
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2022.017467

ARTICLE

Unsupervised Binary Protocol Clustering Based on Maximum
Sequential Patterns

Jiaxin Shi1, Lin Ye1,2,*, Zhongwei Li3 and Dongyang Zhan1

1School of Cyberspace Science, Harbin Institute of Technology, Harbin, 150001, China
2Science and Technology on Communication Networks Laboratory, Shijiazhuang, 050081, China
3School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China
*Corresponding Author: Lin Ye. Email: hityelin@hit.edu.cn

Received: 12 May 2021 Accepted: 20 July 2021

ABSTRACT

With the rapid development of the Internet, a large number of private protocols emerge on the network. However,
some of them are constructed by attackers to avoid being analyzed, posing a threat to computer network security.
The blockchain uses the P2P protocol to implement various functions across the network. Furthermore, the P2P
protocol format of blockchain may differ from the standard format specification, which leads to sniffing tools
such as Wireshark and Fiddler not being able to recognize them. Therefore, the ability to distinguish different
types of unknown network protocols is vital for network security. In this paper, we propose an unsupervised
clustering algorithm based on maximum frequent sequences for binary protocols, which can distinguish various
unknown protocols to provide support for analyzing unknown protocol formats. We mine the maximum frequent
sequences of protocolmessage sets in bytes. Andwe calculate the fuzzymembership of the protocol message to each
maximum frequent sequence, which is based on fuzzy set theory. Then we construct the fuzzy membership vector
for each protocol message. Finally, we adopt K-means++ to split different types of protocol messages into several
clusters and evaluate the performance by calculating homogeneity, integrity, and Fowlkes andMallows Index (FMI).
Besides, the clustering algorithms based onNeedleman–Wunsch and the fixed-length prefix are compared with the
algorithm presented in this paper. Compared with these traditional clustering methods, we demonstrate a certain
improvement in the clustering performance of our work.

KEYWORDS

Binary protocol; blockchain; maximum frequent sequence; protocol message clustering; protocol reverse
engineering

1 Introduction

Network protocol stipulates the format and sequence of the messages exchanged between the
entities at the two ends of the communication in the computer network, and the entities receive
the protocol messages and make appropriate actions. It is composed of syntax, semantics, and
timing, which determines the format of the protocol message [1]. With the rapid development

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2022.017467

484 CMES, 2022, vol.130, no.1

of the Internet, many private protocols and network services have proliferated, resulting in a
variety of protocol messages on the network. For example, the Internet-of-Things (IoT) technology
has facilitated the development of a range of new devices, which increases the diversity of
protocols [2–5]. But only a few of them use known protocol specifications. Considering economic
interests, security, privacy, etc., most protocols do not disclose their specific details to the public.
There are various protocols mixed together on the network, and malicious programs use private
protocols to avoid being tracked and analyzed, which brings great challenges to network security.
Especially in the industrial cyber-physical system, which faces various security threats, these pro-
grams can jeopardize the system’s stability [6,7]. In addition, well-known network protocols may
have different formats due to different application requirements. For example, the P2P network
adopted by the Bitcoin system in the blockchain has three types [8], so the P2P protocol of
different networks may also have certain differences. Therefore, more and more attention has been
paid to the detection and analysis of unknown protocols, and protocol reverse engineering (PRE)
emerges to analyze unknown protocols.

Protocol reverse engineering is to speculate on the possible syntax, semantics and timing
information of the protocol based on the content of the protocol messages and the behaviors
of the communicating parties without relying on any protocol description [9]. The workload of
manually analyzing the format specifications of the unknown protocol is large, time-consuming,
and error-prone. For example, it takes 12 years for the SAMBA project to basically realize the
extraction of the basic protocol specifications of the SMB protocol [10,11]. Therefore, it is very
important to improve the analysis efficiency and reduce the error probability of PRE automation
technology.

Protocol reverse analysis can be divided into two types: binary analysis of protocol imple-
mentation [12–15] and statistic analysis of unknown protocol traffic [16–19], which are realized by
analyzing the program code of the communication entity program and the protocol message field,
respectively.

The PRE process of the protocol includes input preprocessing, protocol format extraction and
state machine inference [20–22]. First, the input preprocessing captures protocol messages on the
network and transforms them into a format suitable for subsequent analysis. Second, protocol
format extraction includes field identification and format inference. And it analyzes as much as
possible to obtain a field format similar to the original protocol specification. Third, state machine
inference completes the timing inference, which is used to describe the communication events.

There are many kinds of protocol messages on the network, which makes it difficult to per-
form reverse analysis on multiple protocols directly at the same time, and the accuracy of reverse
analysis results is not satisfactory [23,24]. Therefore, in this paper, we mainly divide a variety
of unknown protocol messages into different clusters, which will facilitate future protocol reverse
work. Effective protocol message clustering necessitates the resolution of two critical issues: the
measurement of protocol message distance and the design of clustering algorithm [25]. It is worth
noting that the message distance is the basis of protocol clustering. Besides, the specifications
vary greatly according to the protocol type [26]. Therefore, the distance between two different
types of protocol messages is greater than the distance of the protocol messages in the same
type, so it can be used as a basis for protocol clustering. For example, the protocol informatics
project (PI) [27], Discover [19] and Netzob [18] use the progressive multiple sequence alignment
algorithm in the field of bioinformatics [28] to achieve the sequence alignment and the calculation
of message distance. The clustering algorithm can divide different protocol messages into different

CMES, 2022, vol.130, no.1 485

clusters, such as UPGMA [29] and the neural network [30–32] using different approaches to cluster
protocol messages.

In this paper, we propose an unsupervised protocol message clustering method based on
the fuzzy membership of maximum frequent sequences, which effectively solves the problem of
clustering difficulties caused by different protocol message lengths. The main contributions are as
follows:

1. We set the minimum support threshold and propose the maxBIDE algorithm based on the
BIDE algorithm to mine the maximum frequent sequences.

