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ABSTRACT

Higher-order multiscale structures are proposed to predict the effective elastic properties of 3-phase particle rein-
forced composites by considering the probabilistic spherical particles spatial distribution, the particle interactions,
and utilizing homogenization with ensemble volume average approach. The matrix material, spherical particles
with radius a1, and spherical particles with radius a2, are denoted as the 0th phase, the 1st phase, and the 2nd

phase, respectively. Particularly, the two inhomogeneity phases are different particle sizes and the same elastic
material properties. Improved higher-order (in ratio of spherical particle sizes to the distance between the centers
of spherical particles) bounds on effective elastic properties of 3-phase particle reinforced proposed Formulation II
and Formulation I derive composites. As a special case, i.e., particle size of the 1st phase is the same as that of the 2nd

phase, the proposed formulations reduce to 2-phase formulas. Our theoretical predictions demonstrate excellent
agreement with selected experimental data. In addition, several numerical examples are presented to demonstrate
the competence of the proposed frameworks.

KEYWORDS
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1 Introduction

Composite materials can considerably enhance the following material properties including
strength, stiffness, thermal insulation, thermal conductivity, fatigue life, acoustical insulation, wear
resistance, corrosion resistance, etc. To achieve targeted engineering performance, composite mate-
rials consisting of two or more different materials to macroscopically form new materials are
needed. The “inclusions” in composites can be in the forms of whiskers, fibers, and particulates.
The “matrix” in composites is the binder material. The matrix material provides the support
and protection to the inclusions. The matrix material also transfers stresses and strains through
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inclusion/matrix interfaces under complex 3-dimensional loading. Limited mechanical properties
of conventional particle reinforced composites that contain a single material type of inclusions
are observed such as tensile strength, compressive strength, impact resistance.

Alternatively, hybrid particle-reinforced composites, containing several different sizes and/or
materials of particles into a matrix, demonstrate superior and excellent mechanical properties and
have been largely employed in engineering applications, e.g., aerospace, civil engineering, automo-
bile industries, and military equipment. The mechanical behaviors of hybrid composites, compared
with conventional composites, are improved by the weighted summation of the individual particles
with different material properties and distinct sizes. Therefore, enhanced engineering performance
and cost could be obtained by appropriate engineering material design [1–5].

Numerous experimental research works have exhibited that mechanical behaviors of particle
reinforced composites are controlled by particle sizes, micro-structural morphology, and interfacial
properties between matrix material and particles [6–17]. Several theoretical methods have been
developed in literatures to derive the effective elastic properties of multiphase composites such
as variational methods, effective medium methods, direct micromechanical methods, and finite
element methods.

Variational methods utilize linear comparison composites or variational principles to acquire
mathematical upper and lower bounds for effective elastic properties of composites [18–27].
Hashin’s bounds are referred to as the 2-point bounds. Furthermore, the “improved” higher-order
mathematical bounds considering the statistical micro-structural information of composites were
proposed [28–33]. For instance, Silnutzer [28] proposed improved bounds, referred to as 3-point
bounds, on the effective in-plane shear modulus and bulk modulus. The 3-point bounds are
narrower when compared with the 2-point bounds.

Effective medium methods employ effective medium to predict the effective elastic properties
of composites [34–39]. Mori-Tanaka method, differential scheme, self-consistent method, and gen-
eralized self-consistent method are among the effective medium methods. These methods consid-
ered only the volume fractions and geometries of inclusions. Conversely, probabilistic distributions
or spatial locations of inclusions are not considered. Therefore, the effective medium methods are
best suited for low volume fractions of inclusions or some limited particular configurations.

Direct micromechanical methods consider specific geometric configurations of inclusions
dispersed in the matrix and utilize approximations to determine effective elastic properties of
composites with randomly located and interacting inclusions. Eshelby [40] proposed the renowned
“Eshelby’s equivalence principle” based on an ellipsoidal inclusion embedded in infinite matrix.
Mura [41] primarily considered rigorous “local” micromechanics. Honein [42] proposed frame-
works based on Kolosov-Muskhelishvili complex potentials to study circular inclusions in plane
elastostatics. Moreover, the direct micromechanical methods are further utilized and studied [43].
Nonetheless, based on the above methods, “local” (not “overall”) field solutions could be achieved.
To predict the effective properties of elastic multi-phase composites, Ju et al. [44,45], based
on Eshelby [40], proposed a micromechanical ensemble volume average formulation, which is
higher-order in volume fractions of inclusions φ. It is noted that randomly dispersed ellip-
soidal, and spherical inclusions were considered. In addition, both “local” and “overall” ensemble
volume averaged micromechanical field equations were derived by rigorously considering the
inclusion interactions in formulations and utilizing homogenization technique. Based on the pro-
posed micromechanics formulations, effective elastic properties of composites containing randomly
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dispersed spherical particles or randomly located circular fibers featuring same or distinct elastic
properties of inclusions as well as same inclusion sizes were studied [46–49].

Finite element methods, i.e., numerical solutions, are obtained based on the “unit cell model”
as well as assume particular periodic arrays of inclusions [50–53].

Finally, Ju and co-researchers, following the micromechanical frameworks [44,45], continue
to study the effective elastoplastic with/without damage behaviors of advanced composite materi-
als [54–81]. Additionally, Ko et al. [82,83] proposed new higher-order bounds on effective trans-
verse elastic properties of 3-phase hybrid fiber-reinforced composites. The hybrid fiber-reinforced
composites contain randomly located and unidirectionally aligned circular fibers featuring distinct
fiber sizes and different elastic material properties.

