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ABSTRACT

This paper presents the concept of reduced order machine learning finite element (FE) method. In particular, we
propose an example of such method, the proper generalized decomposition (PGD) reduced hierarchical deep-
learning neural networks (HiDeNN), called HiDeNN-PGD. We described first the HiDeNN interface seamlessly
with the current commercial and open source FE codes. The proposed reduced order method can reduce signif-
icantly the degrees of freedom for machine learning and physics based modeling and is able to deal with high
dimensional problems. This method is foundmore accurate than conventional finite element methods with a small
portion of degrees of freedom. Different potential applications of the method, including topology optimization,
multi-scale and multi-physics material modeling, and additive manufacturing, will be discussed in the paper.
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1 Introduction and Motivation

The finite element method (FEM) [1,2] has gained an unprecedented success over the last
decades and has become an essential tool for simulation based engineering across different fields
of the manufacturing industry, including aerospace and automotive industries. An overview of the
history and development of FEM can be found in a recent article written by Liu et al. [3]. Despite
the rapid evolution of computer hardware, the simulation of real engineering problems can still be
prohibitive in terms of computational time. For instance, simulating a car crash problem, which
usually requires a large mesh size containing millions or billions elements, may take up to days
and even months. This is obviously an obstacle that must be overcome for a more efficient and
sustainable engineering design [4].
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The development of model reduction methods falls into this perspective. By definition, model
reduction refers to a family of methods that reduce the degrees of freedom of numerical systems
and thus the underlying computational cost. An instance of theses methods is homogenization,
such as the coarse-grained model used for molecular dynamic simulations [5]. A similar concept
called clustering can also be used to construct reduced order models for efficient multiscale
material behavior simulations, as proposed by the so-called self-consistent clustering analysis [6–8].
Another type of model reduction method is the projection-based methods. The proper orthogonal
decomposition (POD) is one of the most popular methods. The idea behind this method is
finding first a reduced POD basis from a set of offline pre-computed snapshots (data), and then
projecting the original model onto that basis so as to reduce the system dimension. The POD
reduced model has thus the same dimension of the reduced basis, which is largely inferior to
the original size. Consequently, the online computations become extremely fast. The POD based
model reduction was originated in the field of computational fluid dynamics and has been applied
to solid problems (see e.g., [9–12]). A more mathematically rigorous approach, called reduced basis
method, has also been developed within a similar framework [13,14]. Other related techniques,
like hyper reduction, can be seen as an enhancement for solving nonlinear problems [15–17].
Contrary to POD, the proper generalized decomposition (PGD) based model reduction does
not require a precomputed database. The reduced basis is constructed on-the-fly by solving the
partial differential equations of the underlying problem. The PGD was originally proposed in
a space-time solution framework [18,19] and has been extended to computing solutions in large
parametric domains [20,21]. For overcoming the intrusiveness of the PGD method, the non-
intrusive type PGD has also been developed, e.g., high order PGD (HOPGD) and its sparse
counterpart [22], which enables a wide application to nonlinear problems, such as welding [22–24],
additive manufacturing model calibration [25], crystal plasticity simulations [26], etc. The HOPGD
is also a data-driven method and has a direct connection to machine learning techniques.

The machine learning or more general artificial intelligence has gained increasing popularity
in recent years for computational science and engineering. The universal approximation theory [27]
has provided the foundation for the superior performance of deep neural networks (DNN) for
function approximation. Many research works have been done based on a data-driven frame-
work to construct surrogate models that relate the input, like materials, process, or geometry
information, to the output mechanical quantities of interest for the purpose of material and pro-
cess design or fast predictions [28–30]. However, purely data-driven machine learning approaches
usually require extensive training data and suffer from the prohibitive cost devoted to the data
generation. Experimental or simulation data are not easy to obtain at a low cost in mechanical
or physical problems, compared to other fields like image processing. Hence, attempts have been
made using physical governing equations to train the DNN instead of using data. The so-called
PINN (physics-informed neural networks) [31] is one of the successful approaches. The idea is to
approximate the solution functions with DNN and try to minimize a loss function that satisfies
the governing partial differential equations. Nevertheless, the training cost and the convergence
seem a challenging issue. More recently, a new type of method called hierarchical deep-learning
neural networks (HiDeNN) has been proposed [32]. The general HiDeNN framework [33] seems
a promising tool to provide a balance between the approximation accuracy and the training cost.
A theoretical analysis can be found in a recent paper [34].

The HiDeNN method is based on FEM and provides the capabilities in constructing the
FE shape functions. This capability is essential as it enables HiDeNN to build a comprehensive
element library that is compatible with the ones used by the major commercial and open source
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FE codes. The examples include 2D and 3D isoparametric solid elements, which are known to
be the most cost-effective in practical applications. As such, all of the current FEM codes can
seamlessly interface with HiDeNN to fully take advantage of its machine learning capabilities.
On the other hand, the convergence of the method should be guaranteed with the support of
well-developed FEM solvers. Furthermore, the flexibility in the construction of shape functions
allows an automatic mesh adaptivity in the HiDeNN. Compared to PINN, this method is based
on the weak form of governing equations and should have fewer degrees of freedom, which is
expected to enable a higher computational efficiency.