2. Based on the fuzzy theory, we calculate the fuzzy membership of the maximum frequent
sequences to each protocol message to construct the fuzzy membership vectors.

3. We introduce the number of protocol types as prior knowledge so that we can cluster
the protocol messages, adjust different minimum support thresholds and calculate homogeneity,
integrity and FMI to evaluate our method’s performance.

In summary, the rest of this paper is organized as follows: Section 2 introduces related
research on protocol reverse engineering. Section 3 formulates the problem to be solved and gives
relevant definitions. Section 4 designs the whole scheme of unknown binary protocol message
clustering, including the problems mentioned above. Section 5 experiments with the method on
the collected protocol messages and evaluates the clustering result, and this section also compares
with the existing partial clustering methods. Moreover, we also evaluate our method when the
distribution of the number of protocol messages is unbalanced. Finally, Section 6 gives the
conclusion of the experiment and the direction for further research in the future.

2 Related Work

Network protocol can be divided into the binary protocol and text protocol. A text protocol
message is composed of several human-understandable text strings, such as HTTP, SMTP, etc.,
while a binary protocol message is a combination of bit 0 and 1, such as ICMP, Modbus,
etc. The binary protocol message is indistinguishable by the human-unreadable and it does not
have any text encoding information, so prior knowledge is scarce, making manual analysis very
difficult. The methods of distinguishing unknown protocol messages can be divided into three
types: message format-oriented protocol clustering, state machine-oriented protocol clustering, and
semantic template-oriented protocol clustering [33]. Message-oriented clustering focuses on key
fields, and clusters messages based on the similarity of key fields among protocol messages. For
example, PI [27] uses the Needleman–Wunsch algorithm [28] to complete the hierarchical cluster-
ing and extracts the statistical characteristics in the messages of the same type. Discoverer [19]
further completes the token-level protocol message alignment on unknown protocol messages.
Netzob [18] is a state machine-oriented protocol reverse tool, which uses a heuristic algorithm
called the unweighted pair group method with arithmetic mean (UPGMA) [29] to cluster messages
and a state machine to describe the interaction process between protocol entities. The semantic
template-oriented method clusters protocol messages by analyzing the semantics. For example,
ASAP [17] maps the message payloads to the vector space by constructing the marked letters
derived from the separator and n-gram, and uses matrix factorization [34] to identify the basic
direction and coordinate tuples to cluster different protocol messages. Sun et al. [25] defines Token
Format Distance (TFD) and Message Format Distance (MFD) by introducing basic rules of
Augmented Backus Naur Form (ABNF) [35] to calculate protocol message distances, then uses
the DBSCAN algorithm [36] to cluster protocol messages, and uses Silhouette Coefficient and

486 CMES, 2022, vol.130, no.1

Dunn Validity Index [37] to determine the best clustering parameters to improve the quality of
clustering performance.

Meanwhile, there are also many message clustering methods for binary protocol. ProDe-
coder [38] clusters messages by exploiting the semantics of protocol messages and using the
information bottleneck(IB) algorithm [39], which is more applicable to asynchronous protocols
compared to Netzob. Cai et al. [40] infers the binary protocol format by using the Hidden semi-
Markov model (HSMM) [41], which maximizes the probability of message segmentation and
keyword selection. And an affinity communication mechanism [42] is introduced to measure the
similarity in protocol messages. Tao et al. [43] measures the tightness of clusters by calculating
Silhouettes Coefficient [44]. In the preprocessing stage, K-means is used to implement hierarchical
clustering of protocol messages, which avoids the problem of sparse message characteristics in the
cluster.

3 Problem Statement

Let the protocol message set M contain several messages:

M =M1,M2, . . . ,Mn (1)

where n represents the number of protocol messages, and each message contains several bytes:

mi = b1,b2, . . . ,bli (2)

where bj is the possible value for each byte and bj ∈ [0, 255], and li denotes the length of mi.

Let α = {a1,a2, . . . ,al} be a sequence pattern, and mi = b1, b2, . . ., bli contain α when a1 = bi1,
a2 = bi2, . . ., al = bil , which denotes α ⊂mi. Therefore, the support of α in M is denoted as:

Sup (α)=

|M|∑
i=1

I (α ⊂mi)

|M| (3)

where I is the indicator function, if α ⊂mi, then I (α ⊂mi)= 1; otherwise I (α ⊂mi)= 0.

Given a threshold �, α is defined as a frequent sequence if Sup(α) ≥ �. Furthermore, given
a frequent sequence set B, if there is no sequence β ∈ B and α ⊂ β, we define α as a maximum
frequent sequence.

Let the set of maximum frequent sequences be C = {c1, c2, . . . , ck}. The fuzzy membership
vector of a protocol message denotes c(mi) = (wi1, wi2, . . ., wik), where wij reflects the membership
of maximal frequent sequence cj to message mi, which is calculated by the following equation:

wij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
1−

(
LCSS

(
cj,mi

)
length

(
cj
)
)2

LCSS
(
cj,mi

)≤ length
(
cj
)

2(
LCSS

(
cj,mi

)
length

(
cj
)
)2

LCSS
(
cj,mi

)
>
length

(
cj
)

2

(4)

where LCSS(cj,mi) is the length of the longest common subsequence between cj and mi, and
length(cj) is the number of bytes that cj contains. The closer wij approaches to 0, the more similar
the maximum frequent sequence is to the protocol message.

CMES, 2022, vol.130, no.1 487

Suppose there are k types of protocol messages and the number of messages is n. These
messages need to be divided into k clusters, which means the same type of protocol messages
belong to the same cluster. In this paper, we use the above metrics related to the maximum
frequent sequence to cluster protocol messages, and evaluate the clustering performance at last.

