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ABSTRACT

A fundamental problem for cells with their fragile membranes is the control of their volume. The primordial
solution to this problem is the active transport of ions across the cell membrane to modulate the intracellular
osmotic pressure. In this work, a theoretical model of the cellular pump-leak mechanism is proposed within the
general framework of linear nonequilibrium thermodynamics. The model is expressed with phenomenological
equations that describe passive and active ionic transport across cell membranes, supplemented by an equation for
the membrane potential that accounts for the electrogenicity of the ionic pumps. For active ionic transport, the
model predicts that the intracellular fluid pressure will be balanced by the osmotic pressure and a new pressure
component that arises from the active ionic fluxes. A model for the pump-leak mechanism in an idealized human
cell is introduced to demonstrate the applicability of the proposed theory.
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1 Introduction

A cell must concentrate and protect within its interior substances that are essential for
its function—DNA, proteins, amino acids and sugars. These sequestered substances, which are
entrapped within the cell, introduce a special challenge for the cell. They carry significant concen-
trations of charge that establishes a high osmotic pressure within the cell. The osmotic pressure
difference between the intracellular and extracellular media produces a tendency to swelling by
water inflow across the cell membrane. Such swelling can be arrested by two processes: actively
reducing the cellular ionic content through ion pumps, and by the generation of internal fluid
pressure that can act to stop the flow of water. In fact, both processes will act simultaneously.
However, animal cells have fragile membranes and it has generally been accepted that the primary
action of the pump-leak mechanism (PLM) is the active reduction of cellular ionic content and
the concomitant reduction in osmotic pressure. As a result, models that have been developed to
explain the PLM have concentrated on osmotic stabilization due to ion pumping [1–5]. The role
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of cellular fluid pressure, generated by the resistance to expansion of the cell membrane–cortex
has received less attention [6–8]. A general framework for modeling the PLM including the role
of fluid pressure is proposed in this work.

The movement of ions across the cell membrane occurs passively and actively. Passive trans-
port occurs by diffusion and convection and requires no energy input. Active transport processes
move ions against concentration gradients through the expenditure of energy. Both processes are
important and the interplay between them, controlled by feedback [9], facilitates the regulation of
cell volume, preventing potential cell rupture or collapse under changing conditions.

The cytoplasm (i.e., intracellular fluid) contains charged macromolecules and metabolites that
are confined to the cell interior by entrapment and are impermeant with respect to the cell
membrane—all such impermeant charged macromolecules will be referred to as fixed charges
for brevity. The fixed charges localize mobile ions which form an electrical double layer of
counterions and coions that screens the electric field. The resulting ion concentrations establish
the osmotic pressure within the cell. If the extracellular solution has, for example, lower ionic
concentrations, water will flow across the cell membrane and into the cell by osmosis, causing the
cell to swell. It is the fixed charges that are essentially responsible for the swelling tendency of the
cell. Active ion transporters (e.g., the Na+ ion pump) that convert energy from various sources,
including adenosine triphosphate (ATP), are located in the cell membrane and produce outward
and inward fluxes of ions that modulate the osmotic and fluid pressures to arrest and reverse
cellular swelling [10].

The linear theory of nonequilibrium thermodynamics has been widely employed to model
passive transport processes. The approach asserts the existence of a dissipation function which
describes the rate of change of entropy production. It is expressed as the sum of a set of flux
and conjugate (driving) force products. For example, the classical study of Kedem et al. [11,12]
used this approach to obtain the flux definitions that are conjugate to the fluid and osmotic
pressures for a non-electrolyte solution. Then, considering near-equilibrium, a linear relationship
between each flux and all conjugate forces is postulated. The result is a set of phenomenological
equations that describes all interactions between the solvent and solutes and which is expressed
with transport coefficients that have the significant merit of being amenable to experimental
measurement.

When the solutes crossing the membrane are charged, the nonequilibrium thermodynamic
description is more challenging and the system exhibits new features. A very general framework
based on linear nonequilibrium thermodynamics has been given by Kedem et al. [13] and includes
many electrokinetic phenomena within its scope. More recently, Li [14] proposed phenomenologi-
cal equations for the passive transport of ionic solutions that account for electrostatic interactions
between ions. This was extended by Cheng et al. [15] to account for fixed charges associated
with proteoglycans for application to the corneal endothelium. The latter work identified a fluid
pressure component that appears during active ion pumping and which must be considered in
the balance of fluid and osmotic pressure. The goal of the present paper is to describe the
temporal and steady state behavior of the pump-leak system utilizing the fully general framework
of nonequilibrium thermodynamics.

We start with a brief review of the development of phenomenological equations for pas-
sive transport across a semipermeable membrane separating two ionic solutions, one of which
contains impermeant charged macromolecules. Extension of the theory for active ion transport
is then described, including derivation of the generalized pressure conjugate to the active ion
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flux. Analytical steady state solutions are obtained for both the passive and active cases and
considering an intracellular binary electrolyte solution. Solutions to the temporal problem are
obtained numerically.

