

the i-th mode of wavelength, one may write

< u2qi >=
∫
u2qie
−β L

4
∑

q κbq4u2q duq∫
e−β L

4
∑

q κbq4u2q duq

=
∫
u2qie
−β L

4 κbq
4
i u

2
qi e−β L

4
∑

q�=qi κbq
4u2q duq∫

e−β L
4 κbq

4
i u

2
qi e−β L

4
∑

q�=qi κbq
4u2q duq

=
∫
u2qie
−β L

4 κbq4i u
2
qi duqi

∫
e−β L

4
∑

q�=qi κbq
4u2q duq �=qi∫

e−β L
4 κbq

4
i u

2
qi duqi

∫
e−β L

4
∑

q�=qi κbq
4u2q duq �=qi

=
∫
u2qie
−β L

4 κbq
4
i u

2
qi duqi∫

e−β L
4 κbq

4
i u

2
qi duqi
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= 4

κbq4i L

[
− ∂

∂β
ln
(∫

e−β L
4 κbq

4
i u

2
qi duqi

)]
, (9)

where “ln” denotes the natural logarithm. A straightforward calculation results in

− ∂

∂β
ln
(∫

e−β L
4 κbq

4
i u

2
qi duqi

)
= 1

2β
, (10)

therefore, for any q, the ensemble average of the amplitude-squared is written as

< u2q >= 2kBT
κbq4L

= 4
n4π4

L3

lp
, (11)

in terms of the original length L and the persistence length lp. Likewise, using (6) and (11), the
ensemble average <�L> of the contraction �L is expressed as

< �L>= L
4

∑
q

< u2q > q2= kBT
2κb

∑
q

1
q2

= kBT
2κb

∞∑
n=1

(
L
nπ

)2

= kBTL2

2κbπ2

∞∑
n=1

1
n2

= kBTL2

2κbπ2

(
π2

6

)

= L2

6lp
. (12)

It can be observed from (11) that the ensemble average of the amplitude-squared of the
bending fluctuations diminishes rapidly for higher-order modes due to the (negative) fourth-power
dependence on the wave number. Also, (12) implies that the longer the persistence length, the
smaller the ensemble average of the contraction �L.

The probability density function f in (7) is independent rendering the ensemble stationary. In
this case, the ergodic hypothesis [28, Chapter 15] states then that the ensemble average over all
accessible systems is equal to the time average over a large number of observation of a single
system. That is, given any observable quantity A in a stationary ensemble,

<A>=<A>t= 1
t

∫ t

0
A(�(τ ))dτ , (13)

for sufficiently large observation time t. Therefore, the ensemble averages < u2q > and < �L> in
Eqs. (11) and (12), respectively, can be estimated by such time averaging.
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3 Mathematical Formulation and Numerical Procedure

The fluid and the immersed semiflexible filament constitute a coupled mechanical system. The
inextensible filament’s motion is driven by the fluid’s velocity field, while, at the same time, the
filament exerts force on the fluid, thus affecting its motion. The equations of motion that describe
the coupled system are derived and discussed in the remainder of this section.

3.1 The Asymptotic Coarse-Grained Elastohydrodynamics
Consider an inextensible massless filament of length L immersed in an incompressible viscous

fluid, and recall that the position of a point of the rod be denoted by y(s). The filament is
embedded in a two-dimensional space associated with orthonormal basis {ex, ey} and is subjected
to external contact force fh(s) per unit length due to the hydrodynamic interactions.

Assuming quasi-static loading conditions, the equilibrium equations are written as

∂n
∂s
+ fh = 0 ,

∂m
∂s
+ ∂y

∂s
× n= 0 ,

(14)

where n and m are the (internal) axial force and moment sustained by the filament. Integrating
the force equilibrium Eq. (14)1 over the entire filament leads to∫ L

0
fh(s) ds= 0 , (15)

where it is further assumed that the boundary forces vanish, that is, n(0) = n(L) = 0.