4 Unsupervised Clustering Based on Maximum Frequent Sequences

The unknown binary protocol message clustering based on statistics requires the diversity of
the protocols, so as many protocol messages should be collected as possible on the network. Then
the protocol messages are processed as shown in Fig. 1, including maximum frequent sequence
mining, fuzzy membership calculation, and message clustering.

First, we collect the protocol messages to obtain the payloads. To extract their characteristics,
we mine the maximum frequent sequences by using the maxBIDE algorithm, which is based on
the BIDE algorithm [45]. Then, based on the fuzzy set theory, we transform each message into
a fuzzy membership vector. Therefore, we obtain the vectors with the same dimension, which
are used to subsequent message clustering. Finally, we use K-means++ to cluster the collected
protocol messages with these vectors. Then we use homogeneity, completeness and Fowlkes and
Mallows Index (FMI) [46] to evaluate the performance so that we can obtain the best clustering
parameters.

Figure 1: Binary protocol clustering process

488 CMES, 2022, vol.130, no.1

4.1 Maximum Frequent Sequence Mining
Since a protocol message is composed of several ordered binary bytes, there should also be

an order relationship among bytes of maximum frequent sequences. There are many methods to
mine frequent sequences such as CLOSET [47], CHARM [48], CloSpan [49], Prefixspan [50], etc.
But most of them need to maintain the mined frequent sequences in memory to detect whether
there is an already mined maximum sequence that includes the new mined sequence. Therefore,
the memory requirement is high when the number of candidate sequences is too large.

To solve the problem of high memory requirements, Wang et al. [45] proposes the BIDE
algorithm, designing a two-way extended closed frequent sequence detection technique, which
defines a frequent sequence as a closed frequent sequence when there is no forward-extension event
or backward-extension event. Since BIDE does not need to maintain any candidate sequences, it
does not require high memory compared to these traditional algorithms. Therefore, in this paper,
we propose the maxBIDE algorithm which takes the advantage of the BIDE algorithm to mine
the maximum frequent sequences of the protocol messages by judging whether there are any
two-way extension events in these sequences.

To determine whether a sequence is a maximum frequent sequence, we redefine the extension
events as follows:

Definition 4.1. Given a sequence S= b1, b2, . . ., bn and a super-sequence whose Sup(S′) > �,
where � is the minimum support threshold of the protocol messages. If there is a byte b′, where
S′ = b1, b2, . . ., bn, b′, we define b′ as a max-forward-extension event. The byte is defined as a max-
backward-extension event while the sequence S′ = b′, b1, b2, . . ., bn or S′ = b1, b2, . . ., b′, . . ., bn.

The BIDE algorithm uses Backscan to determine whether the sequence is prunable: Given a
prefix sequence e = e1, e2, . . ., en, if there is a byte e′ shown in the i-th semi-maximum period
of e, the prefix sequence will have a max-backward-extension event. Therefore, it cannot be a
closed frequent sequence, which means it is prunable. In the maxBIDE algorithm, we define
maxBackScan to determine whether we can prune the sequence: When the occurrence of byte
e′ in the i-th semi-maximum period exceeds �, it means the support of e′, e1, e2, . . ., en or e1,
e2, . . ., e′, . . ., en exceeds �, so e will not be a maximum frequent sequence. For example, suppose
that the minimum support threshold is 3, the prefix B’s 1-th semi-maximum period is shown in
Table 1. The support of byte A is 3, which is equal to the minimum support threshold, so AB is
a frequent prefix. Therefore, these sequences whose prefix is B are not maximum sequences and
we need to prune A.

Table 1: B’s 1-th semi-maximum period

Sequence 1-th semi-maximum period

CAABC CAA
ABCB A
CABC CA
BBCA ∅

The main idea of the maxBIDE algorithm is shown in Algorithms 1–3. Firstly, it obtains
the frequent 1 sequence set F1 (Algorithm 1, Line 2), then each f 1 ∈ F1 is used as a prefix
to construct pseudo projected database [45] msgDBf1 (Algorithm 1, Lines 3 and 4), and we

CMES, 2022, vol.130, no.1 489

judge the frequent 1 sequences whether they have any max-backward-extension events by using
maxBackScan (Algorithm 2). If not, it will calculate the number of max-forward-extension events
by maxbide (Algorithm 3). If there is neither max-forward-extension event nor max-backward-
extension event, we output it as a maximum frequent sequence. Otherwise, we extend it and
process the maxbide recursively (Algorithm 3, Line 10).

Algorithm 1: maxBIDE
Input: msgDB: protocol messages; minSup: minimum support threshold;
Output: frequent maximum sequence sets FMS
1: FMS=∅;
2: F1 = frequent 1-sequences(msgDB, minSup);
3: for each f 1 ∈ F1 do
4: msgDBf1 = pseudo projected database(msgDB, f 1);
5: end for
6: for each f 1 ∈ F1 do
7: if !maxBackScan(f 1, msgDBf1) then
8: maxbide(msgDBf1, f 1, minSup, FMS);
9: end if

10: end for

Algorithm 2: maxBackScan

Input: Sp: prefix sequence; msgDBSp : minimum support threshold; minSup: minimum support
threshold;

Output: whether Sp can be pruned
1: for ei ∈ Sp do
2: semiP= the i-th semi-maximum period of Sp;
3: for item ∈ semiP do
4: if sup(item) > minSup then
5: return true;
6: end if
7: end for
8: end for
9: return false

4.2 Fuzzy Membership Vector Construction and Protocol Message Clustering
In order to divide messages into clusters, a metric is required to measure the distance among

them. However, the lengths among these messages are quite different, their distances cannot be cal-
culated by Euclidean distance [51], Manhattan distance [52], etc. Nevertheless, the characteristics
of messages vary from protocol to protocol, so each protocol may have frequent subsequences that
are significantly different from those of others. A protocol message sequence may not completely
contain a mined frequent subsequence, but there may be a slight difference on 1–2 bytes, which is
consistent with the ambiguity in nature. So this paper defines a fuzzy membership function based
on the fuzzy set theory [53] to measure the membership of each maximum frequent sequence to
each protocol message, so it can convert protocol messages with different lengths into the fuzzy

490 CMES, 2022, vol.130, no.1

membership vectors with the same dimension. Then we calculate the distance among these vectors
and cluster messages by using the K-means++ [54] algorithm, which separates the cluster centers
as much as possible.