To illustrate the scope and features of the theory, a numerical study of a highly idealized
model of a human cell is introduced. The cell is in suspension (without attachments) and is
subjected to a sequence of hypotonic and hypertonic shocks. For simplicity, the intracellular
and extracellular solutions are taken to be binary electrolyte solutions and the phenomenological
equations are suitably specialized. The model is first applied to analyzing the response of the cell
model with only passive transport. In a second analysis, active cation transport is initiated when
a signal based on membrane tension is received. This simulation provides the time course of the
cell radius, fluid pressure, osmotic pressures, and other quantities. The numerical results suggest
that the model replicates the essential features of the PLM and that the fluid pressure component
arising from the active ion flux is an essential factor in the balance of fluid and osmotic pressures,
including under steady state conditions.

2 Modified Kedem-Katchalsky Equations for Passive Transport

The Kedem and Katchalsky (KK) phenomenological equations [11,12,16,17] are based on
nonequilibrium thermodynamics and describe the transport of water and solutes across a semiper-
meable membrane separating two non-electrolyte solutions. They take the form

Jv =Lp

⎛
⎝�P−

Nspecies∑
k=1

σkRT�Ck

⎞
⎠ (1)

and

Jk = (1− σk)CkJv+ωkRT�Ck (2)

where Jv is the volume flow and Jk is the solute molar flux. In (1), �P and �Ck are the fluid
pressure and solute concentration differences across the membrane, respectively, Lp is the hydraulic
conductivity, σk is the reflection coefficient for species k, R is the gas constant and T is the
temperature. In (2), Ck is the mean value of the solute concentration across the membrane, and
ωk is the solute permeability. These equations have found remarkably wide application in practise
because the transport parameters are readily amenable to experimental measurement.

For electrolyte solutions, the transport equations should account for the electrostatic effects of
the fixed and mobile ion charges. The procedure to obtain suitable modified KK phenomenological
equations [14,15] is briefly reviewed as follows. The chemical potential of water with mole fraction
Xw is μw = νwP + RT lnXw, where νw is the partial volume of the water and P is the fluid pressure.
For dilute solutions, μw may be equivalently expressed in terms of the ion concentrations Ck as

μw = νw(P−RT
Nspecies∑
k=1

Ck) (3)

where Nspecies is the number of ion species. For brevity, sums over all ionic species will hence-
forward be indicated as

∑
. For ionic solutes, the electrochemical potential of species k is

μk = νkP+RT lnCk+ zkFψ (4)
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where νk is the partial volume of the ion, zk is the valence number, F is the Faraday constant
and ψ is the electrostatic potential.

With reference to a biological cell, ion concentrations in the intracellular fluid are denoted Ck
and in the extracellular fluid C0

k and membrane differences are defined to be �Ck =Ck−C0
k. For

water �μw =μinw −μoutw and therefore, from (3),

�μw = νw
(
�P−RT

∑
�Ck

)
(5)

where �P = Pin − Pout is the membrane fluid pressure difference. Similarly, �μk =μink −μoutk and
therefore, from (4),

�μk = νk�P+RT ln

(
Ck
C0
k

)
+ zkF�ψ (6)

where �ψ = ψ in − ψout is the membrane potential difference. We will use the linearized form1

of (6)

�μk = νk�P+RT
�Ck
Ck

+ ziF�ψ (7)

where Ck =
1
2
(Ck+C0

k) is the average ionic concentration through the membrane.

The dissipation function �, which measures the rate of entropy production for irreversible
processes, is expressed as [11,12]

�= Jw�μw+
∑

Jk�μk (8)

where Jw and Jk are the water and ion molar fluxes, respectively, and where �μw and �μk are
their conjugate driving forces. Instead of Jw and Jk, we seek the forces conjugate to the more
readily measurable volume flow Jv and ion exchange flux JDk defined by

Jv = νwJw+
∑

νkJk (9)

and

JDk=
Jk
Ck

− Jw
Cw

(10)

The ion exchange flux JDk may be interpreted as the velocity of ion k relative to the solvent.
By direct manipulation of (8), it may be shown [15] that

�= JvXv+
∑

JDkXk (11)

1 Since we have no knowledge of how Ck varies across the membrane, a good approximation is:

ln

(
Ck
C0
k

)
=
∫ Ck

C0
k

dCk
Ck

≈ 1

Ck

∫ Ck

C0
k

dCk =
�Ck
Ck

with Ck =
1
2

(
Ck +C0

k

)
. For example, if Ck = 300 and C0

k = 100, the approximation error is 9%.
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where the conjugate forces Xv and Xs are given by

Xv =�P+RT(1− νwCw)
∑

�Ck+
∑

zkCkF�ψ (12)

and

Xs=RT�Cs+ zsCsF�ψ − νsCs

(
RT(1− νwCw)

∑
�Ck+

∑
zkCkF�ψ

)
, s= 1, 2, . . . ,Nspecies

(13)

By assuming a dilute solution such that νk << 1 and νwCw≈ 1, (12) and (13) reduce to

Xv =�P+
∑

zkCkF�ψ (14)

and

Xk =RT�Ck+ zkCkF�ψ (15)

The flows defined in (9) and (10) are now expressed as phenomenological equations having
the form

Jv =LpXv−Lp
∑

σkXk (16)

JDs=−LpσsXv+
∑

LDskXk, (17)

where Lp is the hydraulic conductivity and σk is the reflection coefficient of species k. LDsk are
permeability coefficients which satisfy the Onsager reciprocal relation such that LDsk = LDks,
reducing the number of independent coefficients.

