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*Corresponding Author: Mine Menekşe Yılmaz. Email: menekse@gantep.edu.tr

Received: 07 May 2021 Accepted: 12 July 2021

ABSTRACT

The goal of this paper is to give a form of the operator involving the generating function of Apostol-Genocchi
polynomials of order α. Applying the Korovkin theorem, we arrive at the convergence of the operator with the
aid of moments and central moments. We determine the rate of convergence of the operator using several tools
such as K-functional, modulus of continuity, second modulus of continuity. We also give a type of Voronovskaya
theorem for estimating error. Moreover, we investigate some results about convergence properties of the operator
in a weighted space. Finally, we give numerical examples to support our theorems by using the Maple.
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1 Introduction

The Weierstrass approximation theorem shows that the polynomials are uniformly dense in
the space of continuous functions on a compact interval equipped with supremum norm [1]. Poly-
nomials are useful tools that are easy to evaluate, differentiate and integrate, and the Weierstrass
theorem also shows their importance in the approximation theory. Since Bernstein [2] proved the
Weierstrass theorem using a polynomial class in 1911, some authors [3–6], defined linear positive
operators for the same purpose. One of these operators is Szász operators that generalization of
Bernstein polynomials to infinite interval [7]:

Sn (f ;x)= e−nx
∞∑
k=0

(nx)k

k!
f
(
k
n

)
, x≥ 0, n ∈N, (1)

Many mathematicians have found various generalizations of the Szász positive linear operator
and studied the approximate behaviour of these new operators. The idea of establishing an
operator using the generating function first appeared in [8]. In [8], assuming that g (z) is analytic
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function in the disk |z|< r (r> 1) , the operator is defined as

Pn (f ;x)= e−nx

g (1)

∞∑
k=0

pk (nx) f
(
k
n

)
, (2)

where pk (x) are called Appell polynomails and their generating function is given by g (t) etx =∑∞
k=0pk (x) tk. The operators given by (2) are the most famous generalization of the Szász oper-

ators given in (1). After this paper, many authors have established new operators using both the
polynomial and its generating function (see [9–19]). In all the mentioned studies, as a priority, the
moments of the established operator were calculated, their approximate behaviour was examined,
and also the speed of this approach was examined with the help of the modulus of continuity.
What separates or connects these studies is the new operators set by a similar method. The
Bohman–Korovkin theorems are a well-known method used to study the convergence problem of
linear positive operators. Bohman–Korovkin theorems guarantee that a sequence of positive linear
operators approaches uniformly to f for each continuous function f . Checking the functions 1, x
and x2 are enough for this operation.

In [20], Apostol–Genocchi numbers and polynomials of (real or complex) order α, α ∈N∪{0},
are defined with the help of the following generating functions, respectively(

2z
βez+ 1

)α

=
∞∑
k=0

G(α)

k (β)
zk

k!
(|z|< |log (−β)|) , (3)

(
2z

βez+ 1

)α

exz =
∞∑
k=0

G(α)

k (x;β)
zk

k!
(|z|< |log (−β)|) , (4)

with G(α)

k (x) := G(α)

k (x; 1) , G(α)

k (β) := G(α)

k (0;β) ,Gk (x;β) := G(1)
k (x;β) , Gk (β) := G(1)

k (β) , where

Gk (β), G(α)

k (β), Gk (x;β) denote the so-called Apostol–Genocchi number, Apostol–Genocchi
number of order α and Apostol–Genocchi polynomial, respectively.

Generating functions for Apostol–Genocchi polynomials with their congruence properties
involving these polynomials has been studied by many authors in recent years (see [21,22]).

Prakash et al. [23] established a sequence that includes Apostol-Genocchi polynomials of
order α, and then Deo et al. [24] introduced the Durrmeyer form of Apostol-Genocchi polynomi-
als with Baskakov type operators. In this study, motivated by [23,24], we define a generalization
of Szász type operators involving Apostol–Genocchi polynomials of order α as follows

A(α,β,m)
n (f ;x)= e−(n+η)x

(
2

βe+ 1

)−α ∞∑
k=0

G(α)

k ((n+ η)x;β)

k!
f
(
k+m
n+ η

)
, (5)

where f ∈C [0,∞) and G(α)

k (x;β) is Apostol–Genocchi polynomials given in Eq. (4). The aim of
this study is to give some convergence properties of Eq. (5).
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2 Convergence of the Operator A(α,β,m)
n

In this section, to begin with, we find the moments of the operator in Eq. (5) by using the
generating function of Apostol–Genocchi polynomials. In addition, we prove the convergence of

the operator A(α,β,m)
n with the help of the moments.

