
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2022.017630

ARTICLE

Topology Optimization with Aperiodic Load Fatigue Constraints
Based on Bidirectional Evolutionary Structural Optimization

Yongxin Li1, Guoyun Zhou1, Tao Chang1,*, Liming Yang2 and FengheWu1

1Heavy-Duty Intelligent Manufacturing Equipment Innovation Center of Hebei Province, School of Mechanical Engineering,

Yanshan University, Qinhuangdao, China
2Space Star Technology Co., Ltd., Beijing, China
*Corresponding Author: Tao Chang. Email: changtao20210901@163.com

Received: 25 May 2021 Accepted: 03 August 2021

ABSTRACT

Because of descriptive nonlinearity and computational inefficiency, topology optimization with fatigue life under
aperiodic loads has developed slowly. A fatigue constraint topology optimization method based on bidirectional
evolutionary structural optimization (BESO) under an aperiodic load is proposed in this paper. In viewof the severe
nonlinearity of fatigue damagewith respect to design variables, effective stress cycles are extracted through transient
dynamic analysis. Based on the Miner cumulative damage theory and life requirements, a fatigue constraint is first
quantified and then transformed into a stress problem. Then, a normalized termination criterion is proposed by
approximatemaximum stressmeasured by global stress using a P-norm aggregation function. Finally, optimization
examples show that the proposed algorithm can not only meet the requirements of fatigue life but also obtain a
reasonable configuration.
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1 Introduction

For air vehicles, components or supports are exposed to aperiodic loads, and there are strict
requirements for minimum service life. The weight of aircraft parts directly affects carrying travel,
and lightweight research can greatly improve the power-to-weight capacity. Therefore, this paper
studies the topology optimization problem with fatigue life as the constraint and the minimum
volume/weight as the objective under aperiodic loading.

The field of topology optimization mainly focuses on minimizing structural compliance
[1–3] to increase structural stiffness. At present, there are roughly three ways to solve topology
optimization with fatigue constraints. First, fatigue life is directly used as an optimal parameter,
which is usually realized by a heuristic algorithm because fatigue life is not differentiable from
variables. For example, Haiba et al. [4] used the ESO method in 2005 to establish an element
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deletion criterion based on fatigue life to gradually remove high-life elements. In the second
way, fatigue cumulative damage is set as the design parameter instead of fatigue life. Jacob
et al. [5] used fatigue cumulative damage in 2016 to describe the fatigue response and P-norm
aggregation function to agglomerate fatigue constraints on the variable density method. In 2018,
Seung et al. [6] developed topology optimization of fatigue constraints under variable amplitude
cyclic loads based on the equivalent static load method. In 2020, Chen et al. [7] penalized
cumulative damage to achieve anti-fatigue topology optimization. However, cumulative damage is
highly nonlinear with stress, which seriously affects optimization stability. In the third way, fatigue
is equivalent to stress using the fatigue failure criterion. In 2014, Holmberg et al. [8] developed
a variable density method taking critical fatigue stress and static stress as constraint conditions
simultaneously. In 2015, Jeong et al. [9] proposed a topology optimization method considering
dynamic fatigue and static failure criteria using average stress to represent fatigue based on the
variable density method. In 2019, Nabaki et al. [10] used a modified Goodman failure criterion
to study the maximum stiffness problem under volume and fatigue life constraints. In 2020, Zhao
et al. [11] discussed topology optimization under a high cycle fatigue constraint based on the
Crossland criterion, and the fatigue constraint was equivalent to the peak stress not exceeding the
threshold.

However, the aperiodicity and randomness of the aperiodic load determine that its fatigue
cannot be described by stress or strain directly and can only be counted by the rain-flow method
and expressed by fatigue damage. Due to the nonlinearity of fatigue damage with life history,
there are few studies concerning topology optimization under aperiodic load fatigue constraints.
This research aims to address the high cycle fatigue problem under aperiodic loading. If the stress
value can be connected with fatigue damage [8], the fatigue constraint can be transformed to a
critical stress problem.

Stress constraint topology optimization has conundrums of locality. The stress of each ele-
ment must be constrained to search for the maximum stress. The sensitivity of each constraint
needs to be calculated, so it leads to excessive computation whether using a direct method or
adjoint method. To solve this problem, aggregation functions, such as the P-norm method [12]
and K-S function method [13], can be applied. In 2013, Luo et al. [14] proposed an enhanced K-S
function based on the variable density method to solve topological optimization for minimizing
volume under stress constraints. In 2019, Fan et al. [15] addressed minimizing compliance under
volume and stress constraints based on the BESO method and P-norm equation. In 2019, Long
et al. [16] studied stress-constrained topological optimization under a simple harmonic load using
the P-norm function based on the variable density method. In 2020, Zhao et al. [17] improved
BESO with a dynamic stress response under random loads by the P-norm function.