Under the assumption of a dilute solution we have Js=Cs(Jv+ JDs) which, after introducing
(16) and (17), results in [15]

Js= (1− σs)CsJv+
∑

ωskXk, s= 1, 2, . . . ,Nspecies (18)

where the solute permeability coefficient ωsk = Cs(LDsk−Lpσsσk). Ignoring interactions between
ions such that ωsk = 0 for s �= k and replacing ωss with ωs reduces (18) to

Js= (1− σs)CsJv+ωsXs, s= 1, 2, . . . ,Nspecies (19)

with ωs=Cs(LDss−Lpσ 2
s ) Finally, employing (14) and (15) in (16) gives the volume flux

Jv =Lp
(
�P−

∑
[σkRT�Ck− (1− σk)zkCkF�ψ ]

)
(20)

and likewise employing (15) in (19) gives the ion molar flux

Js= (1− σs)CsJv+ωs(RT�Cs+ zsCsF�ψ), s= 1, 2, . . . ,Nspecies (21)

Eqs. (20) and (21) are modified forms of the KK Eqs. (1) and (2) that extends their applica-
tion to electrolyte solutions by accounting for the membrane potential �ψ . A virtue of the current
formulation is that the modified equations retain the standard transport coefficients (Lp,σs and ωs)
that have been experimentally determined for many membranes and solutions.
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An additional condition is needed to determine the membrane potential �ψ . The assumption
that the intracellular and extracellular media are electroneutral is well justified and requires∑

zkCk+ zf Cf = 0 (22)

and∑
zkC

0
k = 0 (23)

The electric current I due to passive transport of ions through channels is given by [2,5]

I = F
∑

zkJk =Cmem
d�ψ
dt

(24)

where Cmem is the membrane capacitance. It is assumed that �ψ is changing slowly enough that
the capacitive current is negligible [2], resulting in∑

zkJk = 0 (25)

Employing (21) in (25) and solving for �ψ gives

F�ψ =−RT
∑
zkωk�Ck+ Jv

∑
zk(1− σk)Ck∑

z2kωkCk
(26)

Finally, imposing the electroneutrality conditions (22) and (23), leads to

F�ψ =−
RT

∑
zkωk�Ck−

(∑
zkσkCk+ 1

2zf Cf
)
Jv∑

z2kωkCk
(27)

Note that this expression for F�ψ is implicit since Jv depends on F�ψ . At steady state,
however, Jv = 0 and then

F�ψ =−RT
∑
zkωk�Ck∑
z2kωkCk

(28)

This steady state result can also be found directly from (21) when Js= 0 and without recourse
to the assumption on the current.

For subsequent use, the above theory is next specialized to the case of a NaCl binary elec-
trolyte. The cation, anion and fixed charge concentrations are denoted C1, C2 and Cf , respectively,
and have valences z1 = +1, z2 = −1 and zf = −1. The extracellular solution is taken to have

C0
1 = C0

2 = C0 and contains no charged groups. For simplicity, it is assumed that the reflection
coefficients and ion permeabilities are uniform for the two mobile ions so that σ1 = σ2 = σ and

ω1 = ω2 = ω. Using the electroneutrality condition (22) to find
∑
zkCk =

1
2
Cf , the volume flux

given by (20) reduces to

Jv =Lp

(
�P− σ�Π + 1

2
(1− σ)Cf F�ψ

)
(29)
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and the ion fluxes (21) become

J1 = (1− σ)C1Jv+ω(RT�C1+C1F�ψ) (30)

J2 = (1− σ)C2Jv+ω(RT�C2−C2F�ψ) (31)

where the osmotic pressure �	 is

�	=RT
∑

�Ck =RT(C1+C2 − 2C0) (32)

and membrane potential �ψ is, from (27),

F�ψ =−
(
2RT + 1− σ

ω
Jv

)
Cf

C1+C2+ 2C0
(33)

3 Donnan Equilibrium

Before proceeding to the case of active ion transport, we establish that the model for passive
transport recovers the Donnan equilibrium pressure and concentrations. It is first established
that, at equilibrium, the model predicts that �P =�	 and that this holds independently of all
transport coefficients. With Jv = Jk = 0, it follows from (21) that ωk(RT�Ck+ zkCkF�ψ)= 0,
which implies

−(1− σk)zkCkF�ψ = (1− σk)RT�Ck (34)

Using this result in (20) with Jv = 0 gives

�P=
∑

[σkRT�Cs+ (1− σk)RT�Ck]=
∑

RT�Ck =�	 (35)

This results confirms that �P = �	 is satisfied regardless of the membrane properties, as
should be the case at equilibrium.