The exploration of machine learning techniques for solving partial differential equations
prompt the development of a new generation of FEM. Despite the use of GPU computing,
the computational cost seems a remaining issue for this kind of approach. The performance
of the method relies strongly on the choice of solution scheme, which seems not unique for
general problems. This becomes worse when large numerical systems have to be solved. Hence,
we propose to combine model reduction with the machine learning approaches, leading to the
concept of reduced order machine learning FEM. In general, the machine learning framework
like HiDeNN can be combined with any aforementioned model reduction method, such as POD,
PGD, HOPGD, hyper reduction, etc. To illustrate the concept, we introduce an example of this
type, called HiDeNN-PGD, which combines the HiDeNN-FEM and the PGD. It has been shown
that the HiDeNN-PGD is more accurate than FEM but with much fewer degrees of freedom
than both FEM and HiDeNN, thanks to the order reduction by PGD. Furthermore, it seems that
the HiDeNN-PGD improves the optimality of the PGD basis and reduces the necessary number
of modes for a given accuracy. The observation is more and more significant with increasing
degrees of freedom. Thus, we believe that the reduced order machine learning FEM can provide
a high performance computing framework for large-size engineering problems with a high level of
accuracy.

In this work, we will briefly describe the concept of HiDeNN-PGD and discuss the potential
applications of the overall framework to the following challenging problems that require intensive
computational efforts.

• Multi-scale modeling of materials: the multi-scale behavior is required for modeling of
materials, like composites, for taking into account the microscopic heterogeneity or defects
and avoiding making assumptions on the macroscopic constitutive laws. The well-known
FE2 method [35] has proven to be very time-consuming. The proposed HiDeNN-PGD
is expected to reduce largely the underlying degrees of freedom and consequently the
computational cost.

• Topology optimization: the topological design of materials or structures requires repetitive
evaluations of the quantities of interest, like stress field, with respect to the variation
of density and geometries. This can be out of reach when the background mesh size
increases, especially in 3D cases. Sometimes, super computers are required [36]. Reducing
the intrinsic computational complexity and the design variables by HiDeNN-PGD seems
to be a promising direction for reducing the design cost to a level accessible for common
computer hardware.

• Additive manufacturing: the multi-scale modeling of additive manufacturing systems is
challenging in terms of computational time. Therefore, macroscopic models usually neglect
some micro-scale detailed physics for a better computational efficiency, which seem to be
important in the final manufactured part, such as defects due to the lack of fusion and
the surface roughness. In addition, the manufacturing process is controlled by various
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parameters, of which the optimal values are unknown and to be determined by parametric
studies. The the reduced order machine learning FEM framework can be a powerful tool
to reduce the computational cost of such process modeling.

• Multi-physics problems: the multi-physics problems, such as the modeling of soft robotic
materials, usually induces a large number of unknown parameters. Simulating this kind of
problem requires the consideration of a strong coupling of different phenomena and is
consequently prohibitive in time. The HiDeNN-PGD is expected to enable fast predictions
and reduce the cost devoted to determining the optimal design parameters.

The paper is organized as follows. Section 2 gives a brief overview of HiDeNN-PGD formu-
lation, in which different solution strategies will be discussed. Some numerical experiments will
be presented in Section 3. Section 4 presents the potential application of this method on the
challenging problems with current FE analysis. Finally, the paper closes with some concluding
remarks.

2 HiDeNN-PGD

2.1 Formulation
The HiDeNN-PGD relies on the construction of HiDeNN-FEM shape functions. We first

introduce the HiDeNN-FEM shape function.

2.1.1 HiDeNN-FEM Shape Function
Shape Function Based on Physical Coordinates

The idea is to constrain the weights and biases of the DNN to mesh coordinates so as to
build FE shape functions, which reads

F I (x;w,b,A)→NI (x;x∗I ,A) (1)

where FI stands for the fully connected DNN structures with weights w, biases b, and the
activation function A. NI denotes the FE shape function for the node at position x∗I . Fig. 1 is an
illustration of such construction in 3D cases. Assuming a domain � is discretized by np points,
we can write the HiDeNN-FEM approximation as

uh(x)=
np∑
I=1

NI (x;x∗I ,A)uI (2)

where uI is the discretized nodal solution of the problem, uh is the approximated solution function.
Considering the vector notation N = [N1, . . . ,Nnp] and U = [u1, . . . ,unp]T , the Eq. (2) can be
simplified as

uh(x)=N (x;x∗,A)U (3)

In 1D case, this reads

uh(x)=N (x;x∗,A)U (4)

Detailed construction of such 1D shape functions using DNN can be found in [32]. It should
be noticed that the FE shape function is only one of the choices, the HiDeNN structure allows
to easily switch from one to another by releasing the constraints on the weights w and biases b.
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Figure 1: HiDeNN-FEM shape functions [32,34]