In this paper, aiming at the severe nonlinearity of cumulative damage under aperiodic loading,
a transformational relation of fatigue damage with stress is established. First, fatigue damage of
the substep is calculated by the stress time history, and the problem is transformed into a stress
topology optimization problem based on BESO. In the classic BESO method, volume is generally
the constraint, so volume evolution is adopted to realize element addition and deletion, and the
objective change value is taken as the convergence criterion. However, volume is the objective here,
and if volume is taken to measure evolution and convergence simultaneously, it will be difficult
to converge due to missing stress. Therefore, a normalized parameter, which comprehensively
considers volume and stress, is proposed and taken as the convergence parameter. In this way, the
topology lightening problem with a high cycle fatigue life as a constraint is solved.
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2 Fatigue Constraint Treatment

2.1 Fatigue Life Calculation under Aperiodic Load
To interpret the relationship between fatigue life, damage and stress, this section briefly intro-

duces a fatigue analysis program for aperiodic loads. The general process is as follows: first, fatigue
life is calculated by alternating stress and average stress extracted from the transient stress time
history. To explain the multiaxial stress of each node, the signed von Mises stress is calculated. The
reversal of symbolic von Mises stress and average stress are determined by rain flow counting.
The Goodman correction method is used to calculate the amplitude of the effective stress. Then,
the Basquin equation is applied to calculate the number of failure cycles for each effective stress
amplitude. Finally, all the damage caused by stress reversal in the loading history is accumulated
linearly by the Palmgren–Miner law [18].

In detail, the stress history is solved by a given dynamic system as

M ü(t)+C u̇(t)+Ku(t)= F(t), (1)

where M, C , K, F(t), u(t) and t represent the uniform global mass matrix, global damping
matrix, global stiffness matrix, time-varying force vector, displacement vector and time, respec-
tively. The first and second derivatives of the displacement vector over time are expressed as u̇(t)
and ü(t). The initial values for displacement, velocity and acceleration are all zero. The implicit
direct integration method is used here to solve the dynamic equation, which calculates the response
history with step-by-step iterations. The displacement response of step n+1 can be obtained and
written as

Kun+1 = F
n+1

, (2)

where K and F
n + 1

are the effective stiffness matrix and effective vector of Step n+1, respectively.
Then, the stress vector of the i-th element of the n+ 1 step σ n+1

i is calculated. Thus

σ n+1
i =D0Bun+1

i (3)

where D0 and B represent the elastic matrix and strain matrix, respectively.

Equivalent parameters similar to von Mises stress are usually positive [19], so a negative sign
of von Mises stress is determined by a positive or negative sign of the first invariant. The time
history of alternating stress is obtained as

σsvm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1

|σ1|
· 1√

2

√
(σ1− σ2)

2+ (σ3− σ2)
2+ (σ1 − σ3)

2 if |σ1|> |σ3|

σ3

|σ3|
· 1√

2

√
(σ1− σ2)

2+ (σ3− σ2)
2+ (σ1 − σ3)

2 if |σ3|> |σ1|
, (4)

where σsvm, σ1, σ2 and σ3 are the von Mises stress and the first, second and third principal stresses,
respectively. Stress amplitude σa and mean stress σm are determined by rain flow counting such
that

σa= σmax− σmin

2
, (5)

σm = σmax+ σmin

2
. (6)
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To consider the influence of the average stress, the Goodman correction equation is used to
calculate the amplitude of the effective stress

σa= σ−1

(
1− σm

σb

)
. (7)

where σ−1 is the constant life fatigue strength under symmetrical cycles and σb is the tensile
strength.

The number of failure cycles (Ni) of each effective stress amplitude can be computed by the
Basquin equation. Thus,

σa,i = σf (2Ni)
b, (8)

where σf is the fatigue strength and b is the test constant. The failure times of the i-th cycle load
Ni can be obtained as follows:

Ni = 1
2

(
σa,i

σf

) 1
b

. (9)

Cumulative fatigue damage can be calculated by the Palmgren–Miner law as

D=
l∑

i=1

ni
Ni

. (10)

where l is load series and ni is the number of load cycles.