In order to obtain the equilibrium osmotic pressure, the binary electrolyte detailed at the end
of Section 2 is employed for simplicity. At equilibrium Jv = J1 = J2 = 0 and it follows from (30)
and (31) that RT�C1+C1F�ψ = 0 and RT�C2+C2F�ψ = 0. These equations imply C1�C2+
C2�C1 = 0 or C1C2 =C2

0, which is the Donnan equilibrium condition. Using the last result with
the condition of electroneutrality C1−C2 = Cf yields the Donnan cation and anion concentrations

C1 =
Cf
2

+
√(

Cf
2

)2

+C2
0; C2 =−Cf

2
+
√(

Cf
2

)2

+C2
0 (36)

and the well-known Donnan osmotic pressure

�	=RT(C1+C2− 2C0)= 2RTC0

⎛
⎜⎝
√√√√ C2

f

4C2
0

+ 1− 1

⎞
⎟⎠ (37)

The above results simply confirm that the passive transport model given by (20), (21) and
(27) obtains the correct solution at equilibrium. We next consider the nonequilibrium problem of
active ion transport.
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4 Modified Kedem-Katchalsky Equations for Active Ionic Transport

Active ion transport operates to support cellular homeostasis and to prevent rupture of the
cell membrane. Here we disregard the molecular-level description of ionic transport and introduce
phenomenological equations for active ion transport obtained by treating the active ionic flux as
an independent function of the cellular environment. It is reasonable to assume that the active
ion fluxes are additive to the passive ionic flux [2,5], with the net flux expressed by

Jk = Jpk + Jak (38)

where Jpk is the passive flux given by (21) and Jak is the active flux. The trans-membrane current
due to passive and active transport of ions is then

I = F
∑

zkJk =Cmem
d�ψ
dt

(39)

As in the passive transport case, we assume that �ψ is changing slowly enough that the
capacitive current is negligible [2], resulting in∑

zk(J
p
k + Jak)= 0 (40)

Replacing Jpk by using (21), employing electroneutrality (22) and (23), and solving for F�ψ
gives

F�ψ =−
RT

∑
zkωk�Ck−

(∑
zkσkCk+ 1

2zf Cf
)
Jv+

∑
zkJak∑

z2kωkCk
(41)

At steady state, Jv = 0 and the membrane potential is

F�ψ =−RT
∑
zkωk�Ck+

∑
zkJak∑

z2kωkCk
(42)

By comparing (41) to its value in the passive transport case (27) (or (42) to (28)), we can
write

(F�ψ)active = (F�ψ)passive−
∑
zkJak∑

z2kωkCk
(43)

which defines how the membrane potential changes due to active ion transport.

At steady (nonequilibrium) state, the volume flux Jv and all ion net fluxes Jk will vanish,
resulting in no net transport of ions [4]. Then passive ion transport will precisely balance active
ion transport for each individual species and it follows from (38) that

∑
zkCkF�ψ =−

∑(
RT�Ck+

Jak
ωk

)
(44)

But from (20) with Jv = 0 we observe that

�P=
∑

[σkRT�Cs− (1− σk)zkCkF�ψ ] (45)
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Combining the above two equations to eliminate F�ψ leads to the important result that the
fluid pressure �P is given by

�P=�	+�Pa (46)

where the osmotic pressure is

�	=
∑

RT�Ck (47)

and where a new, additional, component of the fluid pressure pressure appears

�Pa =
∑ 1− σk

ωk
Jak (48)

From (46) it is seen that, at steady state, the fluid pressure �P and osmotic pressure �	 must
be balanced by the new generalized pressure term �Pa. This new pressure term is always present
when active transport is operative, including at steady state. This term has been analyzed by
numerical studies, see Section 6, which suggests that for typical ion pumping rates its magnitude
is significant and comparable to the osmotic pressure.

Steady state concentrations for a binary electrolyte (as described at the end of Section 2) are
found as follows. Setting Jv = Jk = 0 in (38) implies

zkCkF�ψ =−RT(�Ck+βk), k= 1, 2 (49)

where βk (in mM units) is given by

βk =
Jak
RTω

(50)

Eliminating F�ψ from the two equations in (49) implies the Donnan-like relationship

C2(�C1+β1)+C1(�C2+β2)= 0 (51)

An analogous condition has been reported in [18]. Solving this equation simultaneously with
the electroneutrality condition C1−C2 =Cf yields the steady state concentrations

C1 = 1
2
(Cf −βm)+

1
2

√
(Cf −βm)2+ 4C0(C0−βm)+ 2β1Cf (52)

C2 =−1
2
(Cf +βm)+

1
2

√
(Cf +βm)2+ 4C0(C0−βm)− 2β2Cf (53)

where βm = 1
2
(β1+β2). The steady state osmotic pressure �	=RT(C1+C2− 2C0) is then found

to be

�	= 2RTC0

⎛
⎝
√√√√(Cf −βm

2C0

)2

+ β1Cf
2C2

0

− βm

C0
+ 1− 1− βm

2C0

⎞
⎠ (54)



1338 CMES, 2021, vol.129, no.3

The fluid pressure contribution �Pa given by (48) is independent of C1 and C2 and may be
expressed as

�Pa = 1− σ
ω

(Ja1 + Ja2 )= 2RT(1− σ)βm (55)

Observe that when both active ion fluxes are zero, the osmotic pressure given by (54) reduces
to the Donnan equilibrium pressure (37) and �Pa given by (55) vanishes. These results clarify the
influence of active ion fluxes at steady state on both the osmotic and fluid pressures and, as will
be shown in the next section, are crucial to the osmoregulation of cell volumes.