Algorithm 3: maxbide

Input: Sp: prefix sequence; msgDBSp : projected sequence database; minSup: minimum support
threshold;

Output: the set of frequent maximum sequences FMS
1: LFI = locally frequent items(msgDBSp);
2: mFCS= |{z inLFI|sup (z) >minSup}|;
3: if mFCS== 0 then
4: FMS= FMS∪{Sp};
5: end if
6: for i in LFI do
7: Sip=< Sp, i>;

8: msgDBS
i
p = pseudo projected database(msgDBSp, Sip);

9: end for
10: for i in LFI do
11: if !maxBackScan(Sip, msgDB

Sip) then

12: maxbide(msgDBS
i
p , Sip, minSup, FMS);

13: end if
14: end for

Let X be a vector set. Firstly, we set the number of clustering centers to k, then K-means++
selects a fuzzy membership vector as an initial clustering center randomly. Second, it obtains the
minimum distance from the remaining vectors to all current cluster centers Dx, x ∈X . Each vector
may be selected as the next clustering center with the possibility of Dx∑

x∈X
Dx

, until the number of

clustering centers reaches k. Finally, the remaining vectors are clustered according to the distances.

5 Experiment and Analysis

In this section, we carry out the experiment on four protocols to evaluate the performance
of our method, including Modbus/TCP, Ethernet/IP, ICMP and DHCP, where Modbus/TCP and
Ethernet/IP protocol messages come from DARPA [55] and HAI [56], while ICMP and DHCP
messages are obtained by monitoring the network. According to the analysis process shown in
Fig. 1, we are able to divide mixed protocol messages into several clusters.

5.1 Evaluation Indexes
Overall, we expect the messages in a cluster to have the same protocol type. Since a cluster

represents a type of unknown protocol, each cluster is supposed to contain all of the correspond-
ing protocol messages. To evaluate these factors quantitatively, we introduce the three commonly
used indexes: homogeneity is used to measure the closeness of each cluster contains only one
type of unknown protocol messages, completeness indicates how much the protocol messages of
the same class are assigned to the same cluster, and FMI is the overall evaluation of clustering
performance.

CMES, 2022, vol.130, no.1 491

The homogeneity and completeness are defined as follows:

homogeneity= 1− H (G |Q)

H (G)
(5)

completeness= 1− H (Q |G)

H (Q)
(6)

where H (G |Q) = −
|G|∑
g=1

|Q|∑
q=1

ng,q
n log

(
ng,q
n

)
and H (G) = −

|G|∑
g=1

ng
n log

(ng
n

)
, ng is the number of mes-

sages whose protocol type is g, and ng, q is the number of messages whose protocol type is g
but they are mistakenly clustered to the cluster whose protocol type is q. Completeness can be
defined symmetrically. Homogeneity is used to measure the purity of each cluster’s protocol type,
and the closer homogeneity is to 1, the more consistent the actual protocol type of the messages
in the cluster are. Correspondingly, the closer completeness is to 1, the more completely a cluster
contains a certain type of protocol message.

FMI is the geometric mean of precision rate and recall rate, which is used to comprehensively
evaluate the clustering performance. Let message mi’s type be λi, and mj’s type be λj, they are
clustered into λ′i and λ′j. We can calculate the FMI of the clustering results:

FMI =
√

a2

(a+ b) (a+ c)
(7)

where a, b, and c are calculated as follows:

a=
∣∣∣(mi,mj

) |λi = λj, λ′i = λ′j, i< j
∣∣∣ (8)

b=
∣∣∣(mi,mj

) |λi = λj, λ′i 	= λ′j, i< j
∣∣∣ (9)

c=
∣∣∣(mi,mj

) |λi 	= λj, λ′i = λ′j, i< j
∣∣∣ (10)

5.2 Experiment Results and Analysis
The numbers of the four types of protocol messages are shown in Table 2. We shuffle the

messages and use the proposed method to cluster them, then use the above metrics to evaluate
the performance.

Table 2: Details of protocol datasets and the number of four protocols

Protocol Number

Modbus/TCP 4000
Ethernet/IP 4000
ICMP 4000
DHCP 359

492 CMES, 2022, vol.130, no.1

We set the minimum support threshold to 0.10, and then perform the mining process and
get the results shown in Table 3. Obviously, the support of each sequence in Table 3 exceeds the
minimum support threshold.

Table 3: Maximum frequent sequence results of 0.10-minimum support threshold

Maximum frequent sequence Support

(0 × 04, 0 × 00, 0 × 00, 0 × 00) 1098
(0 × 08, 0 × F6, 0 × 00, 0 × 00) 1099
(0 × 00, 0 × 00, 0 × 00, 0 × 04, 0 × 00, 0 × 00) 1097
(0 × 00, 0 × 00, 0 × 00, 0 × 06, 0 × FF, 0 × 00, 0 × 64) 1040
(0 × 70, 0 × 00, 0 × 00, 0 × 02, 0 × 10, 0 × 00, 0 × 00, 0 × 00, 0 × 00, 0 × 00) 1272
.