Therefore, fatigue damage is expressed by the stress amplitude as

D=
k∑
i=1

2ni

(
σa,i

σf

)− 1
b

. (11)

From Eq. (11), there is an exponential relationship between fatigue damage and stress, and it
is nonlinear. Therefore, it is not conducive to setting fatigue damage as a constraint condition.

2.2 Fatigue to Stress Constraint
In this section, the process course of converting the fatigue lifetime requirement to a stress

constraint is presented. First, the position of the danger point is obtained by transient dynamic
analysis loading aperiodic cyclic force. In addition, the stress time history is obtained. Then, the
rain flow counting method is used to extract the effective stress cycle. Fatigue damage is calculated
with the Palmgren–Miner criterion. Finally, according to the lifetime requirements, the critical
stress level is inversely calculated and taken as the constraint condition for topology optimization.
The specific implementation steps are as follows:

(1) With the requirements of fatigue design life, stress amplitude σa and cycle number n are
derived linearly in the whole life cycle, and the maximum value of stress amplitude is
found, which is recorded as S(0);

(2) Assuming that k damage calculations are made, based on the Miner theory, the total

damage can be obtained as D(0) =
k∑
i=1

1
Ni
;
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(3) If D(0) < 1, fatigue failure will not occur, so S(0) is increases and, vice versa, S(0) decreases;
(4) S(0) takes a series of values S(1),S(2), . . . ,S(m), the stress amplitudes change sequentially,

and the corresponding damage D(1),D(2), . . . ,D(m) is calculated until D(m) > 1;
(5) (D(i),S(i))(i = 0, 1, . . . ,m) is fitted to a stress-damage curve, as shown Fig. 1. When D= 1,

the corresponding S is predicted as the maximum stress of critical fatigue damage. Stress
values are taken as constraint conditions, that is, the transformation from fatigue to stress
constraint is realized as shown in Fig. 2.

Fatigue damage

sserts
mu

mi xa
M

/
ap

M

D(1)D(2) D(i) 1 D(m)

S(1)

S(2)

S(i)

S

S(m)

Figure 1: Stress damage curve

Figure 2: Flow chart of transforming fatigue constraint to stress constraint
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3 Fatigue Constrained Topology Optimization on BESO

Through the conversion above, fatigue-constrained topology optimization can be transformed
into a stress-constrained problem. To reduce the quantity of stress constraints at every cycle, the
P-norm aggregation function is used as

σPN =
( n∑
j=1

σ
p
vm,j

) 1
p

. (12)

where σvm,j is the Von Mises stress of the i-th element and p is the aggregation norm. Therefore,

the mathematical formula of fatigue constrained topology optimization on the BESO method
reads

find : xi = [x1,x2, · · · ,xn]

min :V =
n∑
i=1

Vixi

s.t. :MÜ +CU +KU = F,

σPN ≤ σ ∗
vm

xi = 0 or 1

(13)

where xi and Vi represent the i-th element variable and the i-th element volume respectively. σ ∗
vm

is the critical stress after equivalence.

Classic BESO uses the change of objective function as the convergence criterion. The objective
parameter of optimization model in this paper is volume. If the volume change is set as the
convergence criterion, the volume increment between adjacent iterations will alter drastically,
and the convergence value is hard to realize. To take into account both optimization objective
and constraint parameters, this paper proposes a normalized performance index PI, which can
comprehensively consider stress change and volume change as

PI= σ 0
PNV0

σ i
PNVi

, (14)

where σ 0
PN and σ i

PN represent the initial and i-th stress aggregation values, respectively. V0 and Vi
represent the volume in the initial and i-th iterations, respectively. Thus, the termination criterion
of the optimization process reads

error=

∣∣∣∣∣
M∑
i=1

PIk−i+1 −
M∑
i=1

PIk−M−i+1

∣∣∣∣∣
M∑
i=1

PIk−i+1

≤ τ . (15)

In general, M refers to the range of iteration intervals that determines convergence, usually
3–10, which means that the performance change over the past 10 iterations is small enough to
achieve convergence when it is less than τ . τ is the convergence error.
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Except for sensitivity analysis, convergence criterion and fatigue constraint, the rest of the flow
is based on BESO theory [20]. A flow chart of the optimization algorithm with fatigue constraints
is shown in Fig. 3.

Figure 3: Flow chart of optimization algorithm with fatigue constraints

4 Numerical Examples

To show the effectiveness and correctness of the proposed method, we design two numerical
examples: double-bar plates and L-shaped beams. Therefore, a double-bar plate is designed with
no obvious stress concentration, and an L-shaped beam is designed with stress concentration. The
fatigue life is designed to be 140 h to confine to elastic deformation. The stress aggregation norm
in Eq. (12) is set at p= 6.