Lemma 2.1. The operator A(α,β,m)
n satisfies the following equalities:

A(α,β,m)
n (1;x)= 1, (6)

A(α,β,m)
n (s;x)= x+ α

(n+ η) (1+ eβ)
+ m
n+ η

, (7)

A(α,β,m)
n

(
s2;x

)
= x2+

(
1+ 2α+ eβ

(1+ eβ)
+ 2m

)
x

(n+ η)
+ 1

(n+ η)2

(
α2− 2αeβ −αe2β2

(1+ eβ)2
+ 2mα

(1+ eβ)
+m2

)
.

(8)

Proof. By the aid of the generating function of the Apostol-Genocchi polynomials in Eq. (4),
for Eqs. (6)–(8), we obtain

∞∑
k=0

G(α)

k ((n+ η)x;β)

k!
=
(

2
eβ + 1

)α

e(n+η)x, (9)

∞∑
k=0

G(α)

k ((n+ η)x;β)

k!
k=

(
2

eβ + 1

)α

e(n+η)x
[
(n+ η)x+ α

1+ eβ

]
, (10)

∞∑
k=0

G(α)

k ((n+ η)x;β)

k!
k2 =

(
2

eβ + 1

)α

e(n+η)x

[
(n+ η)2 x2+ (n+ η)x

1+ 2α+ eβ
1+ eβ

+α2 − 2αeβ −αe2β2

(1+ eβ)2

]
.

(11)

In view of Eqs. (9)–(11), we get the required result.

Remark 2.1. Using Lemma 2.1, we can give the central moments of the operator A(α,β,m)
n as

follows:

A(α,β,m)
n (s−x;x)= α

(n+ η) (1+ eβ)
+ m
n+ η

. (12)

A(α,β,m)
n

(
(s−x)2 ;x

)
= x
n+ η

+ 1

(n+ η)2

[
α2− 2αeβ −αe2β2

(1+ eβ)2
+ 2mα

1+ eβ
+m2

]
. (13)

Theorem 2.1. If f ∈ C [0,∞) , then limn→∞A(α,β,m)
n (f ;x) = f (x) uniformly on each compact

subset of [0, ∞).

Proof. We have fact that limn→∞A(α,β,m)
n

(
si;x

)= xi, i= 0, 1, 2 from Lemma 2.1, and then we
can use the Korovkin theorem to obtain the required result (see [25]).
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3 The Rate of Convergence of the Operator A(α,β,m)
n

The concept of modulus of continuity is the main instrument in approximation theory by
positive linear operators. This concept works well in providing quantitive estimates. In this section,
we use the usual modulus of continuity and the second modulus of continuity when measuring the
rate of convergence. Since K-functionals express some approximation properties of the function,
we will also make use of the K-functional when measuring the rate of convergence. We use the
following notations throughout this paper. Let CB [0,∞) := { f | f : [0,∞) → R, f , is uniformly
continuous and bounded function} with the norm ‖ f ‖CB[0,∞) = sup

x∈[0,∞)

| f (x) |.

Definition 3.1. Let f be uniformly continuous function on [0,∞) and δ > 0. The modulus of
continuity ω (f ; δ) of the function f is defined by ω (f , δ) := sup

x,y∈[0,∞)

|x−y|≤δ

|f (x)− f (y)| .