The number of maximum frequent sequences is different according to the minimum support
threshold, as shown in Fig. 2. When the minimum support threshold exceeds 0.45, there is only
one maximum frequent sequence, which is inappropriate for protocol clustering. Therefore, we set
the range of minimum support threshold to (0, 0.45], with 0.05 increment to cluster protocol mes-
sages and evaluate the performance. The higher the FMI, the better the clustering performance.
Fig. 3 shows the results of homogeneity, completeness and FMI on different minimum support
thresholds. According to the results, we find that the FMI reaches the maximum value of 0.9541
when the minimum support is 0.35. Although its completeness and homogeneity do not reach the
maximum, the clustering performance outperforms all other minimum support thresholds.

Figure 2: The number of maximum frequent sequences with different minimum support threshold

Generally speaking, as the minimum support threshold increases, the number of maximum
frequent sequences mined decreases, reducing the dimension of fuzzy membership vector, which
results in poor clustering performance in homogeneity, completeness and FMI. However, exper-
iments show that this is not the case. Fig. 3 shows that homogeneity, completeness and FMI
change erratically. The reason is that some maximum frequent sequences accurately reflect the
characteristics of messages, while others do not. When the threshold increases, some sequences
are removed. As a result, the clustering performance improves or decades correspondingly. For

CMES, 2022, vol.130, no.1 493

example, the maximum frequent sequences of 0.30 minimum support threshold contain (0 × 01,
0 × 00) which is not in that of the 0.35 minimum support threshold. However, the performance
of the 0.35 minimum support threshold drops dramatically, showing that (0 × 01, 0 × 00)
has a positive influence on the clustering results in protocol messages clustering. Therefore, we
only focus on when the overall clustering performance reaches the best and its corresponding
minimum support threshold. Further research can be conducted to search for a solution to remove
unreasonable maximum frequent sequences which have a negative influence on the performance
of clustering.

Figure 3: Results of homogeneity, completeness and FMI of different minimum support threshold

However, we cannot accurately determine the number of types of unknown protocols in
advance. So many values of k are set to test our method’s performance. Suppose we have already
known that there is more than one type of unknown protocol, which means k > 1, the best
performance on the experiment of Table 2 for each k is shown in Table 4. Corresponding to other
values, our method performs best when k= 4, which means that the performance of our method
is influenced by k.

Table 4: The performance of different k

k Homogeneity Completeness FMI

2 0.5795 0.9986 0.8083
3 0.8462 0.9153 0.9451
4 0.8981 0.9047 0.9574
5 0.7483 0.7937 0.8511

494 CMES, 2022, vol.130, no.1

We also compare our method with the K-means algorithm based on the fixed-length prefix
(FL-Kmeans) and Needlem-Wunsch (NW-Kmeans) in homogeneity, completeness and FMI. Due
to the differences in the characteristics of different types of protocols, K-means based on fixed-
length prefix extracts a certain length of message prefix as the protocol characteristic. Thus,
the first 32 bytes of each message are intercepted as the basis of clustering. The K-means
based on Needleman–Wunsch uses the idea of bioinformatics sequence alignment to compare
protocol messages in pairs, and calculates the number of common bytes as the distance among
messages as the basis for clustering. In Fig. 4, we find that FL-Kmeans algorithm’s performance
is significantly lower than the other two algorithms. The possible reason is that it loses some key
fields by dropping partial byte sequences of each message. The homogeneity of NW-Kmean is 1,
reaching the highest level, while FL-Kmeans and our method are 0.7712 and 0.8891. However, the
completeness and FMI of our method are higher than the other two methods, which are 0.9050
and 0.9541, indicating the advantage of our method in terms of overall performance.

Figure 4: Comparison between FL-Kmeans, NW-Kmeans and this paper’s method on homogene-
ity, completeness and FMI

The performance of our method relies on the number of collected protocol messages, if
the number of messages for a particular protocol is very small, it is too difficult to extract
the characteristics of that protocol. For example, the numbers of collected messages are shown
in Table 5, the Modbus/TCP messages far outnumber other types of protocol messages. In this
condition, we use different minimum support thresholds to extract the characteristics of these
messages, construct the fuzzy membership vectors and divide them into clusters. We also set
several values of k to get the best performance. The results are shown in Table 6. Our method
performs best when k = 3, with the maximum homogeneity, completeness and FMI, which are
0.9404, 0.9864 and 0.9940. In fact, Ethernet/IP, ICMP and DHCP messages account for only 3.73
percent of the total messages, so some characteristics of them may not be included in the fuzzy
membership vectors, resulting in the above results. Although the performance of k= 4 is not the
best, whose FMI is 0.0123 lower than that of k= 3, the overall performance is still satisfactory.
So our method is also applicable to the condition where the number distribution of messages is
unbalanced.

CMES, 2022, vol.130, no.1 495

Table 5: Protocol messages with an unbalanced number distribution

Protocol Number

Modbus/TCP 10000
Ethernet/IP 20
ICMP 14
DHCP 354

Table 6: The performance of protocol messages with unbalanced number distribution

k Homogeneity Completeness FMI

2 0.6939 0.9717 0.9444
3 0.9404 0.9864 0.9940
4 0.8295 0.8474 0.9622
5 0.5645 0.8246 0.9110

6 Conclusion and Future Work

In this paper, we propose a protocol clustering method based on the fuzzy membership of
maximum frequent sequence to distinguish different types of unknown binary protocol messages.
We first design the maxBIDE to mine maximum frequent sequences based on the BIDE algorithm,
taking the advantage that it does not need to maintain the mined frequent sequences in memory.
Then we calculate the fuzzy membership of a message to each maximum frequent sequence by
(4) so that we can get the fuzzy membership vectors with the same length, and calculate the
distances among these vectors to cluster messages by K-means++, whose inputs are the distances
between each pair of messages. Besides, we constantly adjust the algorithm’s parameters to obtain
the best evaluation performance. According to the results, we find the FMI reaches the maximum
value of 0.9541 when the minSup is 0.35. Compared with FL-Kmeans and NW-Kmeans, although
homogeneity and completeness are not the best, the FMI is better than other methods, which
are 0.8199 and 0.9307, respectively. Therefore, our method is suitable for distinguishing different
binary protocols. Although our method may be influenced by the number of each type of protocol
messages, it is also applicable to protocol messages with an unbalanced number distribution.
However, the maxBIDE algorithm produces some redundant sequences, which are similar to
others, so some efforts can be made to remove these sequences in future work.