5 A Minimal Model for Volume Osmoregulation of a Suspended Biological Cell

An application of the proposed modeling framework to cell volume osmoregulation is consid-
ered in this section, emphasizing steady state solutions for passive and active ion transport. The
transient solution for osmotic shock loading is developed in Section 6. We consider a suspended
biological cell that has spherical geometry. The cell cytoplasm and extracellular fluid are taken to
be the binary electrolyte described at the end of Section 2. The cell will undergo volume expansion
and contraction according to osmotic conditions.

Assuming that the number of lipid molecules in the membrane is conserved, it may be shown
that the stretching free energy dominates the curvature free energy and the structural behavior of
the cell cortex—lipid membrane system can therefore be modeled to first order as an elastic shell
with area elasticity. The spherical elastic shell has a tension-free reference area A0 and radius r0
and current radius r(t) and area A(t). The membrane tension τ in N/m is assumed to be related
to the cell surface area by

τ =K
(
A−A0

A0

)
=K

(
r2 − r20
r20

)
(56)

where K is the area elasticity constant. Using elementary statics, equilibrium requires τ = 1
2
r�P,

where �P is the fluid pressure difference across the membrane, leading to

�P= 2K
r

[(
r
r0

)2

− 1

]
or r= �Pr20

4K
+

√√√√(�Pr20
4K

)2

+ r20 (57)

Using (57)1 in the expression for the volume flux Jv given by (29) and noting that �	 =
RT(C1+C2− 2C0) results in

Jv =Lp

(
2K
r

[(
r
r0

)2

− 1

]
− σRT(C1+C2− 2C0)+ 1

2
(1− σ)Cf F�ψ

)
(58)

The cell radius r(t), in m, and volume flux Jv, in m3/m2− s, can be related by observing that

the rate of volume expansion of the spherical cell is 4πr2
dr
dt

in m3/s. This expansion rate must be
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balanced by a fluid volume influx of −4πr2Jv, where Jv is given by (58); the negative sign appears
because positive Jv is defined as a flow from the cell to the extracellular fluid. Then,

dr
dt

+ Jv = 0 (59)

We next establish a relation between the ion concentrations and the cell radius. The total

number of moles of ion species k occupying the cell is nk =
4
3
πr3Ck. Then the rate of change

dnk
dt

= 4
3
πr3

dCk
dt

+4πr2
dr
dt
Ck must be balanced by a net surface influx of ions −4π r2Jk, where Jk

is the net molar flux in mol/m2− s and where the negative sign again derives from the definition
of Jk. The conservation of ions then requires

r
3
dCk
dt

+ dr
dt
Ck+ Jk = 0, k= 1, 2 (60)

which describes an evolution equation for the concentration Ck. The molar flux Jk has the additive
form given by (38). Specializing the passive component Jpk for the binary electrolyte (see (30) and
(31)) and using (59) to replace Jv, gives

Jk =−(1− σ )Ck
dr
dt

+ω(RT�Ck+ zkCkF�ψ)+ Jak , k= 1, 2 (61)

The membrane potential is given by (41) which, for the binary electrolyte and again using
(59) to replace Jv, reduces to

F�ψ =
[(

1− σ
ω

dr
dt

− 2RT
)
Cf −

2
ω
(Ja1 − Ja2 )

]
1

C1+C2+ 2C0
(62)

The cell model framework is given by the three coupled ODEs (59) and (60), with the volume
flux Jv and ion fluxes Jk given by (58) and (61), respectively, and the membrane potential by (62).
This system can be solved numerically for r(t),C1(t) and C2(t) after specification of the functions
Ja1 and Ja2 and suitable initial conditions on r, C1 and C2. The coupled system (59) and (60) is
nonlinear only in variable r. The transient transport model is discussed in Section 6; the focus in
this section is on steady state solutions for passive and active ion transport.

Starting with passive transport (Ja1 = Ja2 = 0) at steady state
(
dr
dt

= dC1

dt
= dC2

dt
= 0 and Jv

= J1 = J2 = 0
)
, the Donnan equilibrium osmotic pressure �	 is given by (37). Noting that �P

=�	 at equilibrium and substituting (37) into (57)2 gives the equilibrium cell radius

r= RTC0r20
2K

⎛
⎜⎝
√√√√ C2

f

4C2
0

+ 1− 1

⎞
⎟⎠+

√√√√√√
(
RTC0r20

2K

)2
⎛
⎜⎝
√√√√ C2

f

4C2
0

+ 1− 1

⎞
⎟⎠

2

+ r20 (63)

Fig. 1 depicts the equilibrium radius r computed for parameter values that are representa-
tive for human cells (see Table 1) and for variations in the fixed charge concentration Cf and
extracellular ion concentration C0. Fig. 1 shows that both have an important influence on the cell
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equilibrium radius. The equilibrium radius r is independent of all membrane transport properties
and provides a reference value for examining the effect of active ion transport, which is considered
next.