Majority of research works on prediction of the effective elastic properties of particle rein-
forced composites focus on conventional composites containing one type of particle and did
not consider the effects of different particle sizes. In addition, the “unit cell model,” commonly
adopted within the 3-D RVE finite element models, assumes periodic arrays of particles, not
randomly distributed.

The predictions of effective elastic properties of particle reinforced composites with different
particle sizes are still limited in research works. The objective of this paper is to propose ana-
lytical frameworks based on the direct micromechanical methods to derive the effective elastic
properties of 3-phase spherical particle reinforced composites featuring different particle sizes
and same elastic material property of particle. All particles are considered randomly dispersed,
non-intersection, and with perfect interfaces between matrix and particles. In addition, both
“local” and “overall” ensemble volume averaged micromechanical field equations will be derived by
rigorously considering the spherical particle interactions and the probabilistic spatial distribution
of particles in formulations as well as utilizing homogenization technique with ensemble volume
average approach.

Section 2 presents analytical local solutions of spherical particle interactions. The spherical
particles are assumed to be elastic and randomly dispersed in the matrix material. 3-phase com-
posites contain 2 inclusion phases featuring different particle sizes and same elastic properties.
Consequently, Section 3 presents the derivations of the ensemble volume averaged eigenstrains
based on the probabilistic particle interactions mechanism considering uniform radial distribution
function (URDF). Additionally, 2 formulations with different orders, Formulation II and Formula-
tion I, are proposed. In Section 4, the effective elastic properties of 3-phase composites consisting
of spherical particles, which are randomly dispersed as well as featuring different particle sizes and
same elastic material properties, are analytically obtained. In Section 5, our theoretical predictions
are compared with available experimental data together with numerical examples to demonstrate
the competence of the proposed frameworks. In Section 6, conclusions are presented.

2 Analytical Local Solutions of Spherical Particle Interactions

Consider a 3-phase particle reinforced composite consisting of randomly dispersed and spher-
ical shaped elastic particles with different particle sizes embedded in an isotropic elastic matrix as
shown in Fig. 1. The matrix material, spherical particles with radius a1, spherical particles with
radius a2 are denoted as the 0th phase, the 1st phase, and the 2nd phase, respectively. μ0 and k0
are the shear modulus and bulk modulus of the matrix material. μ1 and k1 are the shear modulus
and bulk modulus of the 1st phase particles. μ2 and k2 are the shear modulus and bulk modulus
of the 2nd phase particles. Since elastic material properties of the 1st phase and the 2nd phase
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are the same, k= k1 = k2 and μ = μ1 = μ2 are assumed. Additionally, the linear elastic isotropic
stiffness tensors for each phase can be expressed as

(Cζ )ijkl = λ�δijδkl +μζ (δikδjl + δilδjk), ζ = 0, 1, 2 (1)

where λζ and μζ denote the local Lamé coefficients for the ζ th phase particles.
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Figure 1: 2-particle interaction in a 3-phase composite

According to the eigenstrain concept of Eshelby [40], with the replacement of the spherical
particles by the matrix material, the perturbed strain field ε′(x) generated by the spherical particles
can be expressed in terms of the specified eigenstrain ε∗(x). Therefore, the linear elastic stiffness
tensor Cζ for the ζ th phase particles can be expressed as

Cζ : [ε0+ ε′(x)]=C0 : [ε0+ ε′(x)− ε∗(x)], ζ = 1, 2 (2)

where ε0 denotes the far-field loading induced uniform strain field in a homogeneous matrix
material (without inhomogeneities). In this paper, the symbol “·” is the dot product between two
4th-order tensors; the symbol “:” is the double-dot product between the 4th-order tensor and the
2nd-order tensor.

Due to the presence of the distributed eigenstrain ε∗(x), the perturbed strain generated in V
per Eshelby [40] is

ε′(x)=
∫
V

G(x−x′) : ε∗(x′)dx′ (3)

where V is volume of a representative volume element (RVE), x, x′ ∈V .

In addition, the 4th-order tensor G per Mura [41] is expressed as

Gijkl =
1

8π(1− ν0)r
′3Fijkl(−15, 3ν0, 3, 3− 6ν0,−1+ 2ν0, 1− 2ν0), i, j, k, l= 1, 2, 3

with r′ ≡ x−x′; r′ = ‖r′‖
(4)
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where ν0 is the Poisson’s ratio of the homogeneous matrix material.

We also define the components of the 4th-order tensor F in the Cartesian coordinates as (m=
1–6)

Fijkl(Bm)≡B1n′in
′
jn

′
kn

′
l +B2(δikn′jn

′
l+ δiln′jn

′
k+ δjkn′in

′
l+ δjln′in

′
k)+B3δijn′kn

′
l

+B4δkln′in
′
j+B5δijδkl +B6(δikδjl + δilδjk)

(5)

where n′ ≡ r′/r′ and δij represents the Kronecker delta. The summation convention applies.

Making use of Eqs. (2) and (3),

−Ai : ε∗(x)= ε0+
∫
V

G(x−x′) : ε∗(x′)dx′, x ∈V (6)

Ai = [Ci−C0]−1 ·C0 (7)

By considering spherical particle interactions, Eq. (6) are rearranged as

−Ai : ε∗(i)(x)= ε0+
∫
�i

G(x−x′) : ε∗(i)(x
′)dx′ +

∫
�j

G(x−x′) : ε∗(j)(x
′)dx′

x ∈�i, i �= j, i, j= 1, 2,

(8)

where ε∗
(i)(x

′) represents the eigenstrain located at x′ in the ith phase spherical particles inside �i

domain.

