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ABSTRACT

Road accident detection plays an important role in abnormal scene reconstruction for Intelligent Transportation
Systems and abnormal events warning for autonomous driving. This paper presents a novel 3D object detector and
adaptive space partitioning algorithm to infer traffic accidents quantitatively. Using 2D region proposals in an RGB
image, this method generates deformable frustums based on point cloud for each 2D region proposal and then
frustum-wisely extracts features based on the farthest point sampling network (FPS-Net) and feature extraction
network (FE-Net). Subsequently, the encoder-decoder network (ED-Net) implements 3D-oriented bounding box
(OBB) regression. Meanwhile, the adaptive least square regression (ALSR) method is proposed to split 3D OBB.
Finally, the reduced OBB intersection test is carried out to detect traffic accidents via separating surface theorem
(SST). In the experiments of KITTI benchmark, our proposed 3D object detector outperforms other state-of-the-
art methods. Meanwhile, collision detection algorithm achieves the satisfactory performance of 91.8% accuracy on
our SHTA dataset.
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1 Introduction

Vision-based object detection algorithms have been extensively exploited for traffic accident
detection, which generates object location, motion information, and object category. However,
accurate and robust traffic accident detection is difficult due to resolution constraints, illumination
conditions, scale transform, and occlusion.

Recently vision-based researches on traffic accident detection [1,2] can achieve 2D bounding
box regression and classification prediction from monocular images, and then utilize trajectory
information to identify accidents. For example, Ijjina et al. [3] used Mask R-CNN [4] for object
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detection followed by Centroid Tracking algorithm from RGB images, and then capitalized on
speed and trajectory anomalies to infer traffic accidents. Unfortunately, these methods achieved
poor accuracy and recall when objects are truncated, especially occluded. Besides, these works
only provide texture information but lack depth information, which makes it difficult to describe
objects for collision detection in 3D real-world scenes. As a result, 3D object detection method
becomes the main research issue on traffic accident detection.

To address these limitations, this study develops a novel 3D object detector and adaptive
space division model to quantitatively infer traffic accidents, as illustrated in Fig. 2. This method
assumes the availability of 2D region proposals in RGB images, which can be easily obtained from
some object detection frameworks [5–7]. Then, a set of deformable frustums are generated based
on 2D region proposals and point cloud. Different from [8], this method extracts frustum-wisely
features based on FPS-Net and FE-Net, and then uses a subsequent ED-Net to down-sample and
up-sample these frustum-wisely features. Together with a detection header, the proposed method
implements an end-to-end estimation of oriented 3D boxes. Subsequently, ALSR is developed to
separate bounding boxes, and then SST is used to discriminate whether the reduced bounding
boxes overlap, which can achieve collision detection. Extensive experiments are conducted on two
datasets, KITTI benchmark [9] and our SHTA dataset. As illustrated in Fig. 1, SHTA dataset
is collected in Shanghai urban roads by using surveillance cameras and LIDAR, which contains
5,672 crash records in different conditions.

Figure 1: Recording platform of our SHTA dataset
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Figure 2: The pipeline of the proposed method. (a) Deformable frustum proposal based on 2D
region proposals in an RGB image and point clouds. (b) 3D OBB regression framework. (c)
Collision detection based on ALSR and SST

The contributions of this paper are summarized as follows:

(1) This method proposes a novel 3D object detector based on deformable frustum proposal,
which can achieve an end-to-end 3D OBB regression in complex scenarios including
occlusion and scale transform.

(2) This study proposes the adaptive least square regression model to split 3D OBB, which is
followed by separating surface theorem to infer traffic accidents.

The rest of this study is organized as follows. Section 2 briefly reviews relevant researches
on traffic accident detection, and some methods of 3D object detection based on RGB images
and point clouds are summarized. The proposed method is fully presented in Section 3. Extensive
experiments on the KITTI benchmark and SHTA dataset are elaborated in Section 4. Section 5
concludes our research of this paper.