Following Moreau et al. [27], the filament is partitioned into N straight subdomains (elements)
of length �s=L/N. The Frenet basis along the filament is given by the unit tangent and normal
vectors (e‖, e⊥), respectively, as shown in Fig. 2. Also, the angle between e|| and ex is denoted θ .
The discrete counterpart of the equilibrium Eq. (15) takes the form

N−1∑
i=0

∫ (i+1)�s

i�s
fh(s) ds=

N−1∑
i=0

Fhi = 0 , (16)

where Fhi represents the resultant external force experienced by the i-th element. For a filament
free of boundary moments, that is, assuming, m(L) = m(0) = 0, one may take the integral of
(14)2 over the entire filament, use integration by parts, and invoke (14)1 and (16) to conclude that

N−1∑
i=0

∫ (i+1)�s

i�s

∂y(s)
∂s
× n(s) ds=

N−1∑
i=0

∫ (i+1)�s

i�s
(y(s)− y0)× fh(s) ds

=
N−1∑
i=0

Mi,y0 = 0 , (17)
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where Mi,y0 is the moment of the external force acting on the i-th element about point y0= y(0).
Upon integrating Eq. (14)2 over the domain ((j − 1)�s, L), j= 2,. . .,N, and taking into account
(17), it follows that

N∑
i=j

Mi,yj =mj , (18)

where mj = m((j − 1)L/N), j= 2,. . ., N, is the moment at the left end-point of the j-th element.

Given that the moment at any point it is defined as m(s)= κb
∂θ

∂s
ez, where

∂θ

∂s
is the curvature and

ez = ex× ey, one may use the backward finite difference formula to find that

mj = κb

�s
(θj− θj−1)ez = κb

�s
αjez , (19)

where αj = θj − θj−1, j=1, 2,. . .,N, is the angle between ei−1,‖ and ei,‖, as shown in Fig. 2, and
thus

θi =
i∑

j=0
αj , (20)

with α0 = θ0 .

Figure 2: Parametrization of the continuous and discretized filament

In the low-Reynolds number regime, the hydrodynamic force experienced by the filament
immersed in fluid with velocity field v can be defined according to the Resistive Force Theory [31]
as

fh(s)=−ξ [e⊥ · (ẏ− v(y))]e⊥ + η e‖ · [(ẏ− v(y))]e‖ , (21)

where v(y) is the fluid velocity interpolated at the filament positions, and ξ and η are the normal
and tangential drag coefficients, respectively. Here, the external contact force fh(s) is due to the
resistance that the filament points experience as they move in the fluid.

The position y at time t is a point in the filament that satisfies y(s)= y0+
∫ s
0 e‖(τ )dτ , so that

in the discrete case

yi = y0+
i−1∑
k=0

ek,‖�s , (22)
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for i = 1,. . . , N, thus yi = y((i − 1)L/N) thus satisfying the inextensibility constraint from the
outset. Here, ek,‖ denotes the tangent Frenet vector in the k-th element.

There are now N + 2 parameters describing the position of the filament, that is, (y0, α0,
. . ., αN−1). To determine them, there are two total force balance equations in (16), one torque
balance in (17), and N − 1 equations for the internal moment balance in (18), thus rendering
this elastohydrodynamic system closed.

With slight abuse of notation, let yi(s) denote the current position of a filament point on the
i-th element, so that

yi(s)= yi+ (s− (i− 1)�s)ei,‖ . (23)

The total hydrodynamic force on the i-th element is found from (21), with the aid of (16) and
(23), to be

Fhi =
∫ (i+1)�s

i�s
fh(s) ds=−ξ

{
�s [(ẏi− v) · ei,⊥]+ �s2

2
θ̇i

}
ei,⊥ + η �s [(ẏi− v) · ei,‖]ei,‖ . (24)

Note that, in general, v varies along the domain (i�s, (i + 1)�s). However, to within a small
error, the velocity is assumed constant in each element. Using Eqs. (17) and (21), one finds that

ez ·Mi,y0 = ez ·
∫ (i+1)�s

i�s
(y(s)− y0)× fh(s) ds

=−�s2

2
ξ [(ẏi− v) · ei,⊥]+ �s3

3
ξ θ̇ i

+ (yi− y0)×
{−�s η[(ẏi− v) · ei,‖]ei,‖

+
(

�s ξ [(ẏi− v) · ei,⊥]+ �s2

2
ξ θ̇ i

)
ei,⊥

}
· ez . (25)

Therefore, Eqs. (16)–(18), with the aid of (24) and (25), take the form

N−1∑
i=0

Fhi = 0 ,

ez ·
N−1∑
i=0

Mi,y0 = 0 ,

ez ·
N−1∑
i=k

Mi,yk = κb
�sαk , k= 1, . . . ,N− 1 .