Then for any δ > 0, and each x ∈ [0,∞) the following relation holds

|f (x)− f (y)| ≤ ω (f , δ)
( |x− y|

δ
+ 1

)
. (14)

Definition 3.2. The second modulus of continuity of f ∈CB [0,∞) is defined by

ω2 (f ; δ) := sup
0<t≤δ

‖ f (.+ 2t)− 2f (t)+ f (.)‖CB[0,∞) . (15)

Definition 3.3. ([26]) The Peetre’s K-functional of the function f ∈CB [0,∞) is defined by

K (f ; δ)= inf
h∈C2

B[0,∞)

{
‖ f − h‖CB[0,∞) + δ ‖h‖C2

B[0,∞)

}
, (16)

where δ > 0 and C2
B [0,∞) := {h ∈CB [0,∞) : h′,h′′ ∈CB [0,∞)

}
with the norm

‖h‖C2
B[0,∞) := ‖h‖CB[0,∞) +

∥∥h′∥∥CB[0,∞)
+ ∥∥h′′∥∥CB[0,∞)

. (17)

It is well known that K-functional and the second order modulus of continuity, ω2

(
f ;
√

δ
)
,

are equivalent, i.e., there exists a constant C > 0 such that for all f ∈CB [0,∞) ,

K (f , δ)≤Cω2

(
f ;
√

δ
)
, δ > 0, (18)

(see [27]).

Theorem 3.1. If f ∈CB [0,∞)∩W , then
∣∣∣A(α,β,m)

n (f ;x)− f (x)
∣∣∣≤ 2ω (f ; δn) , where

W = {f : x ∈ [0,∞) and limx→∞ f (x)
1+x2 exists and is finite} and δn (x)=

√
A(α,β,m)
n

(
(s−x)2 ;x

)
.

Proof. It follows from Lemma 2.1 and monotonicity property of operators A(α,β,m)
n that∣∣∣A(α,β,m)

n (f ;x)− f (x)
∣∣∣≤A(α,β,m)

n (|f (s)− f (x)| ;x) . (19)
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Using (14), we get the following from (19)∣∣∣A(α,β,m)
n (f ;x)− f (x)

∣∣∣≤ ω (f ; δ)
(
1+ 1

δ
A(α,β,m)
n (|x− y| ;x)

)
. (20)

Applying the Cauchy–Schwarz inequality to the right side of (20), we get∣∣∣A(α,β,m)
n (f ;x)− f (x)

∣∣∣≤ ω (f ; δ)
(
1+ 1

δ

√
A(α,β,m)
n

(
(x− y)2 ;x

))
. (21)

By choosing δ := δn (x)=
√
A(α,β,m)
n

(
(x− y)2 ;x

)
in (21), the proof is completed.

Definition 3.4. Let f ∈ CB [0,∞) and α ∈ (0, 1] . The Lipschitz class of order α is defined as
follows:

LipM (α) := {f ∈CB [0,∞) : |f (t)− f (x)| ≤M |t−x|α ; t,x ∈ [0,∞)
}
, (22)

where M > 0.

Next theorem satisfies an estimate for the error of the operator A(α,β,m)
n to a function f

belongs to Lipschitz class of order α by (22).

Theorem 3.2. Let f ∈LipM (α). For x ∈ [0,∞) , we have the following inequality:∣∣∣A(α,β,m)
n (f ;x)− f (x)

∣∣∣≤Mδα
n (x) , (23)

where δn (x) :=
√
A(α,β,m)
n

(
(s−x)2 ;x

)
.

Proof. Since A(α,β,m)
n is monotonic, we have∣∣∣A(α,β,m)

n (f ;x)− f (x)
∣∣∣≤MA(α,β,m)

n
(|s−x|α ;x) . (24)

Using the Hölder inequality and from (24), we can write the following:∣∣∣A(α,β,m)
n (f ;x)− f (x)

∣∣∣≤M
(
A(α,β,m)
n

(
(s−x)2 ;x

))α
2
. (25)

Therefore, we obtain (23) by the help of the (25).

Theorem 3.3. Let f ∈C2
B [0,∞) . The following inequality holds∣∣∣A(α,β,m)

n (f ;x)− f (x)
∣∣∣≤Cω2

(
f ;
√

τn
)+ω

(
f ;

α

(n+ η) (1+ eβ)
+ m
n+ η

)
, (26)

where C is a constant and τn = 1
4

[∣∣∣A(α,β,m)
n

(
(s−x)2 ;x

)∣∣∣+( α
(n+η)(1+eβ)

+ m
n+η

)2]
.