2 Related Work

2.1 Traffic Accident Detection
Vision-based algorithms for traffic accident detection can be divided into two categories. One

uses traditional image processing algorithms, such as optical flow. The other utilizes deep neural
networks (DNN), such as Mask R-CNN. Yun et al. [10] predicted traffic accidents by using
the motion interaction field (MIF), which uses the optical flow field and avoids complex vehicle
tracking problems. Singh et al. [11] extracted deep representation via denoising autoencoders
trained over the normal traffic videos, and then identified accidents based on the reconstruction
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error and the likelihood of the deep representation. Ijjina et al. [3] utilized Mask R-CNN for
object detection and centroid tracking algorithm, which can obtain speed and trajectory anomalies
for further crash online inference. Chong et al. [12] used a convolutional LSTM auto-encoder to
capture regular visual and motion patterns simultaneously for anomaly detection. Liu et al. [13]
tackled the collision detection problem using the difference between a predicted future frame
obtained by U-Net and its ground truth. In addition, Yao et al. [14] predicted traffic participants’
trajectories and their future locations generated by an unsupervised deep learning framework to
infer traffic accidents. Unfortunately, the precision and recall of the above methods are poor owing
to resolution constraint, illumination condition, scale transform, and occlusion.

2.2 Multi-Sensor 3D Object Detection
Several image-based methods [15–19] focus on texture information but lack depth information,

which increases the false detection rate of object detection algorithms. Besides, extensive point-
based methods [20–23] provide depth information but ignore texture information. As a result,
it could be helpful to integrate RGB images and point clouds to infer 3D OBB. MV3D [24]
took the bird eye view (BEV) and front-view (FV) projection of point clouds together with
corresponding RGB image as input, and then extracted feature using multi-stream CNNs for
further 3D box regression. AVOD [25] introduced an early fusion architecture, which takes
BEV and RGB images to generate high-resolution feature maps shared by two subnetworks: a
region proposal network and a second stage detection network. MMF [26] proposed multiple
related tasks for accurate multi-sensor 3D object detection including ground estimation and depth
completion. F-PointNet [8] lifted 2D region proposals obtained by a 2D CNN detector to 3D
frustum proposals, and then generated 3D OBB based on PointNet. F-ConvNet [27] slid frustum
proposals to aggregate local point-level features with FCN for 3D OBB regression. However,
the above methods belong to data-wise fusion, which is challenging owing to differences in data
characteristics. Therefore, this method generates a specific frustum for each 2D region proposal
and extracts frustum-wisely features via FPS-Net and FE-Net for 3D OBB regression.

3 The Proposed Method

As shown in Fig. 2, our system consists of two modules: 3D OBB regression and collision
detection. Section 3.1 details some modules of 3D OBB regression framework, such as deformable
frustum proposal, FE-Net, and ED-Net. Then, traffic crash is predicted using ALSR and SST in
Section 3.2.

3.1 3D OBB Regression
By assuming the availability of 2D region proposals in RGB images that are easily obtained

from some object detection frameworks, the proposed method generates a sequence of deformable
frustums, and then extracts frustum-wisely features via FPS-Net and FE-Net. Subsequently,
ED-Net is designed to down-sample and up-sample frustum-wisely features to obtain multi-scale
feature maps. Together with a detection header, our method supports an end-to-end prediction of
3D OBB.

3.1.1 Deformable Frustum Proposal
To reduce search space and detect occluded objects, this method takes advantage of 2D region

proposals in RGB images that are generated by region proposal network. Different from [8], our
method assumes that the joint calibration of camera coordinate system and LIDAR coordinate
system has already been performed, which means the optical axis of the camera is perpendicular
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to each 2D region proposal. As illustrated in Fig. 3, a specific frustum is generated for each 2D
region proposal by sliding along the optical axis between the image plane and the far plane. Owing
to N (N = 3) aspect ratios of 2D region proposals generated by a 2D object detector, the width
and height of frustums are changeable. In addition, our method uses a parameter σ (σ = 0.9, 1.0,
1.2) to control the depth of frustums, as the inaccurate depth between the image plane and the
far plane is defined by the range of the depth sensor. Thus, each object owns deformable frustums
{Fi = (Wi,Hi,Di)}Ni=1.

Figure 3: Illustration of how deformable frustums are generated for 2D region proposals in an
RGB image

3.1.2 FE-Net
To extract frustum-wisely features, this method uses FPS-Net to obtain points

{Pi = (xi,yi, zi)}ni=1 from deformable frustums {Fi = (Wi,Hi,Di)}Ni=1 according to the principle
of the most distant point. Then, our method applies FE-Net that includes convolution lay-
ers and max-pooling layers, followed by IR-Block, as shown in Fig. 4. Inspired by [28], IR-
Block combines the Inception module with residual connection based on 1× 1 convolution
and 3× 3 same convolution. Different from [27], the proposed method uses relative coordinates
{�Pi = (�xi,�yi,�zi)}ni=1 as the input of FE-Net. Each �Pi is obtained by subtracting each Pi
with the centroid C of the frustum, �Pi = Pi −C for i= 1,. . ., n.