(26)

These coarse-grained elastohydrodynamics equations, in conjunction with Eqs. (20) and (22),
can be cast a system of ordinary differential equations of the form

[A][Q][Ẏ]= [B]+ [A][V] , (27)

where [Y]= [x0 y0 θ0 α1 . . . αN−1]T are the N + 2 parameters with (x0, y0) = y0, and [V] is a
vector of size 3N, containing in the first 2N entries the x- and y-components of the flow velocity
at the filament points i= 0, 1,. . .N − 1 with the remaining entries being zero.
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The matrix [A] has dimensions (N + 2)× 3N and its coefficients are given, for all i, j= 0,. . .,
N − 1, by

a1,i =�s (−ξ cos2 θi− η sin2 θi) ,

a1,N+i =�s (η− ξ) cos θi sin θi ,

a1,2N+i = �s
2

sin θi ,

a2,i =�s (η− ξ) cos θi sin θi ,

a2,N+i =�s (−η cos2 θi− ξ sin2 θi) ,

a2,2N+i =−�s
2

cos θi ,

ai+2,j = [1 xj −xi yj− yi][�s
2

2
sin θj �s (η− ξ) cos θj sin θj �s (ξ cos2 θj + η sin2 θj)]T ,

ai+2,N+j = [1 xj −xi yj− yi][−�s2

2
cos θj −�s(η cos2 θj + ξ sin2 θj) �s(ξ − η) cos θj sin θj]T ,

ai+2,2N+j = [1 xj−xi yj− yi][−η
�s3

3
− η

�s2

2
cos θj − η

�s2

2
sin θj]T . (28)

If j< i, then ai+2,j = ai+ 2,N+j = ai+ 2,2N+j=0. Also, the column vector [B] of size N + 2 is
given by

[B]=
[
0 0

κbα0

�s
κbα1

�s
. . .

κbαN−1
�s

]T
. (29)

In addition, matrix [Q] is a 3N× (N + 2) transformation matrix defined as

[Q] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
...

...
1 0

[Q1]

0 1
...

...
0 1

[Q2]

[0N,2]

1 0 . . . 0

1 1
. . .

...
...

. . . 0
1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)
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where [Q1] and [Q2] are N×N matrices whose elements are given by the general formula

Qi,j
1 =−�s

i−1∑
k=j

sin

(
k∑

m=1
αm

)
,

Qi,j
2 =�s

i−1∑
k=j

cos

(
k∑

m=1
αm

)
,

(31)

with Qi,j
1 =Q

i,j
2 = 0 if i≤ j. Also, [0N,2] denotes an N × 2 zero matrix.

The system of equations in (27) is integrated in time using an implicit first-order method with
constant time step �t. Writing the system of equations at time tn+1, one can obtain [Yn+1] by
solving implicitly the system of equations

[An][Qn]
�t

[Yn+1]− [Bn+1]= [An][Qn]
�t

[Yn]+ [An][Vn], (32)

in the typical time domain (tn, tn+1].

3.2 Hydrodynamic Fluctuations and Equations of Motion
As one approaches smaller length scales, in the order of μm, thermal fluctuations play

an essential role in the description of the fluid flow. Thermal fluctuations may be included in
the continuum description of the fluid by means of additional stochastic fluxes. The resulting
equations of motion for the fluctuating fluid turn out to be stochastic partial differential equations.
Landau et al. [32, Chapter 9] proposed such equations, which include an additional stochastic
stress tensor in the Navier-Stokes equations, the so-called Landau-Lifshitz Navier-Stokes (LLNS)
equations.