Proof. Assume that

Ln (f ;x) :=A(α,β,m)
n (f ;x)− f

(
x+ α

(n+ η) (1+ eβ)
+ m
n+ η

)
+ f (x) (27)
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and g ∈C2
B [0,∞). The expression

g (s)= g (x)+ (s−x) g′ (x)+
s∫
x
(s− u)g′′ (u)du (28)

is the Taylor expansion of g. If we apply the operator Ln by (27) to both sides of the Eq. (28),
and use the linearity property of the operator Ln, then we have the following:

|Ln (g;x)− g (x)| =
∣∣∣∣∣∣Ln

⎛
⎝ s∫

x
(s− u)g′′ (u)du;x

⎞
⎠
∣∣∣∣∣∣ (29)

≤
∣∣∣∣∣∣A(α,β,m)

n

⎛
⎝ s∫

x
(s− u)g′′ (u)du;x

⎞
⎠
∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
x+ α

(n+η)(1+eβ)
+ m
n+η∫

x

(
x+ α

(n+ η) (1+ eβ)
+ m
n+ η

− u
)
g′′ (u)du

∣∣∣∣∣∣∣ .

Using (12) and (13) in (29), we get

≤
∣∣∣∣∣∣A(α,β,m)

n

⎛
⎝ s∫

x
(s− u)du;x

⎞
⎠
∣∣∣∣∣∣
∥∥g′′∥∥CB[0,∞)

(30)

+

∣∣∣∣∣∣∣
x+ α

(n+η)(1+eβ)
+ m
n+η∫

x

(
x+ α

(n+ η) (1+ eβ)
+ m
n+ η

− u
)
du

∣∣∣∣∣∣∣
∥∥g′′∥∥CB[0,∞)

≤
[∣∣∣A(α,β,m)

n

(
(s−x)2 ;x

)∣∣∣+( α

(n+ η) (1+ eβ)
+ m
n+ η

)2
]∥∥g′′∥∥CB[0,∞)

.

Using (17) in (30), we have

|Ln (g;x)− g (x)| ≤ 4τn ‖g‖C2
B[0,∞) ,

where τn=
∣∣∣A(α,β,m)

n
(
(s−x)2 ; δ

)∣∣∣+( α
(n+η)(1+eβ)

+ m
n+η

)
.

Now we consider the term of A(α,β,m)
n (f ;x)− f (x) .∣∣∣A(α,β,m)

n (f ;x)− f (x)
∣∣∣= |Ln (f − g;x)− (f − g) (x)|

+ |Ln (g;x)− g (x)| +
∣∣∣∣f
(

α

(n+ η) (1+ eβ)
+ m
n+ η

)
− f (x)

∣∣∣∣
≤ 4

[
‖f − g‖CB[0,∞) + τn ‖g‖C2

B[0,∞)

]
+ω

(
f ;
∣∣∣∣ α

(n+ η) (1+ eβ)
+ m
n+ η

∣∣∣∣
)
. (31)
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When infimum is taken over all g ∈ C2
B [0,∞) in (31), we obtain K-functional given by (16)

and the following inequality:∣∣∣A(α,β,m)
n (f ;x)− f (x)

∣∣∣≤ 4K (f , τn)+ω

(
f ;

α

(n+ η) (1+ eβ)
+ m
n+ η

)
. (32)

Using Eq. (18) in (32), we obtain (26). Therefore the proof is completed.

Voronovskaya proved a theorem giving asymptotic error terms for the Bernstein polynomials
for functions that can be differentiable twice (see [28]). Based on this idea, we present the following
theorem.

Theorem 3.4. If f ∈C2
B [0,∞) , then

lim
n→∞ (n+ η)

[
A(α,β,m)
n (f ;x)− f (x)

]
=
(

α

1+ eβ
+m

)
f ′ (x)+ f ′′ (x)

2!
x, (33)

for every x≥ 0.

Proof. Let f ∈C2
B [0,∞) and x ∈ [0,∞) be fixed. From the Taylor formula for f we have

f (s)= f (x)+ (s−x) f ′ (x)+ (s−x)2

2!
f ′′ (x)+ r (s,x) (s−x)2 , (34)

where r (s,x) is the Peano form of the remainder, r (.,x)∈CB [0,∞) and lims→x r (s,x)= 0.