Figure 4: The architecture of FE-Net
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3.1.3 ED-Net
To solve scale transform, the proposed method concatenates frustum-wisely feature vectors to

form a feature map of the size L × d× 1 (d = 256, L is the number of objects), which is the
input of subsequent ED-Net. As shown in Fig. 5, ED-Net is composed of two modules: (a) the
encoder that gradually contracts the spatial dimension of feature maps with 1× 1 convolution
and 1× 2 max pooling, and (b) the decoder that gradually expands the spatial dimension and
object details based on 1× 2 deconvolution. The size of the same convolution kernel is 3× 3.
Deconv layer upsamples the feature map to the same resolution as that in the encoder module,
which is concatenated together along the feature dimension. On top of ED-Net is the detection
header, which is used to classify object categories and generate 3D OBB. Given K categories, the
classification branch outputs a feature map of the size L×(K+ 1). Our method uses focal loss [29]
as the loss function, which helps solve the problem of data imbalance between different classes.
Different from [8], this method parameterizes a 3D OBB by its center (xc,yc, zc), shape (h,w, l),
and yaw angle θ . The regression loss is smooth L1 loss and corner loss [8], which are used to
regularize all parameters of a 3D OBB.

Figure 5: The architecture of ED-Net

3.2 Collision Detection
For collision detection, this method develops ALSR for 3D OBB segmentation and SST for

reduced OBB intersection tests.

3.2.1 ALSR
To accurately infer traffic accidents, our method splits 3D OBB via ALSR. ALSR is a space

partitioning method based on spectral clustering. First, ALSR uses an alternative optimization
model to calculate the coefficient matrix. Then, the affine matrix is obtained based on the coeffi-
cient matrix. Finally, this method uses the standard segmentation method to split the affine matrix
to obtain k subspaces.

The data matrix D of 3D OBB is reconstructed in directions of column and row, respectively.
Thus, ALSR is established according to Eq. (1). C denotes column coefficient matrix and R means
row coefficient matrix. λ is a regularization parameter, which is used to balance the impact of
each other.

minG(C,R)= ||D−DC−RD||2F +λ(||C||2F + ||R||2F ) (1)



CMES, 2022, vol.130, no.1 103

To obtain C and R, this method uses an alternating optimization algorithm. First, C is fixed
to optimize R, as shown in Eq. (2). Then, R is fixed to optimize C, as shown in Eq. (3).

R=D(I −C)DT(λI +DDT)−1 (2)

C = (λI +DTD)−1DT(D−RD) (3)

To speed up the convergence, this algorithm adopts the gradient descent method, as shown
in Eqs. (4) and (5).

C(k+1) =C(k) −ρkC∇CG(C,R) (4)

R(k+1) =R(k) −ρkR∇RG(C,R) (5)

3.2.2 SST
SST is an iterative model to find a surface that can separate two 3D OBB. If the separating

surface exists, they do not overlap. Fig. 6 shows that there are two bounding boxes A and B in
two-dimensional space. X is the separation axis and Y is the separation line. T is the projection
of the distance between Ca and Cb on the separation axis X . If T > la + lb, they do not intersect.
There are at most fifteen potential separating axes between a pair of 3D OBB. Due to ALSR
generating k subspaces, this method makes at most 15 ×k adjustments.

Figure 6: Separating surface theorem

4 Experiments

A large number of experiments are conducted on NVIDIA GTX 1080 GPU in this study.
Section 4.1 depicts the KITTI detection benchmark and SHTA dataset. Section 4.2 evaluates the
performance of 3D OBB regression, and then compares it with the state-of-the-art methods. The
performance of collision detection is demonstrated in Section 4.3.