To account for thermal fluctuations, the Cauchy stress tensor T for an incompressible viscous
fluid can be modified as

T=−pi+ 2μD+ S̃, (33)

where p is the pressure, μ is the dynamic viscosity of the fluid, D is the rate-of-deformation tensor,
and S̃ stands for the stochastic stress tensor, which models the inherent molecular fluctuations in
the fluid. The required stochastic properties of S̃ have been derived by Landau et al. [32] in order
to satisfy the fluctuation dissipation theorem [32], according to

< S̃(x, t) > = 0 ,
< S̃(x, t)⊗ S̃(x′, t′) > = 4kBTμδ(x−x′)δ(t− t′)I , (34)

where δ(·) is the Dirac delta function, I is the symmetric fourth-order identity tensor, < · > denotes
ensemble average and ⊗ denotes tensor product.

The low-Reynolds number Navier-Stokes equations for an incompressible, Newtonian fluid
with the additional stochastic stress tensor to account for the thermal fluctuations can be written,
in the absence of body forces, as

div v = 0 ,

−grad p+μdiv grad v+div S̃ = ρ
∂v
∂t

(35)
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where, again, v is the fluid’s velocity field and also ρ is the density of the incompressible fluid. As
it turns out, the flow in cytosol is of low Reynolds number, in the order of 10−9, in large part
due to the cell’s size, which is in the order of μm [1]. For such flows it is reasonable to adopt

the unsteady Stokes approximation, where the convective rate of change
∂v
∂t

v in the acceleration

is neglected, but the spatial time derivative term
∂v
∂t

is retained in order to capture the effects of

the unsteady flow.

Consider now an incompressible viscous fluid occupying a two-dimensional domain � and
undergoing thermal fluctuations. The IBM formulation in its strong form can be understood as
an enrichment of the two-dimensional Navier-Stokes equations accounting also for the forces
generated by the deformation of the immersed body, with the linear momentum balance equations
in (35)2 for the fluid taking the form

−grad p+μ div grad v+div S̃+F= ρ
∂v
∂t

, (36)

where F is the force that the filament exerts to the fluid.

In the discrete case, the force term F included in the Navier-Stokes equations is defined to be
equal and opposite to the equivalent hydrodynamic force Fhi experienced by the fiber moving with
the fluid with velocity field according to the Resistive Force Theory [31] and Eqs. (21) and (24).
Also, the perpendicular and parallel drag coefficients in Eq. (21) for a filament of cross-sectional
radius r and length 2l are defined, following Lighthill’s classical analysis [33], as

η= 8πμ

ln(l2/r2)+ 1
, ξ = 4πμ

ln(4l2/r2)− 1
. (37)

There exist many choices for representing the stochastic stress tensor S̃ in Eq. (36)1 [34].
As suggested in [35–38], a formulation for the stochastic stress tensor S̃ that requires the fewest
possible random numbers and satisfies the fluctuation dissipation theorem [32] and Eq. (34), is
expressed as

S̃=

⎛
⎜⎜⎜⎜⎝

√
4kBTμ

�V�t
R̃, if i= j

√
2kBTμ

�V�t
R̃, otherwise

, (38)

where �V = V
nel
= vol(�e), where V is the volume of the fluid domain �, nel is the total number

of elements in the Eulerian spatial discretization of the fluid, and �e is the domain of element e

used in this (uniform) discretization. The tensor R̃ is symmetric, defined as R̃= R+RT

2
, where a

realization of R is sampled using a stream of independent, standard normally distributed random
numbers at each time step �t for every element �e of the fluid domain.
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3.3 Summary of the Numerical Algorithm for the Hybrid IBM-CGM
The implementation of the proposed numerical algorithm for simulating flexible inextensible

filaments immersed in a fluid can be summarized as follows:

Algorithm 1 Hybrid IBM-CGM algorithm

Initialize fluid field variables v0 and [p0]
Initialize immersed curve position [y0]
Set n= 0
While n< n_step do

Compute [Vn] by interpolating [vn] at the filament positions
Compute the filament position [yn+1] using Eq. (32)
Compute [Fnhi]= [An][Vn]
Distribute Lagrangian interaction force [Fn] to the Eulerian grid
Calculate [S̃] using Eq. (38) for every cell of the fluid
Solve for [vn+1] and [pn+1] based on Eq. (36)

n← n+ 1

end while

4 Model Validation

This section focuses on the mechanical response of a single massless filament immersed in a
thermally fluctuating fluid and aims to validate the results of the computational model described
in the previous section by comparison with the theoretical prediction based on the WLC model
in Section 2.