Funding Statement: This work was supported by National Natural Science Foundation of China
under Grant No. 61872111 and Sichuan Science and Technology Program (No. 2019YFSY0049)
and this work was also supported by the “Project for the Development and Application of
Safety Testing and Verification Platform for Industrial Robots” of the Ministry of Industry and
Information Technology.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

496 CMES, 2022, vol.130, no.1

References
1. Kurose, J. F. (2005). Computer networking: A top-down approach featuring the internet. London: Pearson

Education India.
2. Qiu, J., Tian, Z., Du, C., Zuo, Q., Su, S. et al. (2020). A survey on access control in the age of Internet of

Things. IEEE Internet of Things Journal, 7(6), 4682–4696. DOI 10.1109/JIOT.2020.2969326.
3. Shafiq, M., Tian, Z., Bashir, A. K., Du, X., Guizani, M. (2020). Corrauc: A malicious bot-IoT traffic

detectionmethod in IoT network usingmachine-learning techniques. IEEE Internet of Things Journal, 8(5),
3242–3254. DOI 10.1109/JIOT.2020.3002255.

4. Tian, Z., Luo, C., Qiu, J., Du, X., Guizani, M. (2019). A distributed deep learning system for web
attack detection on edge devices. IEEE Transactions on Industrial Informatics, 16(3), 1963–1971. DOI
10.1109/TII.2019.2938778.

5. Luo, C., Tan, Z., Min, G., Gan, J., Shi, W. et al. (2020). A novel web attack detection system for internet
of things via ensemble classification. IEEE Transactions on Industrial Informatics, 17(8), 5810–5818. DOI
10.1109/TII.2020.3038761.

6. Sun, Y., Tian, Z., Li, M., Su, S., Du, X. et al. (2020). Honeypot identification in softwarized indus-
trial cyber-physical systems. IEEE Transactions on Industrial Informatics, 17(8), 5542–5551. DOI
10.1109/TII.2020.3044576.

7. Shafiq, M., Tian, Z., Bashir, A. K., Du, X., Guizani, M. (2020). IoT malicious traffic identifica-
tion using wrapper-based feature selection mechanisms. Computers & Security, 94(4), 101863. DOI
10.1016/j.cose.2020.101863.

8. Crosby,M., Nachiappan, Pattanayak,P., Verma, S., Kalyanaraman, V. et al. (2016). Blockchain technology:
Beyond bitcoin. Applied Innovation, 2(6–10), 71.

9. Team, C. C. (2021). Capec-capec-192: Protocol reverse engineering (version 2.6). https://web.archive.
org/web/20140725160124/http://capec.mitre.org.

10. Sundaram, R. M., Vishnupriya, M. R., Biradar, S. K., Laha, G. S., Reddy, G. A. et al. (2008). Marker
assisted introgression of bacterial blight resistance in samba mahsuri, an elite indica rice variety. Euphytica,
160(3), 411–422. DOI 10.1007/s10681-007-9564-6.

11. Yun, X., Wang, Y., Zhang, Y., Zhou, Y. (2015). A semantics-aware approach to the automated
network protocol identification. IEEE/ACM Transactions on Networking, 24(1), 583–595. DOI
10.1109/TNET.2014.2381230.

12. Chen, Y., Lan, T., Venkataramani, G. (2019). Exploring effective fuzzing strategies to analyze commu-
nication protocols. Proceedings of the 3rd ACM Workshop on Forming an Ecosystem Around Software
Transformation, pp. 17–23. London, UK. DOI 10.1145/33.

13. Stute, M., Kreitschmann, D., Hollick, M. (2019). Reverse engineering and evaluating the apple wire-
less direct link protocol. GetMobile: Mobile Computing and Communications, 23(1), 30–33. DOI
10.1145/3351422.3351432.

14. Ritsch, H., Sneed, H. (1993). Reverse engineering programs via dynamic analysis. Proceedings of Working
Conference on Reverse Engineering, pp. 192–201. Baltimore, Maryland: IEEE Computer Society Press.

15. Newsome, J., Brumley, D., Franklin, J., Song, D. (2006). Replayer: Automatic protocol replay by binary
analysis. Proceedings of the 13th ACMConference on Computer and Communications Security, pp. 311–321.
Alexandria, Virginia, USA. DOI 10.1145/1180405.1180444.

16. Luo, J. Z., Yu, S. Z. (2013). Position-based automatic reverse engineering of network protocols. Journal of
Network and Computer Applications, 36(3), 1070–1077. DOI 10.1016/j.jnca.2013.01.013.

17. Krueger, T., Krämer, N., Rieck, K. (2010). ASAP: Automatic semantics-aware analysis of network payloads.
International Workshop on Privacy and Security Issues in Data Mining and Machine Learning, pp. 50–63.
Springer, Berlin, Heidelberg. DOI 10.1007/978-3-642-19896-0_5.