To obtain the 1st-order solution for the eigenstrain ε∗0
(i) for the ith phase spherical particles,

spherical particle interactions are dropped in Eq. (8). The 1st-order formulation yields [44]

−Ai : ε∗0(i) = ε0+S : ε∗0(i) (9)

In addition, the 4th-order tensor S, known as interior-point Eshelby tensor of a spherical
particle, is [41,58,59]

S=
∫
�i

G(x−x′)dx′, x, x′ ∈�i (10)

The components of S for a spherical particle are [41]

Sijkl =
1

15(1− v0)
[(5v0− 1)δijδkl + (4− 5v0)(δikδjl + δilδjk)] (11)

where v0 is the Poisson’s ratio of the matrix material.
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To obtain the effects of spherical particle interactions, Eq. (8) is subtracted by Eq. (9). Then,
solving the integral equation

−Ai : d∗(i)(x)=
∫
�j

G(x−x′)dx′ : ε∗0(j) +
∫
�i

G(x−x′) : d∗(i)(x
′)dx′

+
∫
�j

G(x−x′) : d∗(j)(x
′)dx′, for x ∈�i, i �= j and i, j= 1, 2

(12)

In addition, we define

d∗(i)(x)= ε∗(i)(x)− ε∗0(i) (13)

In order to find the correction of ε∗
(i)(x) to account for higher-order spherical particle inter-

actions, the 4th-order tensor G(x−x′) are expanded with respect to its center point xj inside the
�j domain;

G(x−x′)=G(x−xj)− (x′ −xj) : [∇x⊗G(x−xj)]

+ 1
2
[(x′ −xj)⊗ (x′ −xj)] : [∇x⊗∇x⊗G(x−xj)]+ · · ·

(14)

where the following equalities are employed.

∇x′ ⊗G(x−x′)=−∇x⊗G(x−x′) (15)

Substitution of Eq. (14) to Eq. (12) yields

−Ai : d∗(i)(x)=
∫
�j

G(x−x′)dx′ : ε∗0(j) +
∫
�i

G(x−x′) : d∗(i)(x
′)dx′

+�jG(x−xj) : d̄∗(j)(xj)−�jaj{∇x⊗G(x−xj)} : P̄∗
(j)

+ 1
2
�ja2j {∇x⊗∇x⊗G(x−xj)} : Q̄∗

(j) + · · ·

with x ∈�i, i, j= 1, 2

(16)

where volume of a spherical particle in the ith phase is �i = 4πa3i /3 with the spherical particle

radius ai; volume of a spherical particle in the jth phase is �j = 4πa3j /3 with the spherical particle

radius aj.

Moreover, the average fields shown in Eq. (16) are defined as

d̄∗(j) =
1
�j

∫
�j

d∗(j)(x
′)dx′ (17)

P̄∗
(j) =

1
�jaj

∫
�j

(x′ −xj)⊗ d∗(j)(x
′)dx′ (18)
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Q̄∗
(j) =

1

�ja2j

∫
�j

(x′ −xj)⊗ (x′ −xj)⊗ d∗(j)(x
′)dx′ (19)

The 3rd-order tensor P̄∗
(j) and the 4th-order tensor Q̄∗

(j) are the dipole and quadrapole of d̄∗
(j)

in the �j domain, respectively.

It is noted that the leading order of P̄∗
(j) is the order of O(ρ4

j ) instead of O(ρ3
j ). It can

be proved by substituting Eq. (18) into Eq. (16) and making use of the symmetry of spherical
particles. In addition, ρj = aj/r with r defined as the distance between the centers of spherical

particles in the ith phase and spherical particles in the jth phase.

By conducting volume averaging of Eq. (16) over the �i domain and dropping the terms with
higher order moments, the d̄∗

(j) accounting for local spherical particle interactions is approximately

obtained.

By setting i equal to 1 and j equal to 2, we obtained Eqs. (20)–(23).

−A1 : d̄∗(1) = Ḡ21 : ε∗0(2) +S : d̄∗(1) + Ḡ22 : d̄∗(2) +O(ρ8) (20)

in which

d̄∗(1) =
1

�1

∫
�1

d∗(1)(x)dx; S=
∫
�1

G(x−x′) dx′; for x ∈�1, x′ ∈�1 (21)

Ḡ21 = 1
�1

∫
�1

∫
�2

G(x−x′)dx′dx= 1
30(1− ν0)

[ρ3
2H

1+ (ρ5
2 +ρ3

2ρ
2
1 )H

2], for x ∈�1, x′ ∈�2 (22)

Ḡ22 =
∫
�1

G(x−x2) dx= 1
30(1− ν0)

(ρ3
2H

1+ρ5
2H

2) , for x ∈�1, x2 ∈�2 (23)

Similarly, by setting i equal to 2 and j equal to 1, we obtained Eqs. (24)–(27).

−A2 : d̄∗(2) = Ḡ12 : ε∗0(1) +S : d̄∗(2) + Ḡ11 : d̄∗(1) +O(ρ8) (24)

where

d̄∗(2) =
1

�2

∫
�2

d∗(2)(x
′)dx′ ; S=

∫
�2

G(x−x′)dx′; for x ∈�2, x′ ∈�2 (25)

Ḡ12 = 1
�2

∫
�2

∫
�1

G(x−x′) dx′dx= 1
30(1− ν0)

[ρ3
1H

1+ (ρ5
1 +ρ3

1ρ
2
2)H

2], for x ∈�2, x′ ∈�1 (26)

Ḡ11 =
∫
�2

G(x−x1) dx= 1
30(1− ν0)

(ρ3
1H

1+ρ5
1H

2) , with x ∈�2, x1 ∈�1 (27)
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and the components of H1 and H2 are rendered by

H1
ijkl(x1 −x2)≡ 5Fijkl(−15, 3ν0, 3, 3− 6ν0,−1+ 2ν0, 1− 2ν0)

H2
ijkl(x1 −x2)≡ 3Fijkl(35,−5,−5,−5, 1, 1)

(28)

Moreover, we define ρ1 = a1/r, ρ2 = a2/r, �1 = 4πa31/3 and �2 = 4πa32/3. It is noted that Ḡ11

in Eq. (27) and Ḡ22 in Eq. (23) are the exterior-point Eshelby tensors of spherical particles. The
leading-order is of the order O(ρ8) in Eqs. (20) and (24). It can be proved after truncating the
terms with higher order moments and making use the fact that both �jaj{∇x⊗G(x−xj)} and

P̄∗
(j) are of the order O(ρ4).