Figure 1: Steady state cell radius r computed from Eq. (63) with r0 = 8 × 10−6 m and K = 1.25×
10−2 N/m. (a) Variation of fixed charge concentration Cf with extracellular concentration C0 =
200 mM, (b) Variation of extracellular concentration C0 with fixed charge concentration Cf =
50 mM

Table 1: Physical constants and model parameters used in simulations and representative of a
human cell

Parameter Description Units Value

r0 Reference (unloaded) cell radius m 8× 10−6

K Membrane area elasticity N/m 1.25× 10−2

C0 Extracellular fluid concentration mM 200
T Temperature K 310
R Gas constant N−m/mol−K 8.3144598
Cf Fixed charge concentration in cell mM 50
σ Reflection coefficient 1 0.5
Lp Hydraulic conductivity m/Pa− s 1× 10−10

ω Solute permeability mol/N− s 1× 10−9
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For active ion transport at steady (nonequilibrium) state
(
dr
dt

= dC1

dt
= dC2

dt
= Jv = J1 = J2 = 0

with Ja1 �= 0 and/or Ja2 �= 0 and steady), the fluid pressure is given by �P =�	+�Pa (see (46)).
The steady state cell radius for active ion transport is then found from (57)2 as

r= r20
4K

(�	+�Pa)+

√√√√r20+
(
r20
4K

)2

(�	+�Pa)2 (64)

where �	 and �Pa are evaluated using (54) and (55), respectively.

Fig. 2 examines the steady state cell radius based on (64) resulting from active transport of
the cation only with β1 = Ja1/(RTω) and β2 = 0. All parameters employed are taken from Table 1.
The steady state cell radius depicted in Fig. 2 demonstrates the steady state limit of the pump-leak
mechanism in which active ion pumping reduces the osmotic pressure, causing the cell volume to
contract as water passively transports out across the cell membrane. The effect of cation pumping
on the steady state fluid and osmotic pressures are examined next.

Figure 2: Steady state cell radius r (m) with active cation transport as measured by β1 (mM) and
with β2 = 0. The cell properties are taken from Table 1. Increasing the cation pumping rate β1
decreases the steady state cell radius

The steady state values of �	 and �Pa are plotted in Fig. 3 against β1 using (54) and (55),
along with �P derived from �P =�	+�Pa. As active cation transport increases through β1,
both osmotic and fluid pressure decrease significantly. The difference between them is �Pa, which
increases with β1. Thus the fluid pressure reduction trails that of the osmotic pressure. It can be
observed from Fig. 3 that at β1 ≈ 7 mM, the fluid pressure difference becomes negative and the
membrane state will transition from tension to compression. This is confirmed by Fig. 2 which
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indicates that the steady state equilibrium radius at β1 = 7 mM is r = 8× 10−6 m, which is the
cell reference radius r0. Fig. 3 demonstrates quantitatively how increasing active ion transport
reduces the osmotic and fluid pressures and thereby provides cell volume osmoregulation. The
temporal solution of the model system (59) and (60) provides further insights into the PLM and
is considered next.

Figure 3: Plot of osmotic pressure �	, active fluid pressure �Pa and fluid pressure �P vs. active
cation flux β1 (with no anion active flux β2 = 0). Cell properties are taken from Table 1

6 Temporal Response of the Pump-Leak Mechanism

6.1 Cell Response Simulations
Characterizing the details of ion channels and pumps is an active area of research that

is beyond the scope of the present work. Nevertheless, a primitive example of an ion channel
control model for homeostasis is provided in Section 6.3 to illustrate the ability of the proposed
phenomenological equations to describe the pump-leak mechanism (PLM).

Two sets of numerical simulations are presented. In the first, the temporal response of the cell
with only passive ion transport to a sequence of osmotic shocks is described in Section 6.2. Steady
state results inferred from the temporal analysis are compared to the theoretical predictions given
in Section 5 and provide a consistency check for the numerical implementation. In the second set
of calculations, the PLM is simulated with active cation pumping. The initiation of active cation
(Na+) pumping occurs when a tension-based cell membrane signal is received and subsequent
changes in cell volume, fluid and osmotic pressure are reported in Section 6.3.

The physical constants and model parameter values given in Table 1 are used in all simula-
tions, unless otherwise noted.
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6.2 Passive Ionic Transport with Osmotic Shock

The cell was given arbitrary initial values of r(0)= 8× 10−6 m, C1(0)= 210 mM and C2 =
190 mM, and allowed 1000 s to achieve near steady state. The cell is then subject to a hypotonic
shock at t= 1000 s in which the extracellular ionic concentration C0 reduces from 200 to 120 mM.
This is followed by a hypertonic shock at t= 2000 s in which C0 increases from 120 to 480 mM.
This is described by

C0(t)= 200[1− 0.4H(t− 1000)+ 1.8H(t− 2000)] (65)

where H is the Heaviside step function2. Solution of the three coupled ODEs (59) and (60),
with β1 = β2 = 0 (no active ion pumping), was obtained using commercial software COMSOL
Multiphysics 5.5. As seen in Fig. 4, the time interval between the initial (arbitrary) state and
application of the two shocks was sufficient to allow the solution to closely approach three
equilibrium states. As a validation of the temporal solution, the steady state radius and (Donnan)
ionic concentrations and osmotic pressure was computed using (63), (36) and (37), respectively, at
the three step levels of C0 in (65) and are given in Table 2. It may be confirmed from Fig. 4 that
these values are the steady state asymptotes achieved in the temporal solution.