Shape Function Based on Element Coordinates

Shape functions employing element coordinates can also be constructed [37] based on the
methodology described in the last section and in [34]. These include the ones for general 2D
and 3D isoparametric elements that are commonly used by the commercial and open-source
codes. This implementation is critical in HiDeNN as it enables major commercial/open-source FE
codes to directly integrate with HiDeNN-FEM and fully take advantage of its machine learning
capability. On the other hand, there is no need to program separate FE solvers in HiDeNN-
FEM as these are already available in the current FE codes. To the best of our knowledge, such
a seamless interface does not exist in other machine learning based approach to FEM. Fig. 2
illustrates the steps to construct the shape functions for 2D isoparametric elements and integrate
them with nonlinear FE analysis based on total Lagrangian formulation [1]. More details can
be found in [37]. Box 1 in Fig. 2 evaluates the shape functions and their derivatives based on
given inputs of the isoparametric coordinates (ξ ,η) (in most cases these will be for the quadrature
points) using HiDeNN [34], expressed as

uhe(ξ ,η)=N (ξ ,η,A)Ue (5)

where (·)e denotes the element-wise displacement. N is the shape function in the parametric space.

Figure 2: Steps to construct the 2D isoparametric elements and integrate it with nonlinear FE
analysis [37]
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Boxes 2 and 3 further constructs neural network to compute the Jacobian from the coordinate
transformation and its inverse based on the basic building blocks of HiDeNN given in [32,34].
Finally the matrix that contains the shape function derivatives with respect to the material
coordinates is evaluated and provided to the FE code through the interface.

Accuracy of the HiDeNN-FEM is illustrated in Fig. 3 and compared with the results
obtained from the commercial FE code ABAQUS. Here we consider a plane stress problem of
square plate of dimension 1 m by 1 m with center hole of radius of 0.1 m. As shown in Fig. 3a,
the plate is modelled as Neo-Hookean material and subjected to traction of 100 kPa on the
top surface while the bottom surface is constrained. Fig. 3 shows that HiDeNN-FEM achieves
much more rapid convergence than Abaqus. For the same FE model using the standard 4-node
quadrilateral element with 13,840 degrees of freedom, error from HiDeNN-FEM is 0.36% in terms
of the maximum Mises stress whereas the corresponding is 3.87% from Abaqus.

Figure 3: Comparison between HiDeNN-FEM and commercial code Abaqus for a 2D plane stress
problem [37]. (a) Problem statement; (b) Normalized maximum Mises stress as a function of
degrees of freedom. Dashed line indicates converged result obtained from very refined mesh of
10 M degrees of freedom

2.1.2 HiDeNN-PGD for Reducing the Spatial Degrees of Freedom
Before introducing the HiDeNN-PGD, we can do a rough analysis of the degrees of freedom

(DoF) for the HiDeNN-FEM method. In conventional DNN, the weight and biases are unknown
variables, whereas the HiDeNN-FEM has constrained them to the mesh coordinates and thus the
optimal coordinates become the primary unknowns. Therefore, optimizing the weights and biases
is equivalent to optimizing the mesh coordinates x∗ and the nodal solution U in HiDeNN-FEM.
Now, we can consider a 3D regular domain discretized by a uniform mesh with N×N×N nodes.
The total degrees of freedom for the unknowns in HiDeNN-FEM is then

DoF =N ×N×N︸ ︷︷ ︸
DoF of U

+N×N×N︸ ︷︷ ︸
DoF of x∗

(6)

This DoF grows exponentially when increasing the nodes N in each direction. For example,
if N increases from 10 to 100, the DoF grows from 2000 to 2 × 106. This estimate is based on
the assumption that uh is a scalar valued function. For a mechanical problem, this uh becomes a
vector and the DoF grows more quickly.
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The HiDeNN-PGD can reduce this growth by considering a separation of variables as follows

uh(x)= uh(x,y, z)≈
Q∑
q=1

u(q)
x (x)u(q)

y (y)u(q)
z (z) (7)

where Q is the number of modes, which is expected to be small. The 3D function is separated
as the summation of products of 1D functions. This format is known as separation of variables
and adopted by PGD based model reduction. We applied then the HiDeNN-FEM shape function,
which leads to

uh(x)= uh(x,y, z)≈
Q∑
q=1

N (x;x∗,A)β(q)︸ ︷︷ ︸
u(q)
x (x)

N (y;y∗,A)γ (q)︸ ︷︷ ︸
u(q)
y (y)

N (z; z∗,A)θ (q)︸ ︷︷ ︸
u(q)
z (z)

(8)

where N is only the 1D HiDeNN-FEM shape function as in Eq. (4). Even though the problem is
3D, only 1D shape functions are needed, thanks to the separation of variables. With the Eq. (8),
we analyze again the DoF for the problem using the uniform mesh of N ×N × N nodes. The
primary unknowns are nodal values of β(q), γ (q), θ (q), and the directional mesh coordinates x∗,
y∗, z∗ . The DoF reads then

DoF =Q× (N +N +N)︸ ︷︷ ︸
DoF of β,γ , θ

+ N+N +N︸ ︷︷ ︸
DoF of x∗,y∗, z∗

(9)

Since the Q is a small number compared to the mesh N, we can expect the DoF of HiDeNN-
PGD is much smaller than HiDeNN-FEM. For illustration, if Q = 5 and N increases from 10
to 100, the DoF grows from 180 to 1800 (which is 2 × 106 for HiDeNN-FEM). Hence, the
HiDeNN-PGD enables a significant reduction of DoF and breaks the exponential growth of DoF
with respect to the discretization.