Furthermore, Eqs. (20) and (24) are further rearranged:

(A1+S1):d̄∗(1) + Ḡ22 : d̄∗
(2) =−Ḡ21 : ε∗0

(2)

Ḡ11 : d̄∗
(1) + (A2 +S2) : d̄∗(2) =−Ḡ12 : ε∗0

(1)

(29)

Eq. (29) can be solved to obtain

d̄∗(1) = [(Ḡ22)
−1 · (A1+S1)− Ḡ11 · (A2+S2)

−1]−1 · [(A2+S2)
−1 · Ḡ12 : ε∗0(1) − (Ḡ22)

−1 · Ḡ21 : ε∗0(2)] (30)

d̄∗(2) = [Ḡ22 · (A1+S1)
−1− (Ḡ11)

−1 · (A2+S2)]
−1 · [(Ḡ11)

−1 · Ḡ12 : ε∗0(1) − Ḡ21 · (A1+S1)
−1 : ε∗0(2)] (31)

It can be proved that the leading order is of O(ρ3) for Ḡ11(A2+S)−1 and the leading order
is of O(ρ−3) for (Ḡ22)−1(A1+S) in Eq. (30). Therefore, Ḡ11(A2+S)−1 is truncated.

In addition, ρ1 ≤ 1/2, ρ2 ≤ 1/2, and ρ1+ρ2 ≤ 1. Therefore, we obtained

d̄∗(1) = [(A1+S1)
−1 · Ḡ22 · (A2+S2)

−1 · Ḡ12 : ε∗0(1) − (A1+S1)
−1 · Ḡ21 : ε∗0(2)] (32)

Likewise, Eq. (31) can be expressed as

d̄∗(2) = [(A2+S2)
−1 · Ḡ11 · (A1+S1)

−1 · Ḡ21 : ε∗0(2) − (A2+S2)
−1 · Ḡ12 : ε∗0(1)] (33)

3 Averaged Eigenstrains of Spherical Particles by Ensemble Volume Average Approach

To find the solutions of averaged eigenstrains of spherical particles considering spherical
particle interactions, ensemble volume average approach is adopted. The ensemble volume average
process is stated as

〈d̄∗(i)〉(xi)=
∫

V−�i

d̄∗(i)(xi−xj)P(xj | xi)dxj, i �= j (34)

i= 1, j= 2 : 〈d̄∗(1)〉(x1)=
∫

V−�1

d̄∗(1)(x1−x2)P(x2 | x1)dx2 (35)

i= 2, j= 1 : 〈d̄∗(2)〉(x2)=
∫

V−�2

d̄∗(2)(x2−x1)P(x1 | x2)dx1 (36)
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where P(xj | xi) denotes the conditional probability density function to discover the spherical

particles centered at xj in the jth phase given the spherical particles centered at xi in the ith

phase. In addition, P(xj | xi), a 2-point probability density function, which is homogenous and
3-dimensional statistically isotropic, is considered in this paper. Thus, integration domain V in
Eq. (34) can be determined as a spherical shape. Furthermore, �i is defined as the probabilistic
“exclusion zone” for the spherical particles centered at xj in the jth phase. 〈·〉 represents the
ensemble volume average.

In this paper, we adopt a statistically isotropic and uniform 2-point conditional probability
density function known as uniform radial distribution function (URDF).

P(xj | xi)=

⎧⎪⎨
⎪⎩

(Ni+Nj)

V
, if r̂≥ 1 , where r̂≡ r/(a1+ a2) , r> (a1+ a2)

0, otherwise.

i, j= 1, 2, i �= j

(37)

where r is the distance between the centers of the spherical particles in the ith phase and the
spherical particles in the jth phase. Ni and Nj are the numbers of the ith phase spherical particles

and the jth phase spherical particles, respectively. Ni/V and Nj/V are the number density of the

ith phase spherical particles and the jth phase spherical particles in a composite, respectively.

After substituting Eq. (32) into Eq. (35),

〈d̄∗
(1)〉(x1)=

∫
V−�1

d̄∗(1)(x1 −x2)P(x2 | x1)dx2

=
∫

V−�1

[(A1+S1)
−1 · Ḡ22 · (A2+S2)

−1 · Ḡ12 : ε∗0(1)]P(x2 | x1)dx2

−
∫

V−�1

[(A1+S1)
−1 · Ḡ22 : ε∗0(2)]P(x2 | x1)dx2

(38)

〈d̄∗
(1)〉(x1)=

∫ ∞

(a1+a2)

∫
�

[P(x2 | x1)(A1+S1)
−1 · Ḡ22 · (A2+S2)

−1 · Ḡ12d�dr] : ε∗0(1)

−
∫ ∞

(a1+a2)

∫
�

[P(x2 | x1)(A1+S1)
−1 · Ḡ21d�dr] : ε∗0(2)

=
∫ ∞

a1+a2

∫
�

[P(x2 | x1)(A1+S1)
−1 · Ḡ22 · (A2 +S2)

−1 · Ḡ12d�dr] : ε∗0(1)

+
∫ ∞

2a1

∫
�

[P(x1 | x1)(A1+S1)
−1 · Ḡ22 · (A2+S2)

−1 · Ḡ12d�dr] : ε∗0(1)

(39)

where � is the spherical surface of radius r. We can also prove that∫
�

[(A1+S1)
−1 · Ḡ21]d�= 0 (40)
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where
∫
�2

H1(n)d�2 = 0;
∫
�2

H2(n)d�2 = 0.