4.1 Double-Bar Plate
The initial design area and boundary conditions of the double-bar plate are shown in Fig. 4.

The thickness is 1 mm. The structure is divided into 80× 40 quadrilateral plane stress elements.
A fixed constraint is applied on the lower side, and an aperiodic load is applied to the 11th
node in the middle of the upper side. The time history of the aperiodic load is shown in Fig. 5.
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Young’s modulus, Poisson’s ratio and the material density are set as E =71 GPa, v=0.33 and ρ =
2793 Kg/m3. Material S-N curve equation expresses as

logσa = 8.951− 0.103 logN. (16)

160mm

80 mm

Figure 4: Initial design area of double-bar structure

Figure 5: Load time history

There is no stress concentration caused by the structure shape in the double-bar model.
The iterative changes in the volume fraction and PI are shown in Fig. 6. After 100 iterations,
the volume fraction and PI reach a platform, and the convergence criterion is met. When PI
reaches approximately 3.36, it tends to converge, and the objective function is 0.23. Relatively,
the maximum stress and P-norm aggregation stress show slight fluctuations during the last 20
iteration cycles, as shown in Fig. 7. The maximum stress value exhibits a smaller downward trend
than the P-norm aggregation stress and an upward trend. This shows that the P-norm aggregation
function helps local stress reach convergence. Fig. 8 shows the final optimal configuration and
stress distribution result. Direction inclination leads to loading asymmetry between the left and
right parts, resulting in the asymmetric configuration, as shown in Fig. 8a.
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Figure 6: Variation curve of objective volume and PI

Figure 7: Variation curve of structural maximum stress and P-norm aggregation stress

80 mm

80 mm 70 mm

160 mm

(a) (b)

Figure 8: Final iterative results of double-bar plate and stress nephogram (a) Final iterative
configuration (b) Stress nephogram
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4.2 L-Shaped Beam
The initial design area and boundary conditions of the L-shaped beam are shown in Fig. 9.

The design area is meshed by four-node plane elements with a length of 1 mm. The upper side
is fixed, and the aperiodic load is shown in Fig. 10. Force is applied on the top vertex of right
boundary. To avoid stress concentration at the loading position, the load is evenly distributed to
8 nodes. The material parameters are exactly the same as those in the double-bar plate.

100 mm

100 mm

60

F

mm

60 mm

Figure 9: L-shaped beam structure

Figure 10: Load time curve

The variation curve of the volume fraction and PI is obtained, as shown in Fig. 11. With
iteration progress, the volume and PI fluctuate violently after 30 steps. This is due to the high
nonlinearity of stress. With optimization, in some areas with high stress concentrations, the high
stress distribution is very sensitive to even minor topological changes. However, the amplitude
of oscillation tends to decrease with increasing iteration number. When PI reaches approximately
1.73, it tends to converge, and the objective function is 0.69. Approximately 250 steps are con-
sumed to reach convergence. Since the convergence criterionis a relative change between the last
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and first range of the iteration interval, iteration convergence occurs since a small floating value is
reached. After repeated trial calculations, a better convergence effect is obtained when the range
of iteration intervals M =4 and convergence error τ =0.0001.

Figure 11: Variation curve of objective function and performance index

Curves of the maximum stress and P-norm aggregation stress are shown in Fig. 12. The final
topology and its stress cloud diagram are shown in Fig. 13. The maximum stress is 175.74 MPa,
and the P-norm aggregation stress is 228.14.

Figure 12: Variation curve of structural maximum stress and P-norm aggregation stress
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Figure 13: Final iterative result of L-shaped beam and stress nephogram (a) Final iterative shape
(b) Stress nephogram

5 Conclusion

Fatigue life, strength and stiffness are three important factors that designers cannot ignore in
engineering. Aiming at high cycle fatigue caused by aperiodic load, this paper realizes topology
optimization method of aperiodic load based on BESO.

In order to solve the severe nonlinearity of fatigue damage to design variables, this paper
uses fatigue analysis to calculate cumulative damage and then equivalent fatigue damage to critical
stress by stress damage curve to transform fatigue constraint problem to stress constraint problem.

Then, P-norm is used for stress aggregation, and the dimensionless index PI is proposed
to improve convergence speed. The effectiveness of proposed method in obtaining the lightest
configuration which strictly satisfies life constraint is proved by two examples with and without
stress concentration.
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