18. Bossert, G., Guihéry, F., Hiet, G. (2014). Towards automated protocol reverse engineering using semantic
information. Proceedings of the 9th ACM Symposium on Information, Computer and Communications
Security, pp. 51–62. Kyoto, Japan. DOI 10.1145/2590296.2590346.

http://dx.doi.org/10.1109/JIOT.2020.2969326
http://dx.doi.org/10.1109/JIOT.2020.3002255
http://dx.doi.org/10.1109/TII.2019.2938778
http://dx.doi.org/10.1109/TII.2020.3038761
http://dx.doi.org/10.1109/TII.2020.3044576
http://dx.doi.org/10.1016/j.cose.2020.101863
https://web.archive.org/web/20140725160124/http://capec.mitre.org
https://web.archive.org/web/20140725160124/http://capec.mitre.org
http://dx.doi.org/10.1007/s10681-007-9564-6
http://dx.doi.org/10.1109/TNET.2014.2381230
http://dx.doi.org/10.1145/33
http://dx.doi.org/10.1145/3351422.3351432
http://dx.doi.org/10.1145/1180405.1180444
http://dx.doi.org/10.1016/j.jnca.2013.01.013
http://dx.doi.org/10.1007/978-3-642-19896-0_5
http://dx.doi.org/10.1145/2590296.2590346

CMES, 2022, vol.130, no.1 497

19. Cui, W., Kannan, J., Wang, H. J. (2007). Discoverer: Automatic protocol reverse engineering from network
traces. USENIX Security Symposium, pp. 1–14. Boston, MA, USA.

20. Narayan, J., Shukla, S. K., Clancy, T. C. (2015). A survey of automatic protocol reverse engineering tools.
ACM Computing Surveys, 48(3), 1–26. DOI 10.1145/2840724.

21. Duchene, J., Le Guernic, C., Alata, E., Nicomette, V., Kaâniche, M. (2018). State of the art of network
protocol reverse engineering tools. Journal of Computer Virology and Hacking Techniques, 14(1), 53–68.
DOI 10.1007/s11416-016-0289-8.

22. Kleber, S., Maile, L., Kargl, F. (2018). Survey of protocol reverse engineering algorithms: Decomposi-
tion of tools for static traffic analysis. IEEE Communications Surveys & Tutorials, 21(1), 526–561. DOI
10.1109/COMST.2018.2867544.

23. Shafiq, M., Tian, Z., Bashir, A. K., Jolfaei, A., Yu, X. (2020). Data mining and machine learning methods
for sustainable smart cities traffic classification: A survey. Sustainable Cities and Society, 60(1), 102177.
DOI 10.1016/j.scs.2020.102177.

24. Shafiq, M., Tian, Z., Sun, Y., Du, X., Guizani, M. (2020). Selection of effective machine learning algorithm
and bot-IoT attacks traffic identification for Internet of Things in smart city. Future Generation Computer
Systems, 107(4), 433–442. DOI 10.1016/j.future.2020.02.017.

25. Sun, F., Wang, S., Zhang, C., Zhang, H. (2019). Unsupervised field segmentation of unknown protocol
messages. Computer Communications, 146(4), 121–130. DOI 10.1016/j.comcom.2019.06.013.

26. Li, W., Dou, Z., Qi, L. (2020). Communication protocol classification based on LSTM and DBN. IEEE
Access, 8, 91818–91828. DOI 10.1109/ACCESS.2020.2979768.

27. Beddoe, M. A. (2004). Network protocol analysis using bioinformatics algorithms. Toorcon. http://phreako
cious.net/PI/.

28. Needleman, S. B., Wunsch, C. D. (1970). A general method applicable to the search for similari-
ties in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453. DOI
10.1016/0022-2836(70)90057-4.

29. Sokal, R. R. (1958). A statistical method for evaluating systematic relationships. The University of Kansas
Science Bulletin, 38, 1409–1438.

30. Sun, R., Yang, B., Peng, L., Chen, Z., Zhang, L. et al. (2010). Traffic classification using probabilistic neural
networks. Sixth InternationalConference on Natural Computation, vol. 4, pp. 1914–1919.Yantai, Shandong,
China, IEEE. DOI 10.1109/ICNC.2010.5584648.

31. Shen, F., Ren, X. (2007). Research of P2P traffic identification based on BP neural network. Third Inter-
national Conference on Intelligent Information Hiding and Multimedia Signal Processing, vol. 2, pp. 75–78.
Kaohsiung, Taiwan, IEEE. DOI 10.1109/IIH-MSP.2007.260.

32. Raahemi, B., Kouznetsov, A., Hayajneh, A., Rabinovitch, P. (2008). Classification of peer-to-peer traffic
using incremental neural networks (fuzzy ARTMAP). Canadian Conference on Electrical and Computer
Engineering, pp. 719–724. Niagara Falls, ON, Canada, IEEE. DOI 10.1109/CCECE.2008.4564629.

33. Sun, F., Wang, S., Zhang, C., Zhang, H. (2020). Clustering of unknown protocol messages based on format
comparison. Computer Networks, 179(4), 107296. DOI 10.1016/j.comnet.2020.107296.

34. Lee, D. D., Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization.Nature,
401(6755), 788–791. DOI 10.1038/44565.

35. Crocker, D., Overell, P. (1997). Augmented BNF for syntax specifications: ABNF. Technical report, RFC
4234.

36. Ester,M., Kriegel, H.-P., Sander, J., Xu,X. (1996).A density-based algorithm for discovering clusters in large
spatial databaseswith noise. Proceedings of the Second InternationalConference on KnowledgeDiscovery and
Data Mining, vol. 96, pp. 226–231. Portland, Oregon.

37. Bezdek, J. C., Pal, N. R. (1995). Cluster validation with generalized dunn’s indices. Proceedings of Second
New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, pp.
190–193. Dunedin, New Zealand, IEEE. DOI 10.1109/ANNES.1995.499469.