2.1.3 HiDeNN-PGD for Reducing the Degrees of Freedom in a Space-Time-Parameter Domain
The HiDeNN-PGD can also be used to compute space-time-parametric solutions with

reduced DoF. This kind of solution is needed when doing parametric studies. The conventional
way to do so is to fix the parameters and solve for the corresponding space-time solution, then
modify the parameters and solve again the problem. Here, using HiDeNN-PGD, we can compute
all the parametric solutions at the same time. This consists in solving the following type of
solution with parameters as extra-coordinates. The HiDeNN-PGD in this case reads

uh(x, t,μ)= uh(x,y, z, t,μ1, . . . ,μk)≈
Q∑
q=1

u(q)
x (x)u(q)

y (y)u(q)
z (z)u(q)

t (t)u(q)
μ1

(μ1) · · ·u(q)
μk

(μk) (10)

where μ is the control or design parameters that we want to study. These parameters can be
related to materials, loading, or geometry. Optimization or calibration problems usually require
such parametric solutions to study the influence of parameters on the output quantities.

Similarly to the Eq. (8), we can consider a uniform discretization in the space-time-parameter
domain: � × �t × �μ1× . . . × �μk, and then apply the 1D HiDeNN-FEM shape functions for
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each separated term in the above equation. To make it short, we omit the notation A in the shape
function.

uh≈
Q∑
q=1

N (x;x∗)β(q)︸ ︷︷ ︸
u(q)
x (x)

N (y;y∗)γ (q)︸ ︷︷ ︸
u(q)
y (y)

N (z; z∗)θ (q)︸ ︷︷ ︸
u(q)
z (z)

N (t; t∗)T(q)︸ ︷︷ ︸
u(q)
t (t)

N (μ1;μ1
∗)f (q)

1︸ ︷︷ ︸
u(q)
μ1(μ1)

· · ·N (μk;μk
∗)f (q)

k︸ ︷︷ ︸
u(q)
μk (μk)

(11)

where (·)∗ are the discrete nodal coordinates of the space-time-parameter mesh. Again, the pri-
mary unknown are the nodal solutions of the separated terms and the optimal mesh coordinates.
For analyzing the DoF, we assume that each dimension is discretized by N nodes. The DoF can
be computed as

DoF = Q× (3N +N + kN)︸ ︷︷ ︸
DoF of nodal separated terms

+ 3N+N + kN︸ ︷︷ ︸
DoF of global mesh

(12)

Assuming the Q = 5, k = 3, N = 10, the DoF is then 420, whereas the DoF is 107 and 2
× 107 respectively for FEM and HiDeNN-FEM. This reduction allows HiDeNN-PGD compute
solutions in a high dimensional space-time-parameter domain.

2.1.4 Variational Framework
The HiDeNN-PGD uses a variational framework to compute the primary unknowns: nodal

solutions of separated terms and optimal mesh coordinates. Assuming a potential energy exists
for the problem, the HiDeNN-PGD solution can be found by solving the following minimization
problem.

uh= argmin
β(q),γ (q),θ (q),T(q), f (q)

1 ,..., f (q)
k

x∗,y∗,z∗,t∗,μ∗1,...,μ
∗
k

�(uh) (13)

where � is the potential function. The solution can be found by any adequate optimization
algorithm.

In what follows, we restrict us to the case with only space variables (8) and present the detailed
implementation of the method.

2.2 Numerical Implementation
Let us consider a 2D Poisson problem, which reads

∇2u(x,y)+ b(x,y)= 0 in� and u|∂� = 0 (14)

where ∇ denotes the gradient. The domain � is assumed to be a rectangular domain. b is a body
source term with the assumption that b(x, y) = bx(x)by(y). For abitrary functions, this kind of
separation can be obtained by the HOPGD [22,23].