Table 2: Steady state (equilibrium) solutions at three levels of the extracellular ionic concentra-
tion C0

C0 mM 200 120 480

r 1× 10−6 m 23.3 35.8 13.4
C1 mM 226.6 147.6 505.7
C2 mM 176.6 97.6 455.7
�	 KPa 8.0 13.3 3.4

It may be observed in Fig. 4 that the cell radius achieves equilibrium at a slower rate than the
ionic concentrations. This is expected because the rate of water transport across the membrane
is controlled by the hydraulic conductivity Lp. When the hypotonic shock is applied at T =
1000 s, the volume flux Jv shown in Fig. 4d jumps to a negative value, indicating water inflow,
but the slow tail of the passive inflow accounts for the slow response of the cell volume. Similarly,
when the hypertonic shock is applied, the volume flux jumps to a positive value, indicating water
outflow, with a time course dictated by the constant hydraulic conductivity. It may be noted from
Fig. 4c that the osmotic pressure in the cell increases after the hypotonic shock and reduces after
the hypertonic shock, as expected. Fig. 4b indicates that the cation and anion concentrations
satisfy electroneutrality C1−C2 = Cf = 50 mM at all times. It is remarked that the cell generates
fluid pressure (not shown) by virtue of the elastic cortex—lipid membrane system and at steady
state it is indeed in Donnan equilibrium.

2 The Heaviside functionsH(t− tshock) were smoothed over a transition zone of 100 s in order to be more physically realistic.
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Figure 4: Transient response of the cell, with only passive ionic transport, to the osmotic shock
loading given by (65): (a) Cell radius, (b) cation and anion concentrations, (c) osmotic pressure,
(d) volume flux

6.3 Active Ionic Transport with Osmotic Shock
Using the same arbitrary initial values noted in the preceding subsection, 1000 s is allowed

for the system to reach near steady state. The cell is then subject to a single hypotonic shock at
t= 1000 s according to

C0(t)= 200[1− 0.6H(t− 1000)] (66)

Active cation (Na+) pumping is initiated when the membrane tension τ = τcrit. For this
simulation, we assumed τcrit= 5× τphysio where τphysio is the membrane tension when the cell is at
equilibrium with C0 = 200 mM. Cation pumping is described by the value of β1 (see (50)), which
was taken to be constant once activated. Then active transport by cation pumping is described by

β1(t)= β1H(τ (t)− τcrit) and β2(t)= 0 (67)

with active flux magnitude β1 = 8.54 mM.
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Fig. 5 compares two solutions. The solid (blue) curves correspond to passive transport only
β1(t) = β2(t) = 0) and the dotted (green) curves correspond to the active transport case defined
by (67). It is remarked that the active flux magnitude β1 was selected to approximately return the
cell radius to its previous steady state value—a parametric study on β1 is provided below. Fig. 5
indicates that cation pumping was initiated, according to (67), at approximately t= 1,250 s and
that it has a pronounced effect on all solution variables. Most notably, the cell swells (measured
by the radius r) under passive transport conditions following application of the shock. It then
deswells under active transport conditions. The activation of cation pumping changes the cation
molar flux from inflow to outflow Fig. 5b, and significantly depresses the osmotic pressure Fig. 5c.
It may be confirmed that the steady state radius for the passive and active cases shown in Fig. 5
are predicted by (63) and (64), respectively.

Figure 5: The cell is subjected to a hypotonic shock at t= 1000 s and two solutions are depicted.
The solid (blue) curve shows the passive transport case and the dotted (green) curves show the
active transport case: (a) cell radius r(t), (b) cation flux J1(t), (c) ratio of osmotic and fluid
pressure �P(t)/�	(t), and (d) cation concentration C1(t)
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Fig. 6a shows a side-by-side comparison of the osmotic and fluid pressures for the passive
transport solution; Fig. 6b shows the same comparison for the active transport solution. It is seen
from Fig. 6a that at steady (equilibrium) state (t= 1000 and t= 3000 s), the fluid and osmotic
pressures coincide (as necessary, see (35)), whereas in Fig. 6b the osmotic and fluid pressures
deviate significantly at steady (nonequilibrium) state (t= 3000 s) due to the active cation transport.
The difference between the osmotic and fluid pressures is the active pressure component �Pa =
�P −�	 given by (48). At steady state (t = 3000 s) and using (55), �Pa = 2RT(1− σ)βm ≈ 11
kPa; from Fig. 6b we see that �P ≈ 6 kPa and �π ≈−5 kPa, which is in agreement. Observe
that �Pa is of the same order as �P and �	 for ion pumping at β1 = 8.54 mM.