Additionally, we can prove that∫
�

ninjd�= 4πr2

3
δij;

∫
�

ninjnknld�= 4πr2

15
(δijδkl + δikδjl + δilδjk) (41)

in which, n= r/r is the normal vector at a point on � with r= x2 −x1.

Likewise, after substituting Eq. (33) into Eq. (36), 〈d̄∗
(2)〉(x2) can be stated as

〈d̄∗
(2)〉(x2)=

∫
V−�2

d̄∗(2)(x2−x1)P(x1 | x2)dx1

=
∫

V−�2

[(A2+S2)
−1 · Ḡ11 · (A1 +S1)

−1 · Ḡ21 : ε∗0(2)]P(x1 | x2)dx1

−
∫

V−�2

[(A2+S2)
−1 · Ḡ12 : ε∗0(1)]P(x1 | x2)dx1

(42)

〈d̄∗
(2)〉(x2)=

∫ ∞

(a1+a2)

∫
�

[P(x1 | x2)(A2+S2)
−1 · Ḡ11 · (A1+S1)

−1 · Ḡ21d�dr] : ε∗0(2)

−
∫ ∞

(a1+a2)

∫
�

[P(x1 | x2)(A2+S2)
−1 · Ḡ12d�dr] : ε∗0(1)

=
∫ ∞

(a1+a2)

∫
�

[P(x1 | x2)(A2+S2)
−1 · Ḡ11 · (A1+S1)

−1 · Ḡ21d�dr] : ε∗0(2)

+
∫ ∞

(2a2)

∫
�

[P(x2 | x2)(A2+S2)
−1 · Ḡ11 · (A1 +S1)

−1 · Ḡ21d�dr] : ε∗0(2)

(43)

Similarly, we can also prove that∫
�

[(A2+S2)
−1 · Ḡ12]d�= 0 (44)

In the following sections, Formulation II (higher order) and Formulation I (lower order) will
be presented to obtain the effective elastic properties of 3-phase particle reinforced composites. In
this paper, Superscript II indicates Formulation II and Superscript I indicates Formulation I. It
is noted that Formulation II represents higher-order formulation than Formulation I. In addition,
with same elastic material property and same shape of spherical particles in the 1st phase and the
2nd phase, A2 =A1, S2 = S1 are adopted.

3.1 Formulation II
With lengthy algebra together with employing identities Eqs. (18), (37) and (41), 〈ε̄∗(1)〉 is the

ensemble volume averaged eigenstrain tensor and is approximately obtained as

〈ε̄∗(1)〉UII =�UII
(1) : ε∗0(1) (45)
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where the isotropic tensor �∼
UII

(1)
is

�∼
UII

(1)
= γUII

11 δijδkl + γUII
21 (δikδjl + δilδjk) (46)

γUII
11 = φ(2)tUII

1 +φ(1)tUII
3 ; γUII

21 = 1
2
+φ(2)tUII

2 +φ(1)tUII
4 (47)

tUII
1 = n1× λ3

(1+λ)3
+ 1

25β2
1

× λ5+λ3

(1+λ)5
×m12+ 1

25β2
1

× λ3

(1+λ)5
×m13+ 1

35β2
1

× λ5+λ3

(1+λ)7
×m14 (48)

tUII
3 = n3+ 1

25β2
1

× 1
16

×m12+ 1

25β2
1

× 1
32

×m13+ 1

35β2
1

× 1
64

×m14 (49)

tUII
2 = n2× λ3

(1+λ)3
+ 1

25β2
1

× λ5+λ3

(1+λ)5
×m22+ 1

25β2
1

× λ3

(1+λ)5
×m23+ 1

35β2
1

× λ5+λ3

(1+λ)7
×m24 (50)

tUII
4 = n4+ 1

25β2
1

× 1
16

×m22+ 1

25β2
1

× 1
32

×m23+ 1

35β2
1

× 1
64

×m24 (51)

n1 = m11

15β2
1

; n2 = m21

15β2
1

; n3 = n1
8
; n4 = n2

8
; λ= a2

a1
(52)

m11 = −150{2β1[2+ ν0(−2+ 5ν0)]+α1[10+ ν0(−10+ 7ν0)]}
3α1+ 2β1

(53)

m21 = 75{2β1[11+ ν0(−11+ 5ν0)]+ 3α1[10+ ν0(−10+ 7ν0)]}
3α1+ 2β1

(54)

m12 =m13 = 450; m13 =m23 =−675; m14 =−630; m24 = 945 (55)

where φ(2) = N2

V

(
4
3
πa32

)
is the particle volume fractions of the 2nd phase spherical particles.

φ(1) = N1

V

(
4
3
πa31

)
is the particle volume fractions of the 1st phase spherical particles.