The solution of this problem can be found by minimizing the following potential function

�(u)=
∫

�

1
2
(∇u)T∇u dx dy+

∫
�

u b dx dy (15)



CMES, 2021, vol.129, no.3 1359

Then, the discretized HiDeNN-PGD solution reads

uh(x,y)≈
Q∑
q=1

N (x;x∗)β(q) N (y;y∗)γ (q) (16)

where the activation function A has been omitted. The number of modes Q is assumed to be
given. Hence, the solution can be computed with

uh= argmin
β(q),γ (q)

x∗,y∗

�(uh) (17)

Solving this minimization problem requires the derivatives of the potential with respect to the
unknown variables, i.e.,

∂�

∂β(q)
,

∂�

∂γ (q)
,
∂�

∂x∗
,
∂�

∂y∗
(18)

The updating step reads

β(q) = β(q) −α1
∂�

∂β(q)
, γ (q) = γ (q) −α2

∂�

∂γ (q)
, x∗ = x∗ −α3

∂�

∂x∗
, y∗ = y∗ −α4

∂�

∂y∗
(19)

where the learning rate (step size) α should be determined by the optimization scheme, such as
Adam. The iterative procedure should be performed until the Q modes reach a convergence for
uh or �.

2.2.1 Example of one Mode Case
For a better illustration, we consider the one-mode case

uh(x,y)≈N (x;x∗)β(1) N (y;y∗)γ (1) or uh(x,y)≈N (x;x∗)β N (y;y∗)γ (20)

The gradient of uh becomes

∇uh =
[
B(x;x∗)β N (y;y∗)γ

N (x;x∗)β B(y;y∗)γ

]
(21)

where B(x;x∗)= ∂N (x;x∗)
∂x

and B(y;y∗)= ∂N (y;y∗)
∂y

.

Substituting (20) and (21) into (15), then

�(uh)= 1
2
βTKxxβ γ TMyyγ + 1

2
βTMxxβ γ TKyyγ −βTFx γTFy (22)

where

Kxx =
∫

�x

BTBdx, Mxx =
∫

�x

NTN dx, Kyy =
∫

�y

BTBdy, Myy=
∫

�y

NTN dy (23)
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and

Fx =
∫

�x

N bxdx, Fy=
∫

�y

N bydy, (24)

Therefore, we have the derivatives as

∂�

∂β
=Kxxβ γ TMyyγ +Mxxβ γ TKyyγ −Fx γTFy (25)

∂�

∂γ
= βTKxxβ Myyγ +βTMxxβ Kyyγ −βTFx Fy (26)

∂�

∂x∗
= 1

2
βT

∂Kxx

∂x∗
β γ TMyyγ + 1

2
βT

∂Mxx

∂x∗
β γTKyyγ −βT

∂Fx
∂x∗

γ TFy (27)

∂�

∂y∗
= 1

2
βTKxxβ γ T ∂Myy

∂y∗
γ + 1

2
βTMxxβ γ T ∂Kyy

∂y∗
γ −βTFx γ T ∂Fy

∂y∗
(28)

Finally, the nodal solution and mesh coordinates can be updated using (19) until the variation
of the potential energy � becomes small enough. It should be noticed that the HiDeNN-PGD
can be degenerated to PGD by fixing the mesh coordinates.

3 Numerical Experiment

This section presents a numerical example using the proposed HiDeNN-PGD framework. The
numerical results will be compared with FEM, HiDeNN (HiDeNN-FEM) and a conventional
PGD method.

The test example is a Poisson problem described by the Eq. (14) with the following body
source term

b(x,y)= exp{−10(x− 5)2− 10(y− 5)2} (29)

The geometry is a square domain, as shown in Fig. 4a. A very coarse uniform mesh (40 × 40
elements) is used for the HiDeNN-PGD method. We prescribed Q= 4 as the number of modes.
The HiDeNN-PGD consists in finding out the modes of β(q), γ (q), and the optimized mesh coor-
dinates x∗, y∗ by minimizing the corresponding potential energy. The final solution uh obtained
HiDeNN-PGD is depicted in Fig. 4. Fig. 4a shows the HiDeNN-PGD solution reconstructed by
the 4 modes of β(q), γ (q). It is shown that the solution agrees well with a reference FEM solution
which is obtained on a very fine mesh. In terms of mesh coordinate optimization, the HiDeNN-
PGD only allows separated directional movements due to the separation of variables. Therefore,
the final optimized mesh is well structured, as shown in Fig. 5. However, if HiDeNN mesh is
used, the distortion becomes a real issue, which is undesired. In this sense, the HiDeNN-PGD
presents a big advantage on the mesh distortion controlling when optimizing the coordinates.

The HiDeNN-PGD also makes the modes different to the conventional PGD. As shown in
Fig. 6, the HiDeNN-PGD modes seem more concentrated on the region of interest. This differ-
ence comes from the mesh adaptivity and the solution strategy we proposed. The HiDeNN-PGD
is expected to obtain optimized modes, compared to conventional PGD.
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For further comparing the performance of each method, we illustrate the accuracy of PGD,
FEM, HiDeNN and HiDeNN-PGD on the same coarse 40 × 40 mesh in Table 1. The error is
computed by taking the difference to the reference fine mesh FEM solution and using an energy
norm relying on the gradient of the solution. As expected, the HiDeNN-PGD and HiDeNN
are both more accurate than FEM, thanks to the mesh adaptivity. By increasing the number of
mode, the PGD only approaches the FEM. In terms of DoF, the HiDeNN-PGD has a reduction
of factor 20 over the HiDeNN method. The DoF is also smaller than PGD when compared
at the same level of accuracy. The HiDeNN-PGD only requires two modes for a very good
accuracy, whereas PGD needs more than 6 modes. This comparison confirms that HiDeNN-PGD
has optimized separated modes.