Figure 6: Comparison of osmotic and fluid pressures. (a) Passive transport solution, (b) Active
cation transport solution

The results of a parametric study of the osmotic shock problem (67) is provided in Fig. 7.
Figs. 7a and 7b show the cell radius and osmotic pressure for β1 = {3, 6, 9}; the radius and osmotic
pressure decrease with increasing cation pump rate β1. Figs. 7c and 7d show the cell radius and
osmotic pressure for the reflection coefficient σ = {1, 0.5, 0} and β1 given by (67). When σ = 1, the
membrane is semipermeable and the cation cannot transport passively across the membrane. At
this limiting value of σ and at steady state, we have �Pa = 0 (see (55)) and the fluid and osmotic
pressures will agree. When σ = 0.5 (the reference state used in Table 1), the membrane is leaky
and the cation is transported passively and actively. When σ = 0, the membrane is nonselective
and the cation is freely transported.
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Figure 7: Parametric studies. (a) and (b) Active cation flux magnitude β1 ∈ [3, 6, 9] mM, (c) and
(d) reflection coefficient σ ∈ [1, 0.5, 0]

7 Discussion

The presented development of the phenomenological equations for passive and active trans-
port for cell membranes follows standard lines for nonequilibrium thermodynamics. But an impor-
tant step for electrolytes with impermeant charged macromolecules included the incorporation of
fixed charge through the condition of electroneutrality. For passive transport of ionic solutions
and at steady state, the theory recovers the Donnan equilibrium and predicts agreement of the
osmotic and fluid pressure differences across the membrane such that �P = �	. When active
ion transport processes are present, the theory predicts that an active fluid pressure component
�Pa arises as a direct result of the active fluxes. This term enters into the balance of fluid and
osmotic pressure such that �P=�	+�Pa. When the membrane is leaky, with σ < 1, numerical
results indicate that �Pa can have values that are of the same order as �π . The presented theory
has included the fluid pressure in a rigorous manner through the phenomenological equations
providing a general framework for assessing its role in the PLM.

The model evaluated the membrane potential �ψ by using the assumption that it is not
changing rapidly with time. This led to the condition that the sum of the active and passive
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currents vanish Ip+ Ia= 0. The resulting expressions for �ψ (see (41)) generalize previous models
such as that presented by Armstrong [2] to include the influence of the ionic reflection coefficient
σk and ionic permeability ωk.

Following presentation of the general theory for an arbitrary number of ionic species, the
theory was adapted to model the pump-leak mechanism (PLM) in a eukaryotic cell model. The
cell was modeled as a spherical elastic shell with area elasticity but no attempt was made to model
the dependence of the modulus on the cell volume or other possible structural characteristics.
However, the cell cortex—lipid membrane system so modeled was able to develop tension and
support fluid pressure—allowing both fluid and osmotic pressures to be modeled and studied
for both passive and active transport. The intracellular and extracellular media were taken to
be simple binary electrolytes containing Na+ and Cl− ions. Trapped (nonpermeant) charged
macromolecules were included in the intracellular medium but no attempt was made to model
the “excluded volume” effects associated with the molecular volumes (this is essentially treated by
specification of an effective charge concentration Cf ). Temporal changes in concentrations took
account of membrane transport processes and the dynamically evolving cell area and volume.
Active ion transport results were reported using an Na+ pump to stabilize cell volume against
osmotic forces that would otherwise drive water into the cell.

The PLM mechanism is clearly demonstrated in Fig. 8. The problem solved is that described
in Section 6.3; the cell is subjected to a hypotonic shock at time t = 1000 s, at which time it
begins to swell as indicated by the increasing cell radius and the jump in water inflow (negative
values of Jv). Initiation of Na+ pumping occurs when the membrane tension reaches a critical
value, at time t ≈ 1,250 s. The cell volume now starts to decrease and approach a steady state.
The direct correlation of Na+ active flux with water outflow (positive values of Jv) is apparent in
the figure and suggests capture of the PLM.

Figure 8: Cell undergoes hypotonic shock at time A and initiates active cation pumping at time B.
The cell radius is r(m) and the volume flux is Jv (mol/m2 − s) and has been scaled by 120. At
time A, the cell begins to swell by water inflow. At time B, the cell begins to deswell by water
outflow
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Previous models of the PLM, presented in the field of mathematical physiology have been
successful in demonstrating the key aspects of the mechanism [2,3,5,19]. However these models
cannot exhibit a stable Donnan equilibrium, in contrast to the current study. Cells cannot be at
a stable Donnan equilibrium unless they can develop and sustain a transmembrane fluid pressure.
For example, in prior models, if ions are not actively pumped, the cell volume will increase
without limit and no steady state will be found. The current model develops fluid pressure and
arrives at steady state according to the hydraulic conductivity (see, for example, Fig. 5a). It has
been claimed that cells cannot be at a stable Donnan equilibrium, but this is true only if they
cannot support internal fluid pressure [20]. The current model shows clearly that in the case
of passive ion transport, Donnan equilibrium can be achieved using realistic values of the cell
membrane elasticity.

In practice, the primary contributors to intracellular and extracellular tonicity are Na+, K+
and Cl− , all of which are permeable solutes. The Na+ pump (Na+− K+ ATPase) actively
drives Na+ out and K+ in [5,21]. Ion channels and ion pumps drive the physiological system,
aquaporins (water channels) likewise modulate the hydraulic conductivity of the cell membrane.
These essential features underlying the PLM can be modeled within the presented framework,
based on experimental evidence, and would provide a more complete representation of the PLM.
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