The biopolymers that comprise the cytoskeleton consist of aggregates of large globular pro-
teins that are bound together rather weakly, as compared with most synthetic, covalently bonded
polymers [5]. Nevertheless, they can be surprisingly strong, due to their relatively large diameter,
which makes their bending rigidity the dominant attribute determining their mechanical behavior
on the cellular scale. Even with this mechanical resistance to bending, however, cytoskeletal
filaments can still exhibit significant thermally induced bending fluctuations because of Brownian
motion in the surrounding fluid. Actin filaments, owing to their relatively large bending stiffness,
have long persistence length compared to their total contour length, which practically means that
an actin filament in thermal equilibrium in a fluid will appear rather straight. Here, the results of
simulations of an inextensible filament immersed in a fluid domain with thermal noise are used
to verify that, after a sufficient amount of time, the time-averaged contraction < �L>t of the
filament approaches the theoretical value of the ensemble average < �L> derived in Section 2.

The inextensible filament is modeled by means of the CGM described in Section 3.1. The
filament has contour length of L= 5 μm (typical lengths range from 100 nm to a few microns [39])
and is initially straight and fixed at one end, as shown in Fig. 1. Its bending rigidity is taken
equal to κb = 10−19 Nm. The filament is immersed in a fluid domain which has temperature
of T = 300 K, dynamic viscosity μ = 0.001 Pa · s−1, and fluid density ρ = 1000 kg/m3, since
cytosol is composed mainly of water. The fluid domain is of size 10−5 μm× 10−5 μm and the
stochastic Navier-Stokes equations in (36) are solved in it under periodic boundary conditions. The
fluid domain is discretized using 40× 40 Q2-Q1 Taylor-Hood elements [40], while the filament is
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discretized by N = 10 elements. For both the solid and the fluid, a constant time step �t= 10−5 s
is used. The algorithm described in Section 3.3 is employed to resolve the fluid-solid interaction.

Fig. 3 depicts the results of the simulation described above. The time-averaged contraction
< �L>t is plotted as a function of the number of time steps. It can be concluded from the plot
that after around 6 ∗ 106 time steps, < �L>t converges to a value which is approximately equal to
3.31× 10−13. This compares very well to the theoretical value for the ensemble average obtained
from Eq. (12), which is approximately equal to 3.45× 10−13 for a relative error of approximately
4%. In view of this agreement, the comparison may serve as validation of the proposed numerical
algorithm used to simulate the fluid-structure interaction of the immersed filaments under thermal
fluctuations.

0 1 2 3 4 5 6 7 8

106

10-16

10-15

10-14

10-13

10-12

Figure 3: Time average (log scale) of inextensible filament’s contraction < �L>t as a function of
the number of time steps under thermal fluctuations

5 Conclusions

In this study, a modified and computationally efficient version of the Immersed Boundary
Method, combined with the Coarse-Graining Method, was proposed for modeling inextensible
semiflexible filaments in low-Reynolds number flows. Thermal fluctuations in the fluid were mod-
eled by including a stochastic stress. The mechanical behavior of a massless, inextensible, and
semiflexible filament immersed in a thermally fluctuating fluid was investigated using the suggested
method. The resulting time-averaged contraction of the filament compares very favorably to the
theoretical value for the ensemble average of the same quantity, as obtained from the Worm-like
Chain model. On the basis of this analysis, the proposed hybrid algorithm appears to be both
robust and accurate, and could offer a reliable means for investigating the combined effect of
multiple (and possibly interacting) filaments in low-Reynolds number flows.
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