Figure 4: Comparison of HiDeNN-PGD and FEM solutions [34]. (a) HiDeNN-PGD, mesh: 40
× 40 (b) Reference FEM, mesh: 4000 × 4000

Figure 5: HiDeNN-PGD optimized mesh from an initial uniform mesh

This example has demonstrated the capability and potential of HiDeNN-PGD for reducing
the DoF while keeping a good accuracy of solutions. The computational solver and the choice of
the number of modes for a better numerical performance will be the next topics we will investigate,
but not in the scope of this paper. Indeed, these aspects have been mentioned in our recent
paper [34], which studied theoretically the proposed HiDeNN-PGD method.
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(b)

(a)

Figure 6: Comparison of HiDeNN-PGD and PGD modes [34]. (a) HiDeNN-PGD modes (b)
PGD modes

Table 1: Accuracy comparison for different methods on the coarse 40 by 40 mesh

PGD FEM HiDeNN-PGD HiDeNN

Mode number DoF Err (%) DoF Err DoF Err % DoF Err

1 78 38.167 1521 11.659% 156 37.357 4719 2.102%
2 156 16.500 – 234 9.293 –
...

... –
... –

6 468 11.666 – 546 3.661 –
8 624 11.659 – – –
20 1560 11.659 – – –

4 Perspectives and Applications

This section will discuss the potential applications of the HiDeNN-PGD and the more general
reduced order machine learning FEM on the real problems in computational science and engi-
neering. In particular, we use HiDeNN-ROM (reduced order model) for the general reduced order
machine learning FEM. We will consider two types of applications: 1) accelerating computations,
2) efficient parametric studies.

4.1 Multi-Scale Modeling of Composites
Composite materials are hierarchical in nature and need to be modeled in multiple length

scale to capture multiscale physics. As shown in Fig. 7, a composite plate with holes is
demonstrated as a three lengthscale problem. The macro or part scale is the plate with the
hole whereas a material point in the macroscale can be modeled as a representative volume
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element (RVE) of unidirectional fiber composites at the mesoscale. Often the polymer matrix are
reinforced with nanofillers to impart toughness in the matrix which leads the problem to be a
three-scale problem. Numerical modeling of a three-scale composite is computationally intractable
with the traditional approach such as FE for each length scale. Previously, two scale problems
are solved using FE×FE [35] formulation, but with a fine mesh in the lower scale the problem
computational effort increases significantly. Recently, the data-driven reduced order method such
as Self-consistent Clustering Analysis (SCA) [6], Multiresolution Clustering Analysis [7], FEM-
cluster based analysis method (FCA), Virtual clustering analysis (VCA), NTFA, POD, etc., Li
et al. [28] has been proposed which is quite successful for two-scale concurrent composite model-
ing. However, the offline database computation for SCA type methods can be quite expensive and
not feasible for the parametric studies of the lower scale effect on the part scale solution. The
computational bottleneck can be resolved by combining SCA-PGD (or SCA-HOPGD) approach
for the microscale and mesoscale problems, whereas the HiDeNN-PGD or other HiDeNN-ROM
methods can be adopted for the part scale problem. We envision this approach will help us study
the parametric space at microstructure level and solve the part scale details with the adaptive
feature of HiDeNN methods. To illustrate our vision, we divide the problem into following three
steps:

• Prediction of reinforced matrix properties using SCA-PGD at microscale
• SCA-PGD based reduce order surrogate model of UD composite at mesoscale
• HiDeNN-PGD (or HiDeNN-ROM) based solution for composite part at macroscale.

Figure 7: A schematic of three scale composite materials. The part scale is a plate with three
holes, mesostructure is unidirectional (UD) fiber reinforced and microstructure is the nanoparticle
reinforced matrix

4.1.1 Prediction of Reinforced Matrix Properties Using SCA-PGD at Microscale
As shown in the Fig. 7, the particle reinforced matrix is considered as the microscale of the

composite. The materials properties are needed to be calibrated and passed to the mesoscale to
correctly account for the matrix properties at the mesoscale. For the microscale, the composite
can be designed by varying the volume fraction of the particles, as well as the temperatures
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that can change the matrix properties quite significantly. Therefore, in this design problem, the
volume fraction and the temperature are the two design parameters that we can consider for the
microscale. However, varying the volume fraction and the temperatures, we need to perform new
simulations every time for new values. The PGD-based methods (e.g., [22]) that provide parametric
materials property prediction can be very useful in this case in the mesoscale. However, it should
be noted that PGD may need an offline database that requires reasonable amount of time. Here,
we can combine the prediction process with the SCA method that can significantly speed up the
offline data generation process. For two given parameters, volume fraction (φ), and temperature
(T), the stress-strain can be approximated in a PGD form as

σ(ε,φ,T)≈
Q∑
q=1

u(q)
ε (ε)uqφ(φ)u(q)

T (T) (30)

where u(m)
ε (ε),umφ (�),u(m)

T (T) are the separated modes associated with different parameters. The

equivalent reinforced matrix hardening properties (yield stress, hardening exponent) can be then
extracted from this stress-strain prediction and used for the mesoscale modeling of the matrix
phase.