Likewise, 〈ε̄∗(2)〉 is the ensemble volume averaged eigenstrain tensor and is approximately
obtained as

〈ε̄∗(2)〉UII = �UII
(2) : ε∗0(2) (56)

where the isotropic tensor �∼
UII

(2)
is

�∼
UII

(2)
= γUII

12 δijδkl + γUII
22 (δikδjl + δilδjk) (57)

γUII
12 = φ(1)tUII

5 +φ(2)tUII
7 ; γUII

22 = 1
2
+φ(1)tUII

6 +φ(2)tUII
8 (58)
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tUII
5 = n5× η3

(1+ η)3
+ 1

25β2
1

× η5+ η3

(1+ η)5
×m52+ 1

25β2
1

× η3

(1+ η)5
×m53+ 1

35β2
1

× η5 + η3

(1+ η)7
×m54 (59)

tUII
7 = n7+ 1

25β2
1

× 1
16

×m52+ 1

25β2
1

× 1
32

×m53+ 1

35β2
1

× 1
64

×m54 (60)

tUII
6 = n6× η3

(1+ η)3
+ 1

25β2
1

× η5+ η3

(1+ η)5
×m62+ 1

25β2
1

× η3

(1+ η)5
×m63+ 1

35β2
1

× η5 + η3

(1+ η)7
×m64 (61)

tUII
8 = n8+ 1

25β2
1

× 1
16

×m62+ 1

25β2
1

× 1
32

×m63+ 1

35β2
1

× 1
64

×m64 (62)

n5 = m51

15β2
1

; n6 = m61

15β2
1

; n7 = n5
8
; n8 = n6

8
; η = a1

a2
(63)

m51 = −150{2β1[2+ ν0(−2+ 5ν0)]+α1[10+ ν0(−10+ 7ν0)]}
3α1+ 2β1

(64)

m61 = 75{2β1[11+ ν0(−11+ 5ν0)]+ 3α1[10+ ν0(−10+ 7ν0)]}
3α1+ 2β1

(65)

m52 =m53 = 450; m62 =m63 =−675; m54 =−630; m64 = 945 (66)

αm = 2(5ν0− 1)+ 10(1− ν0)

(
k0

km− k0
− μ0

μm−μ0

)
, m= 1, 2 (67)

βm = 2(4− 5ν0)+ 15(1− ν0)

(
μ0

μm−μ0

)
, m= 1, 2 (68)

where k0 is the bulk modulus of matrix material; km is the bulk modulus of the mth phase
spherical particles; μ0 is the shear modulus of the matrix material; μm is the shear modulus of
the mth phase spherical particles.

3.2 Formulation I
Following similar procedures in Formulation II and dropping the higher-order components

O(ρ5
2) in Eq. (23), O(ρ5

1) in Eq. (27), O(ρ5
2 +ρ3

2ρ
2
1) in Eq. (22), and O(ρ5

1 +ρ3
1ρ

2
2) in Eq. (26),

〈ε̄∗(1)〉 is the ensemble volume averaged eigenstrain tensor and is approximately obtained as

〈ε̄∗(1)〉UI = �UI
(1) : ε

∗0
(1) (69)

where the isotropic tensor �∼
UI

(1)
is

�∼
UI

(1)
= γUI

11 δijδkl + γUI
21 (δikδjl + δilδjk) (70)

γUI
11 = φ(2)tUI

1 +φ(1)tUI
3 ; γUI

21 = 1
2
+φ(2)tUI

2 +φ(1)tUI
4 (71)
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tUI
1 = n1× λ3

(1+λ)3
; tUI

3 = n3; tUI
2 = n2× λ3

(1+λ)3
; tUI

4 = n4 (72)

Likewise, 〈ε̄∗(2)〉 is the ensemble volume averaged eigenstrain tensor and is approximately
obtained as

〈ε̄∗(2)〉UI =�UI
(2) : ε

∗0
(2) (73)

where the isotropic tensor �∼
UI

(2)
is

�∼
UI

(2)
= γUI

12 δijδkl + γUI
22 (δikδjl + δilδjk) (74)

γUI
12 = φ(1)tUI

5 +φ(2)tUI
7 ; γUI

22 = 1
2
+φ(1)tUI

6 +φ(2)tUI
8 (75)

tUI
5 = n5× η3

(1+ η)3
; tUI

7 = n7; tUI
6 = n6× η3

(1+ η)3
; tUI

8 = n8 (76)

4 Effective Elastic Properties of 3-Phase Particle Reinforced Composites with Randomly Dispersed
Elastic Spherical Particles of Different Particle Sizes and Same Material Properties

We will employ the solutions of 〈ε̄∗(i)〉 obtained from previous sections as well as other
ensemble volume averaged governing field equations to derive the effective elastic properties of
3-phase particle reinforced composites under consideration. For the sake of compactness, we will
drop 〈·〉.

The ensemble volume averaged field equations are [44]

σ̄ =C0 :

(
ε̄−

2∑
i=1

φ(i)ε̄∗(i)

)
(77)

ε̄ = ε0+
2∑
i=1

φ(i)S : ε̄∗(i) (78)

ε̄∗(1)
UII = �UII

(1) · (UUII
1 )−1 : ε̄; ε̄∗(2)

UII = �UII
(2) · (UUII

2 )−1 : ε̄ (79)

UUII
1 = [−A1−S+φ(1)S ·�UII

(1) +φ(2)S ·�UII
(2) (A2+S)−1 · (A1 +S)] (80)

UUII
2 = [−A2−S+φ(2)S ·�UII

(2) +φ(1)S ·�UII
(1) (A1+S)−1 · (A2 +S)] (81)

where σ̄ , ε̄, ε0, ε̄∗(i) are the averaged stress, the averaged strain, the uniform remote strain, and
the averaged eigenstrain, respectively.
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With same elastic material properties of spherical particles (the 1st phase) and spherical

particles (the 2nd phase), then we write A2 =A1 and UUII =U
UII

2 =U
UII

1 . Therefore,

UUII = [−A1−S+φ(1)S ·�UII
(1) +φ(2)S ·�UII

(2) ] (82)

σ̄ = C̄ : ε̄

= [C0 · (I−φ(1)�UII
(1) U

UII−1−φ(2)�UII
(2) U

UII−1
)] : ε̄

= [λ∗δijδkl +μ∗(δikδjl + δilδjk)]:ε̄kl ; i, j,k, l= 1, 2, 3

(83)

in which λ∗ and μ∗ denote the effective Lamé coefficients.