4.1 Datasets
4.1.1 KITTI

The KITTI detection benchmark contains 7,481 training and 7,518 testing RGB images and
corresponding LIDAR point clouds, including three categories: Car, Pedestrian, and Cyclist. The
proposed method trains our 3D object detector for Car and Pedestrian by splitting original data
into 3,712 and 3,769 samples. The 3D IOU evaluation metrics are 0.7 and 0.5, respectively.
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4.1.2 SHTA
To achieve detection of traffic accidents, our SHTA dataset was collected with surveillance

cameras and LIDAR in Shanghai urban roads, including 5,672 crash records in different condi-
tions such as occlusion and truncation. This method retrains our 3D object detector by fine-tuning
the pre-trained network to generate 3D OBB. Then, traffic accident is predicted via ALSR
and SST. As shown in Table 1, crash severity is classified into four levels, including no-injury,
no-capacitating injury, incapacitating injury, and fatal injury.

Table 1: Division of traffic crash severity for our SHTA dataset

Traffic crash severity Description Frequency Percent (%)

L1 No-injury 2,354 41.5
L2 No-capacitating injury 2,087 36.8
L3 Incapacitating injury 1,146 20.2
L4 Fatal injury 85 1.5
Overall − 5,672 100.0

4.1.3 Implementation Details
Our 3D object detector are trained on KITTI benchmark and SHTA dataset, respectively. 3D

object detector introduces 2D region proposals of Faster-RCNN [6] with ResNet-101 [30] for the
KITTI detection benchmark. Using these 2D region proposals, this method samples 2,048 points
from point clouds for each frustum based on FPS-Net. This method regards predicted boxes
whose centers fall in the ground-truth boxes as positive samples and counts the others as negative
samples. During both training and testing, data augmentation is used with random flipping (with
a probability of 0.5) and random rotation (from −π to π ) to deal with angle transform. Before
training, some hyperparameters need to be set. The batch size is set as 32 to generate 32 random
samples of each frustum. The initial learning rate is 0.001 and decays one-tenth of the original
every 30th epoch of the total 60 epochs. This method uses Adam optimizer with weight decay of
1e-05.

4.2 Evaluation of 3D OBB Regression
4.2.1 Comparing with SOTA

Table 2 illustrates the performance of our 3D OBB regression framework on the KITTI
detection benchmark. This method outperforms most approaches in average precision (AP) and
runtime. Especially, it improves upon the previously best model PV-RCNN [31] by 4.13 mAP,
showing effectiveness of deformable frustum proposals. It gets better results on nearly all cat-
egories and has the biggest improvements on object categories that are often occluded (+1.37
AP for pedestrians and + 1.10 AP for cars). Besides, our method achieves great advantages in
terms of speed (−0.03 s for runtime) thanks to the deformable frustum proposal decreasing
the computing cost of point clouds. Fig. 7 shows the performance comparison of five methods
(i.e., F-PointNet [8], F-ConvNet [27], PointRCNN [22], PV-RCNN [31]) including ours, under
two different challenging conditions including scale transform and partial occlusion. Our method
exceeds other methods under these conditions due to ED-Net providing multi-scale feature maps,
texture information, and depth information. As a result, our 3D object detector is accurate and
robust for traffic accident detection.
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Table 2: 3D object detection AP (%) and runtime (s) on KITTI val set

Method Runtime Cars Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

MV3D [26] 0.36 71.09 62.35 55.12 − − − − − −
VoxelNet [21] 0.5 77.47 65.11 57.73 39.48 33.69 31.51 61.22 48.36 44.37
F-PointNet [8] 0.17 81.2 70.29 62.19 51.21 44.89 40.23 71.96 56.77 50.39
AVOD [25] 0.08 76.39 66.47 60.23 36.1 27.86 25.76 57.19 42.08 38.29
PointRCNN [22] 0.1 89.96 75.64 70.7 47.98 39.37 36.01 74.96 58.82 52.53
F-ConvNet [27] 0.47 87.36 76.39 66.69 52.16 43.38 38.8 81.98 65.07 56.54
PV-RCNN31] 0.08 90.25 81.43 76.82 52.17 43.29 40.29 78.6 63.71 57.65
Ours 0.05 92.13 82.53 71.25 53.54 42.69 40.59 83.96 66.49 56.31

Figure 7: Qualitative results of five methods on the KITTI val set, under two challenging con-
ditions including scale transform and partial occlusion. Green boxes denote car and red boxes
represent predestrian

4.2.2 Effects of 2D Region Proposal
Using 2D region proposals in an RGB image, this method generates a sequence of deformable

frustums based on point cloud. Thus, the performance of 2D region proposals plays an impor-
tant role in 3D OBB regression. To investigate the influence of 2D region proposal on 3D
OBB regression, six 2D object detectors are tested including RRC [32], MSCNN [33], MSCNN-
ResNet50, MSCNN-ResNet101, FasterRCNN-ResNet50, and FasterRCNN-ResNet101. Table 3
shows the performance of 3D object detectors with different 2D region proposals. FasterRCNN-
ResNet101 outperforms other methods on 2D region proposal owing to deeper backbone network,
which makes traffic accident detection more precise.