4.1.2 SCA-PGD Based Reduced Order Surrogate Model of UD Composite at Mesoscale
The matrix properties have been calibrated from the microscale as discussed above. For the

mesoscale, we can then construct a reduced order surrogate model based on, again, a combined
SCA-PGD method. This reduced order surrogate model takes the macrostrain as input and predict
the homogenized stress response and pass it to the macroscale HiDeNN-PGD model. Previously,
SCA alone is used for the homogenization purpose, which restricts to explore the parametric
space at the mesoscale since the computational effort becomes infeasible with a number of varying
parameters [38]. Similar to the microscale, we can study the mesoscale volume fraction and
temperature and consider them as input parameters for the PGD reduced order surrogate model.
Again, SCA is used to generate the training data. The general PGD model can be written as

σM(εM ,�,T)≈
Q∑
q=1

u(q)
xx (εMxx)u

(q)
yy (εMyy )u

(q)
zz (εMzz )u(q)

xy (εMxy)u
(q)
yz (εMyz )u

(q)
zx (εMzx )u(q)

� (�)u(q)
T (T) (31)

where σM , εM , φ, T are homogenized stress, macro strain, volume fraction of the UD fiber in
the mesostructure and temperature, respectively.

4.1.3 HiDeNN-PGD Based Solution for Composite Part at Macroscale
The HiDeNN-PGD or HiDeNN-ROM method is a good choice for part scale modeling

as geometrical features such as the holes, bends can be resolved with adaptive mesh feature of
HiDeNN for a better accuracy. Also, the part can be studied at different temperatures. The overall
reduced order machine learning framework enables the rapid design by varying the microstructre
descriptors and monitoring their response in real time. The final solution at the part scale level
can be expressed similarly to the Eq. (11).

4.2 Topology Optimization for Materials Design
Topology optimization (TO) has been developed in last few decades with the purpose to find

the optimal material layout to reach the best performance under design constraints [39,40]. Due
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to the computation limitation and curse of dimensionality, the computational cost is burdensome
in multiscale, multiphysics, and high resolution topology optimization [36,41]. Since most topology
design are based on the voxel mesh, this gives the possibility to use HiDeNN-PGD to reduce
the number of DoF in the design algorithm. Considering the Solid Isotropic Material with
Penalization (SIMP) method [39], the density is assigned to each element of the background
domain as

E(ρ)=Evoid +ρp(Esolid −Evoid), (32)

where Esolid and Evoid are respectively reference solid and very weak materials, ρ ∈ [ρmin, 1]. The
penalization parameter p≥ 1 is used to enforce final designs being either 0 or 1. To maximize the
structural stiffness, the optimization problem reads:

min c=
L∑
i

FTi ui (33)

subject to⎛
⎜⎜⎜⎜⎜⎝
K(ρ)ui = F i, i= 1, . . . ,L

V(ρ)

V∗ − 1≤ 0

ρmin ≤ ρj ≤ 1 j= 1 . . .N

(34)

where L is the total DoF for displacement and N is the total number of design variables. The
three constraints are: mechanical equilibrium equation, volume constraint, and design parameter
constraints. The optimization requires repetitively solving the mechanical equation, which is the
most computational costly part and can be accelerated by the HiDeNN-PGD or PGD. To do
so, the density function needs to be decomposed, like the body force in Eq. (14). This reduces
also the number of design variables. Results using PGD for TO are shown in Fig. 8. It can be
seen that the design problem is reducible without sacrificing the final design accuracy. Compared
to FEM-TO, the final design seems very similar, as shown in Fig. 9. The current PGD-TO is
faster (with a factor 2) than conventional FEM-TO. The algorithm can be further enhanced
using HiDeNN-PGD. In addition, it is found that the speedup is higher when dealing with high
dimensional problems. The results demonstrate that HiDeNN-PGD has good potentials to reduce
the computational cost in high resolution TO problems.

Figure 8: PGD based topology design. (a) Optimized design with 11 density modes (b) Optimized
design with 19 density modes
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Figure 9: Comparison of FEM-TO and PGD-TO results for a half MBB beam. (a) FEM-TO (b)
PGD-TO

4.3 Parametric Learning and Uncertainty Quantification for Additive Manufacturing
Metal additive manufacturing is considered as the manufacturing technology of the future.