Applying the operator A(α,β,m)
n to Taylor series of f given by (34) and using the linearity of

the operator A(α,β,m)
n , we have

(n+ η)

[
A(α,β,m)
n (f (s) ;x)− f (x)

]
= (n+ η) f ′ (x)A(α,β,m)

n (s−x;x)+ f ′′ (x)
2!

(n+ η)A(α,β,m)
n

×
(
(s−x)2 ;x

)
+ (n+ η)A(α,β,m)

n

(
r (s,x) (s−x)2 ;x

)
. (35)

If we use the Cauchy–Schwarz inequality for the last term in (35), then we get

A(α,β,m)
n

(
r (s,x) (s−x)2 ;x

)
≤
√
A(α,β,m)
n

(
r2 (s,x) ;x

)×√A(α,β,m)
n

(
(s−x)4 ;x

)
. (36)

Observe that r2 (x,x)= 0 and r2 (.,x)∈CB [0,∞). Then it follows from Theorem 2.1 that

lim
n→∞A(α,β,m)

n

(
r2 (s,x) ;x

)
= r2 (x,x)= 0, (37)

uniformly with respect to x in every compact set of [0,∞) . From (36) and (37), we have

lim
n→∞

(
A(α,β,m)
n

(
r2 (s,x) ;x

))1/2
(n+ η)

(
A(α,β,m)
n

(
(s−x)4 ;x

))1/2 = 0. (38)

Moreover, if we use (12), (13) and (38) in (35), we get (33). This completes the proof.



294 CMES, 2022, vol.130, no.1

4 Weighted Approximation for the Operator A(α,β,m)
n

Let ρ (x)= 1+x2 be weight function. Bρ [0,∞)= {f : |f (x)| ≤Mf ρ (x) ,x≥ 0
}
, where Mf is a

constant depending on f . The weighted space Bρ [0,∞) is normed linear space endowed with the

norm ‖f ‖ρ = sup
x∈R+

|f (x)|
ρ(x) . Let Cρ [0,∞) be the set of continuous function in Bρ [0,∞) .

Lemma 4.1. If f ∈Cρ [0,∞) and M > 0, then we have
∥∥∥A(α,β,m)

n (ρ;x)
∥∥∥

ρ
≤ 1+M.

Proof. In view of Lemma 2.1, we can obtain desired result.

Now, we have fact that the operators A(α,β,m)
n maps from Cρ [0,∞) to Bρ [0,∞) thanks to

Lemma 4.1.

Theorem 4.1. For every f ∈Cρ [0,∞)∩W , we have that limn→∞
∥∥∥A(α,β,m)

n (f ;x)− f (x)
∥∥∥

ρ
= 0.

Proof. From [25], it is sufficient to verify the following cases:

lim
n→∞

∥∥∥A(α,β,m)
n

(
sr;x

)−xr
∥∥∥

ρ
= 0, r= 0, 1, 2. (39)

Since A(α,β,m)
n (1;x)= 1, Eq. (39) is clear for r= 0.

For r= 1, using Lemma 2.1, we get∥∥∥A(α,β,m)
n (s;x)−x

∥∥∥
ρ
≤
∣∣∣∣ α

(n+ η) (1+ eβ)

∣∣∣∣ sup
x∈[0,∞)

1
1+x2

≤ α

(n+ η) (1+ eβ)
(40)

as n→∞ the condition in (39) holds. Similarly, we have

∥∥∥A(α,β,m)
n

(
s2;x

)
−x2

∥∥∥
ρ
≤ 1

(n+ η)

(
1+ 2α+ eβ

1+ eβ
+ 2m

)
+ 1

(n+ η)2

(
α2− 2αeβ −αe2β2

(1+ eβ)2
+ 2mα

1+ eβ
+m2

)
,

(41)

then, for r= 2, the condition in Eq. (39) holds as n→∞. In view of (40) and (41), the proof is
completed.

Corollary 4.1. For each f ∈Cρ [0,∞)∩W and a> 0, we have

lim
n→∞ sup

x∈[0,∞)

∣∣∣A(α,β,m)
n (f ;x)− f (x)

∣∣∣(
1+x2

)a+1 = 0.