106 CMES, 2022, vol.130, no.1

Table 3: Effects of 2D region proposal on 3D object detection AP (%)

Method Easy Moderate Hard

RRC 84.56 73.46 65.77
MSCNN 86.23 76.42 67.17
MSCNN-ResNet50 87.23 78.36 69.17
MSCNN-ResNet101 88.34 81.58 70.69
FasterRCNN-ResNet50 87.86 83.31 70.19
FasterRCNN-ResNet101 89.98 82.53 71.25

4.2.3 Effects of Frustum Feature Extractor
The proposed method extracts frustum-wisely features with FPS-Net and FE-Net. Thus, this

method relies on the performance of the frustum feature extractor. Five approaches are compared
to evaluate the effects of FE-Net on 3D OBB regression, including PointNet [34], PointNet++ [20],
VoteNet [35] and PointCNN [36]. Table 4 illustrates the performance of 3D object detector with
different frustum feature extractors. It is obvious that the performance of FE-Net is better than
other methods in that IR-Block generates multi-scale frustum feature maps by combining the
inception module with the residual connection.

Table 4: Effects of frustum feature extractor on 3D object detection AP (%)

Method Easy Moderate Hard

PointNet 86.87 83.46 67.54
PointNet++ 88.72 81.54 65.31
PointCNN 82.36 74.25 66.57
VoteNet 87.94 82.67 70.69
FE-Net 89.98 82.53 71.25

4.3 Performance of Collision Detection
4.3.1 Comparing with SOTA

The proposed method predicts traffic accidents with ALSR and SST. To assess the perfor-
mance of collision detection, this method introduces three metrics including precision (P), recall
(R) and frames per second (FPS) as shown in Eqs. (6) and (7).

P= number of correct detection
total number of detection

(6)

R= number of correct detection
total number of collision

(7)

Table 5 shows the comparison result of seven different collision detection approaches includ-
ing Ijjina method [3], Yun method [10], Singh method [11], Chong method [12], Liu method [13]
and Yao method [14]. Our method exceeds other approaches in terms of accuracy and runtime.
Especially, it improves upon the previously best model by 3.24 P and 2.15 R thanks to adaptive
space segmentation. In addition, it has the biggest improvements on the speed (+8 FPS), showing
influence of separating surface theory.
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Table 5: Collision detection P (%), R (%) and FPS on our SHTA dataset

Method FPS P R

Yun method [10] 22 65.31 78.36
Singh method [11] 31 69.82 74.54
Ijjina method [3] 26 76.61 79.21
Chong method [12] 37 74.54 84.53
Liu method [13] 42 81.23 86.36
Yao method [14] 48 88.64 87.49
Ours 56 91.88 89.64

4.3.2 Influence of the Number of Subspaces
ALSR divides the 3D OBB into k subspaces. Then, SST makes 15 × k judgments to infer

traffic accidents. Thus, the number of subspaces plays an important role in collision detection.
Table 6 illustrates the influence of k on the performance of collision detection. As k increases, the
prediction accuracy (ACC) of our method firstly increases and then decreases. Experiments show
ACC is better when k is 256.

Table 6: Effects of k on collision detection ACC (%)

k 4 16 64 256 512 1024 2048

ACC(%) 81.25 83.46 86.87 91.88 84.55 86.23 85.26

5 Conclusion

In this paper, a traffic accident detection system, based on 3D OBB regression and adaptive
space segmentation, is proposed to effectively predict traffic accidents. A novel 3D object detector
is adapted to generate 3D OBB for further traffic accident detection based on deformable frustum
proposal, FE-Net, and ED-Net. Besides, this method proposes ALSR and SST for collision
detection. Extensive experiments on SHTA dataset demonstrate this method outperforms other
SOTA approaches in terms of accuracy and running speed. In the future, our SHTA dataset will
be expanded and contain more different traffic scenes.
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