Moreover, the effective shear modulus μ∗ of a 3-phase particle reinforced composite can be
evaluated

μUII
∗ =μ0

(
1+ 30(1− ν0)(γ

UII
21 φ(1) + γUII

22 φ(2))

β1− 4(4− 5ν0)(γUII
21 φ(1) + γUII

22 φ(2))

)
(84)

In addition, the effective bulk modulus k∗ of a 3-phase particle reinforced composite can be
obtained

KUII
∗ =K0

(
1+ 30(1− ν0)[φ(1)(3γUII

11 + 2γUII
21 )+φ(2)(3γUII

12 + 2γUII
22 )]

ω1− 10(1+ ν0)[φ(1)(3γUII
11 + 2γUII

21 )+φ(2)(3γUII
12 + 2γUII

22 )]

)
(85)

where ω1 ≡ 3α1+ 2β1. Furthermore, the effective bulk modulus is defined as K∗ ≡ λ∗ +
2
3
μ∗.

Consequently, the effective Young’s modulus EUII∗ of a 3-phase particle reinforced composite
can be expressed

EUII
∗ = 9KUII∗ μUII∗

3KUII∗ +μUII∗
(86)

Effective properties of the composites based on Formulation I can be derived by replacing
Superscript II based on Formulation II with I. It is also noted that our formulations are com-
pletely identical to Eqs. (48), (49), (55) and (56) in Lin et al. [46] when the particles featuring
same particle sizes and same elastic material property.

5 Numerical Examples and Comparisons

We will present several analytical examples of 2-phase and 3-phase particle reinforced compos-
ites under consideration. In addition, the following notations will be adopted in the illustrations.

3-point upper bound of Silnutzer is SU; 2-point upper bound of Hashin is HU; 3-point
lower bound of Silnutzer is SL; 2-point lower bound of Hashin is HL; Formulation II is FII;
Formulation I is FI.
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5.1 2-Phase Elastic Composites: Elastic Spherical Particles in Elastic Matrix
The analytical predictions of our proposed micromechanical framework are compared with

the 2-point bounds [19], the 3-point bounds [30,32], and experimental data [84]. As a special case,
i.e., particle size of the 1st phase and particle size of the 2nd phase are the same; the proposed
formulations reduce to 2-phase formulas. The following material properties of experiments from
Smith’s data [84] are as follows: E0 = 3.0 GPa, ν0 = 0.4 (polyester matrix) and E1 = 76.0 GPa,
ν1 = 0.23 (glass filler).

The normalized effective shear modulus μ∗/μ0 at varying particle volume fractions of spher-
ical particles are illustrated in Fig. 2a. Formulation I forms upper bound while Formulation II
forms lower bound. Fig. 2b illustrates the normalized effective bulk modulus K∗/K0 at varying
particle volume fractions of spherical particles. Both Formulation II and Formulation I render
similar predictions.

Figure 2: 2-phase elastic composites: (a) the normalized effective shear modulus μ∗/μ0 vs. par-
ticle volume fractions φ; (b) the normalized effective bulk modulus K∗/K0 vs. particle volume
fractions φ

Comparisons among our analytical predictions, 2-point bounds [19], and the 3-point
bounds [30,32]), and experimental data [84] on the normalized effective Young’s modu-
lus E∗/E0 at varying particle volume fractions of spherical particles are illustrated in
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Fig. 3. Formulation I forms upper bound while Formulation II forms lower bound. In addition,
the proposed formulations demonstrate excellent agreement with experimental data. Obviously, our
analytical predictions render improved bounds and also fall within the 2-point bounds [19] and
the 3-point bounds [30,32].

Figure 3: 2-phase elastic composites: the normalized effective Young’s modulus E∗/E0 vs. particle
volume fractions φ

5.2 3-Phase Particle Reinforced Composites-Varying Particle Volume Fractions at Different Particle
Sizes
We assumed the 3-phase composites consist of only glassy spherical particles in both the

1st phase and the 2nd phase of particles with different ratios of particle size λ= a1/a2 =
0.25, 1.0, and 2.0 at particle volume fraction φ(1) = 20% (the 1st phase) and varying particle
volume fraction φ(2) (the 2nd phase). 2-point bounds [19] and the 3-point bounds [30,32] do not
exist since different particle size ratios a1/a2 are not considered in their formulations.

Fig. 4a presented the normalized effective shear modulus μ∗/μ0 vs. varying particle volume
fractions φ(2) (the 2nd phase). Formulation I forms the upper bound while Formulation II forms
the lower bound for each particle size ratio a1/a2. Furthermore, as particle volume fractions φ(2)

(the 2nd phase) increases, we also observed that compared with Formulation II, Formulation I
demonstrates stronger particle size ratio a1/a2 effects. Fig. 4b displays the normalized effective
bulk modulus K∗/K0 vs. varying particle volume fractions φ(2) (the 2nd phase). Both Formulation
II and Formulation I render similar predictions. We also noted that different particle size ratios
do not improve the normalized effective bulk modulus K∗/K0.