Proof.

sup
x∈[0,∞)

∣∣∣A(α,β,m)
n (f ;x)− f (x)

∣∣∣(
1+x2

)1+a ≤ sup
x≤x0

∣∣∣A(α,β,m)
n (f ;x)− f (x)

∣∣∣(
1+x2

)1+a + sup
x≥x0

∣∣∣A(α,β,m)
n (f ;x)− f (x)

∣∣∣(
1+x2

)1+a

≤
∥∥∥A(α,β,m)

n (f ;x)− f (x)
∥∥∥
C[0,∞)

+‖f ‖ρ sup
x≥x0

∣∣∣∣A(α,β,m)
n

(
1+ t2;x

)−x
)∣∣∣∣(

1+x2
)1+a + sup

x≥x0

|f (x)|(
1+x2

)1+a . (42)
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Let’s examine the terms in (42). From the Theorem 2.1,
∥∥∥A(α,β,m)

n (f ;x)− f (x)
∥∥∥
C[0,∞)

→ 0 as

n→∞. For any fixed x0, by Lemma 2.1, sup
x≥x0

∣∣∣A(α,β,m)
n

(
1+t2;x)−x)∣∣∣

(1+x2)1+a
→ 0 as n→∞. When we choose

x0 > 0 so large, sup
x≥x0

|f (x)|
(1+x2)1+a

can be made small enough. These facts complete the proof.

5 Numerical Example for A(α,β,m)
n

In this section we give some examples to obtain an upper bound for the error f (x) −
A(α,β,m)
n (f ;x) in the terms of the modulus of continuity. The computations in this paper were

performed by using Maple2021TM.

Example 5.1. Let β = 1, m = η = 0, and n = 0,. . .,7. The approximation of A(α,β,m)
n to f =

sin(πx) depends on α parameter on [0,∞) is shown in the Table 1.

Table 1: The error estimation of f (x)= sin (πx) by using modulus of continuity

n Estimation for α = 0 Estimation for α = 1 Estimation for α = 2

10 0.6180339888 0.5667047132 0.5237436440
102 0.06282151816 0.06228435448 0.06183803480
103 0.006283174972 0.006277800734 0.006273335408
104 0.0006283185204 0.0006282647778 0.0006282201242
105 0.00006283185306 0.00006283131564 0.00006283086910
106 0.000006283185308 0.000006283179934 0.000006283175468
107 0.0000006283185308 0.0000006283184770 0.0000006283184324

Example 5.2. Let β = 1, m = η = 1 and n = 0,. . .,7. The approximation of A(α,β,m)
n to f =

sin(πx) depends on α parameter on [0, ∞) is shown in the Table 2.

Table 2: The error estimation of f (x)= sin (πx) by using modulus of continuity

n Estimation for α = 1 for A(α,β,m)
n

10 0.5973816442
102 0.06261992336
103 0.006281178046
104 0.0006282985716
105 0.00006283165360
106 0.000006283183314
107 0.0000006283185108

Example 5.3. The approximation of A(α,β,m)
n to f (x)= x3√

1+x2
on [0, ∞) for fixed β = 1, m=

η = 0, and n= 0,. . .7, is shown in the Table 3.
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Table 3: The error estimation of f (x)= x3√
1+x2

by using modulus of continuity

n Estimation for α = 0 Estimation for α = 1 Estimation for α = 2

10 0.3304906978 0.3040317266 0.2817895468
102 0.0351254420 0.0348269498 0.0345789146
103 0.0035332358 0.0035302160 0.0035277062
104 0.0003535304 0.0003535002 0.0003534750
105 0.0000353552 0.0000353548 0.0000353546
106 0.0000035356 0.0000035356 0.0000035356
107 0.0000003542 0.0000003542 0.0000003542

6 Conclusion

In the present paper, we have introduced a form of the operator using the generating function
of Apostol-Genocchi polynomials of order α and obtained the approximation properties and rate
of convergence of this operator. At the end of the paper, we have found an upper bound for

the error f (x)−A(α,β,m)
n (f ;x) in the terms of the modulus of continuity for some functions. For

further works, the approximation properties studied for Szász type operators involving Apostol-
Genocchi polynomials can also work for Kantorovich–Szász type operators involving Apostol-
Genocchi polynomials, moreover, the q analogues of various modifications of Apostol–Genocchi
polynomials of order α can discuss.
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