However, design and development of additively manufactured metallic part is thwarted by the
highly non-equilibrium nature of the process and resulting microstructure. The variable nature
of the microstructure at different locations in the part gives rise to uncertainty in the resulting
mechanical properties. The process conditions also result in residual stress inside the part, which is
controlled by the microstructure as well. In turn, the residual stress will affect the microstructural
feature such as the grain formation and dislocation distribution. The porosity formed during
the manufacturing process is another concern in additive manufacturing. These microstructural
features are the determining factors or parameters for the final mechanical properties such as
the ultimate tensile strength or fatigue crack incubation life. The microstructural features are
dependent on various process parameters such as scan speed, laser power, hatch spacing, powder
composition, etc. The process-structure-property chain development by computational aid requires
a method that can efficiently compute the field (thermal and mechanical) quantities for a large
number of parameters. The proposed reduced order machine learning FEM framework has an
immense prospect in this regard.

The outline of the application in the context of additive manufacturing is shown in Fig. 10.
The AM-CFD [25] is the computational fluid dynamics code that can faithfully simulate the
manufacturing process as a function of different process input parameters. This code can be
extended with HiDeNN-FEM concept. The thermal history coming from the AM-CFD can be
combined with HiDeNN-ROM to compute the residual stress field. Fig. 11 illustrates an example
of residual stress obtained by an advanced ROM [42], which agrees well with the FEM solution.
The final computed residual stress in terms of, e.g., two input parameters and locations (different
material points) can be written in the following form:

σres(x,μ1,μ2)≈
Q∑
q=1

u(q)
x (x)u(q)

μ1
(μ1)u(q)

μ2
(μ2) (35)

Here, σres is the residual stress, x is the material point, and μ1,μ2 are two manufacturing
parameters. The resulting outcome (time-temperature history and residual stress) can be related to
the microstructural features and different underlying physical phenomena. For example, the time
temperature data holds the information coming from different time scales: nano to millisecond
(meltpool dynamics), millisecond (scan speed), second (convection and radiation cooling and
residual stress evolution). One way of relating this time-temperature history with mechanical
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properties is to apply feature engineering such as wavelet transformation and convolutional neural
network [43]. In order to use these data-science tools, we need a large high fidelity database that
can be generated quickly with the proposed HiDeNN-ROM.

Figure 10: A schematic diagram showing the potential application of HiDeNN-ROM to metal
additive manufacturing. The time-temperature history contains multi-resolution information
embedded. This multi-resolution time-temperature history and residual stress data can be obtained
from the HiDeNN-ROM

Figure 11: Additive manufacturing residual stress obtained by FEM and advanced ROM [42]. (a)
FEM (b) Advanced ROM

4.4 Multi-Physics Problems: Field Interaction Modeling of Robotic Materials
The multiphysics problems involves a large number of parameters that need to be consid-

ered for optimization, uncertainty quantification, and design. These challenging problems can be
addressed by the proposed HiDeNN-PGD and HiDeNN-ROM.

Robotic materials are a class of multifunctional materials that combines responses from differ-
ent physical field interactions to achieve desired functions. Earlier robotic materials were fabricated
using soft matter that exhibited highly nonlinear behavior under the influence of environmental
factors such as temperature, pressure, magnetic, electric, and optical fields [44]. Later research
with soft robotic materials pushed their limits by considering inclusions of 2D materials or
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nanofillers, expanding the problem in multiple length scales. By design, these materials need to
interact with external stimuli to attain necessary functionality. Therefore, the analysis needs to
consider numerous design iterations involving solutions of multiple physical field interactions. In
such scenarios, the use of conventional FEA methods is costly and a hindrance to effectively
iterate through multiple length scales and multiple field interactions. The proposed HiDeNN-ROM
framework can potentially handle the challenge of dimensional reduction by—first optimizing the
nodal positions smartly and thus promoting the essence of r and h adaptivity [32], and secondly
decoupling the field solvers in an attempt to accelerate the solution techniques using separation
of variations as introduced in this work. After solving the problem, the field responses can assist
in engineering the configuration for required functionality.

5 Conclusion

This paper proposes a new type of numerical method for analyzing the partial differential
equations in computational science and engineering. The so-called reduced order machine learning
FEM is a combination of scientific machine learning methods and model reduction techniques. We
introduce a particular type of this method, called HiDeNN-PGD, which is actually a combination
of HiDeNN-FEM and PGD based model reduction. Advantages of this synergy in accuracy
and computational efficiency have been shown with an example of Poisson problems. It is found
the HiDeNN-PGD is more accurate with a few modes than FEM and PGD. The potential
applications of such method to real life problems have been discussed. We propose a well designed
structure of the general HiDeNN-ROM for 1) the multi-scale analysis of composite materials,
2) topology optimization, 3) additive manufacturing. In particular, preliminary numerical results
based on PGD-topology optimization have been reported for the first time. It is found that
the proposed framework has a good potential to enable high resolution topology optimization
at a significantly reduced cost. Finally, the application of the proposed method to multiphysics
problems: the field interaction modeling of robotic materials, has also been discussed. We believe
that the proposed reduced order machine learning FEM framework is a general and powerful tool
for analyzing a large class problems with a high dimensional nature.
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