The normalized effective Young’s modulus E∗/E0 vs. varying particle volume fractions φ(2)

(the 2nd phase) is displayed in Fig. 5. We observed that both Fig. 4a and Fig. 5 demonstrate
similar trends. Formulation I forms the upper bound while Formulation II forms the lower bound
for each particle size ratio a1/a2. Furthermore, as particle volume fractions φ(2) (the 2nd phase)
increases, we also observed that compared with Formulation II, Formulation I demonstrates
stronger particle size ratio a1/a2 effects.
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Figure 4: 3-phase elastic composites with different particle size ratios a1/a2 = 0.25, 1.0, 2.0 at
φ(1) = 20%: (a) the normalized effective shear modulus μ∗/μ0 vs. varying particle volume fractions
φ(2); (b) the normalized effective bulk modulus K∗/K0 vs. varying particle volume fractions φ(2)

Figure 5: 3-phase elastic composites with different particle size ratios a1/a2 = 0.25, 1.0, 2.0 at
φ(1) = 20%: The normalized effective Young’s modulus E∗/E0 vs. varying particle volume frac-
tions φ(2)
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5.3 3-Phase Particle Reinforced Composites-Varying Particle Size Ratios with a Mixture of Particle
Volume Fractions
To examine the effects of varying particle size ratios, various micromechanics-based pre-

dictions were conducted. We assumed the 3-phase composites consist of only glassy spherical
particles in both the 1st phase and the 2nd phase of particles with varying ratios of particle
size λ = a1/a2 with a mixture of particle volume fractions of the 1st phase and the 2nd phase:
φ(1) = 20%, φ(2) = 10%; φ(1) = 20%, φ(2) = 20%; and φ(1) = 20%, φ(2) = 40%. 2-point bounds [19]
and the 3-point bounds [30,32] do not exist since different particle size ratios a1/a2 are not
considered in their formulations.

Figure 6: 3-phase elastic composites with varying particle size ratios a1/a2 and various particle
volume fractions φ(1) = 20% , φ(2) = 10%;φ(1) = 20% , φ(2) = 20%;φ(1) = 20% , φ(2) = 40%: (a) the
normalized effective shear modulus μ∗/μ0 vs. varying particle size ratios a1/a2; (b) the normalized
effective bulk modulus K∗/K0 vs. varying particle size ratios a1/a2

The normalized effective shear modulus μ∗/μ0 demonstrates less particle size ratios a1/a2
effect at lower particle volume fraction φ(2) (the 2nd phase) with constant particle volume fraction
φ(1)(the 1st phase) as illustrated in Fig. 6a. Nonetheless, as particle volume fraction φ(2) (the 2nd

phase) increases, stronger particle size ratio a1/a2 effects are demonstrated, and higher responses
are obtained. Furthermore, the predictions based on Formulation I demonstrates stronger particle
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size ratio a1/a2 effects than those based on Formulation II. The normalized effective bulk modulus
K∗/K0 is not sensitive to varying particle size ratios a1/a2 as illustrated in Fig. 6b. Nonetheless,
higher particle volume fraction φ(2) (the 2nd phase) leads to higher response with constant particle
volume fraction φ(1) (the 1st phase).

Fig. 7 exhibits the normalized effective Young’s modulus E∗/E0 vs. varying particle volume
fractions φ(2) (the 2nd phase). We observed that both Fig. 6a and Fig. 7 demonstrate similar
trends. The normalized effective Young’s modulus E∗/E0 demonstrates less particle size ratios
a1/a2 effects at lower particle volume fraction φ(2) (the 2nd phase) with constant particle volume
fraction φ(1)(the 1st phase). Nonetheless, as particle volume fraction φ(2) (the 2nd phase) increases,
stronger particle size ratio a1/a2 effects are demonstrated, and higher responses are obtained. The
predictions based on Formulation I demonstrates stronger particle size ratio a1/a2 effects than
those based on Formulation II.

Figure 7: 3-phase elastic composites with varying particle size ratios a1/a2 and various particle
volume fractions φ(1) = 20% , φ(2) = 10%;φ(1) = 20% , φ(2) = 20%;φ(1) = 20% , φ(2) = 40%: The
normalized effective Young’s modulus E∗/E0 vs. varying particle size ratios a1/a2

6 Conclusions

This paper obtains effective elastic properties of 3-phase particle reinforced composites con-
taining randomly dispersed elastic spherical particles of different sizes and the same elastic
material properties by our proposed innovative new higher-order micromechanical formulations.
In particular, higher-order spherical particle interaction effects together with governing field equa-
tions are considered. The randomness of dispersed spherical particles is considered within the
probabilistic ensemble volume average process. The averaged eigenstrains in spherical particles
are approximately derived by ensemble volume average approach through the spherical particle
interactions. Consequently, we obtained compact analytical formulations.

Moreover, improved higher-order bounds on effective elastic properties of 3-phase composites
are derived by proposed Formulation II and Formulation I. This paper demonstrates major
improvements over the prior works by other researchers based on the same spherical particle sizes
in the matrix material. As a special case, i.e., particle size of the 1st phase is the same as particle
size of the 2nd phase, the proposed formulations reduce to 2-phase formulas. Our proposed
micromechanical frameworks demonstrate excellent agreement with selected experimental data.
Our analytical predictions for 2-phase composites also fall within the 2-point bounds [19] and
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the 3-point bounds [30,32]. With our proposed analytical formulations, finite element calculations
and Monte Carlo simulations can be circumvented. In addition, numerical simulations as well
as comparisons presented in this paper cover a wide range of 3-phase particle reinforced elastic
composites consisting of different spherical particle sizes and same elastic material properties,
including varying particle size ratios as well as a mixture of particle volume fractions of the 1st

phase particles and the 2nd phase particles.

To further calibrate the analytical frameworks proposed in this paper, experimental validations
are the key procedures. When the associated experiment data of 3-phase elastic composites become
available, additional comparisons as well as experimental validations will be conducted.
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