38. Wang, Y., Yun, X., Shafiq, M. Z., Wang, L., Liu, A. X. et al. (2012). A semantics aware approach to
automated reverse engineering unknown protocols. 2012 20th IEEE International Conference on Network
Protocols, pp. 1–10. Austin, TX, USA, IEEE. DOI 10.1109/ICNP.2012.6459963.

http://dx.doi.org/10.1145/2840724
http://dx.doi.org/10.1007/s11416-016-0289-8
http://dx.doi.org/10.1109/COMST.2018.2867544
http://dx.doi.org/10.1016/j.scs.2020.102177
http://dx.doi.org/10.1016/j.future.2020.02.017
http://dx.doi.org/10.1016/j.comcom.2019.06.013
http://dx.doi.org/10.1109/ACCESS.2020.2979768
http://phreakocious.net/PI/
http://phreakocious.net/PI/
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1109/ICNC.2010.5584648
http://dx.doi.org/10.1109/IIH-MSP.2007.260
http://dx.doi.org/10.1109/CCECE.2008.4564629
http://dx.doi.org/10.1016/j.comnet.2020.107296
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1109/ANNES.1995.499469
http://dx.doi.org/10.1109/ICNP.2012.6459963

498 CMES, 2022, vol.130, no.1

39. Slonim, N., Tishby, N. (2000). Document clustering using word clusters via the information bottleneck
method. Proceedings of the 23rd Annual InternationalACMSIGIRConference on Research andDevelopment
in Information Retrieval, pp. 208–215. Athens, Greece. DOI 10.1145/345508.345578.

40. Cai, J., Luo, J. Z., Lei, F. (2016). Analyzing network protocols of application layer using hidden semi-markov
model.Mathematical Problems in Engineering, 2016, 1–14. DOI 10.1155/2016/9161723.

41. Yu, S. Z. (2010).Hidden semi-markovmodels. Artificial Intelligence, 174(2), 215–243.DOI 10.1016/j.artint.
2009.11.011.

42. Frey, B. J., Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814),
972–976. DOI 10.1126/science.1136800.

43. Tao, S., Yu, H., Li, Q. (2016). Bit-oriented format extraction approach for automatic binary protocol reverse
engineering. IET Communications, 10(6), 709–716. DOI 10.1049/iet-com.2015.0797.

44. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics, 20, 53–65. DOI 10.1016/0377-0427(87)90125-7.

45. Wang, J., Han, J. (2004). Bide: Efficient mining of frequent closed sequences. Proceedings of
20th International Conference on Data Engineering, pp. 79–90. Boston, MA, USA, IEEE. DOI
10.1109/ICDE.2004.1319986.

46. Fowlkes, E. B., Mallows, C. L. (1983). A method for comparing two hierarchical clusterings. Journal of the
American Statistical Association, 78(383), 553–569. DOI 10.1080/01621459.1983.10478008.

47. Fang, G., Wu, Y., Li, M., Chen, J. (2015). An efficient algorithm for mining frequent closed itemsets.
Informatica, 39(1). http://informatica.si/index.php/informatica/article/view/754.

48. Zaki, M. J., Hsiao, C. J. (2002). Charm: An efficient algorithm for closed itemset mining. Proceedings
of the SIAM International Conference on Data Mining, pp. 457–473. Arlington, VA, USA, SIAM. DOI
10.1137/1.9781611972726.27.

49. Yan, X., Han, J., Afshar, R. (2003). Clospan: Mining: Closed sequential patterns in large datasets. Proceed-
ings of the 2003 SIAM International Conference on Data Mining, pp. 166–177. San Francisco, CA, USA,
SIAM. DOI 10.1137/1.9781611972733.15.

50. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H. et al. (2004). Mining sequential patterns by pattern-
growth: The prefixspan approach. IEEE Transactions on Knowledge and Data Engineering, 16(11), 1424–
1440. DOI 10.1109/TKDE.2004.77.

51. Danielsson, P. E. (1980). Euclidean distance mapping. Computer Graphics and Image Processing, 14(3),
227–248. DOI 10.1016/0146-664X(80)90054-4.

52. de Maesschalck, R., Jouan-Rimbaud, D., Massart, D. L. (2000). The mahalanobis distance. Chemometrics
and Intelligent Laboratory Systems, 50(1), 1–18. DOI 10.1016/S0169-7439(99)00047-7.

53. Klir, G., Yuan, B. (1995). Fuzzy sets and fuzzy logic, vol. 4. New Jersey: Prentice Hall.
54. Arthur, D., Vassilvitskii, S. (2006). k-means++ The advantages of careful seeding. Technical Report.

Stanford.
55. Clark, D. (1988). The design philosophy of the darpa internet protocols. Proceedings on Communica-

tions Architectures and Protocols, pp. 106–114. Cathedral Hill Hotel, San Francisco, CA, USA. DOI
10.1145/52324.52336.

56. Shin, H. K., Lee, W., Yun, J. H., Kim, H. (2020). HAI 1.0: Hil-based augmented ICS security dataset. 13th
USENIX Workshop on Cyber Security Experimentation and Test, pp. 1–5. Boston, MA, USA.

http://dx.doi.org/10.1145/345508.345578
http://dx.doi.org/10.1155/2016/9161723
http://dx.doi.org/10.1016/j.artint.2009.11.011
http://dx.doi.org/10.1016/j.artint.2009.11.011
http://dx.doi.org/10.1126/science.1136800
http://dx.doi.org/10.1049/iet-com.2015.0797
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1109/ICDE.2004.1319986
http://dx.doi.org/10.1080/01621459.1983.10478008
http://informatica.si/index.php/informatica/article/view/754
http://dx.doi.org/10.1137/1.9781611972726.27
http://dx.doi.org/10.1137/1.9781611972733.15
http://dx.doi.org/10.1109/TKDE.2004.77
http://dx.doi.org/10.1016/0146-664X(80)90054-4
http://dx.doi.org/10.1016/S0169-7439(99)00047-7
http://dx.doi.org/10.1145/52324.52336

