CMES CMES CMES Computer Modeling in Engineering & Sciences 1526-1506 1526-1492 Tech Science Press USA 16924 10.32604/cmes.2022.016924 Article Some Formulas Involving Hypergeometric Functions in Four Variables Some Formulas Involving Hypergeometric Functions in Four Variables Some Formulas Involving Hypergeometric Functions in Four Variables Aydi Hassen 123 Verma Ashish 4 Younis Jihad 5 Lee Jung Rye 6jrlee@daejin.ac.kr Université de Sousse, Institut Supérieur D’Informatique et, Des Techniques de Communication, H. Sousse, 4000, Tunisia Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan Department of Mathematics, V. B. S. Purvanchal University, Jaunpur, 222003, India Department of Mathematics, Aden University, Khormaksar, P.o. Box 6014, Yemen Department of Data Science, Daejin University, Kyunggi, 11159, Korea *Corresponding Author: Jung Rye Lee. Email: jrlee@daejin.ac.kr 10 12 2021 130 2 887 902 10 4 2021 16 8 2021 © 2022 Aydi et al. 2022 Aydi et al. This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Several (generalized) hypergeometric functions and a variety of their extensions have been presented and investigated in the literature by many authors. In the present paper, we investigate four new hypergeometric functions in four variables and then establish several recursion formulas for these new functions. Also, some interesting particular cases and consequences of our results are discussed.

Recursion formula quadruple hypergeometric functions pascal identity AMS Subject Classification: 15A15; 33C65
Introduction

In recent years, many researchers introduced and studied several extensions and generalizations of various special functions due to its applications in diverse areas of mathematical, physical, engineering, etc. Agarwal et al. [1,2] established some properties for generalized Gauss hypergeometric functions, which were introduced by Özergin et al. Later, Agarwal et al.  and Çetinkaya et al.  introduced and investigated further extensions of Appell’s hypergeometric functions of two variables and Lauricella’s hypergeometric functions of three variables by using the generalized Beta type function. Purohit et al.  investigated Chebyshev type inequalities involving fractional integral operator containing a multi-index Mittag-Leffler function in the kernel. Suthar et al.  introduced certain generalized forms of the fractional kinetic equation pertaining to the (p, q)-Mathieu-type power series using the Laplace transforms technique. Chandola et al.  defined a new extension of beta function using the Appell series and the Lauricella function. The interested reader may be referred to several recent papers on the subject (see, e.g.,  and the references cited therein).

Hypergeometric functions in several variables have many applications in applied problems (see, e.g., ). Also, multidimensional hypergeometric functions are used to solve boundary value problems (Dirichlet problem, Neumann problem, Holmgren problem, etc) for multidimensional degenerate differential equations (see ). In , Exton defined twenty one complete hypergeometric functions in four variables denoted by the symbols K1, K2,, K21. In , Sharma et al. introduced eighty three complete quadruple hypergeometric functions, namely F1(4),F2(4),,F83(4). Very recently, Younis et al.  introduced and studied further quadruple hypergeometric functions denoted by X85(4),X86(4),,X90(4). Each quadruple hypergeometric function in  is of the form: X(4)(.)=m,n,p,q=0Δ(m,n,p,q)xmm!ynn!zpp!uqq!, where Δ(m, n, p, q) is a certain sequence of complex parameters and there are twelve parameters in each series X(4)(.) (eight as and four cs). The 1st, 2nd, 3rd and 4th parameters in X(4)(.) are connected with the integers m, n, p and q, respectively. Each repeated parameter in the series X(4)(.) points out a term with double parameters in δ(m, n, p, q). For example, X(4)(σ1,σ1,σ2,σ2,σ3,σ3,σ4,σ5) mean that (σ1)m+n(σ2)p+q (σ3)m+n(σ4)p(σ5)q includes the term. Similarly, X(4)(σ1,σ1,σ1,σ2,σ1,σ1,σ2,σ3) points out the term (σ1)2m+2n+p (σ2)p+q (σ3)q and X(4)(σ1, σ1, σ2, σ4, σ1, σ2, σ3, σ5) shows the existence of the term (σ1)2m+n(σ2)n+p(σ3)p(σ4)q(σ5)q. Thus, it is possible to form various combinations of indices. There seems to be no way of establishing independently the number of distinct Gaussian hypergeometric series for any given integer n 2 without stating explicitly all such series. Thus, in every situation with n = 4, one ought to begin by actually constructing the set just as in the case n = 3 (see ). Motivated by the works , we decide to define further hypergeometric functions in four variables as follows:

X91(4)(σ1,σ1,σ2,σ4,σ1,σ2,σ3,σ5;ρ1,ρ1,ρ2,ρ1;x,y,z,u)=m,n,p,q=0(σ1)2m+n(σ2)n+p(σ3)p(σ4)q(σ5)q(ρ1)m+n+p(ρ2)qxmm!ynn!zpp!uqq!,(|x|<14,|y|<1,|z|<1,|u|<1);

X92(4)(σ1,σ1,σ2,σ4,σ1,σ2,σ3,σ5;ρ1,ρ2,ρ1,ρ1;x,y,z,u)=m,n,p,q=0(σ1)2m+n(σ2)n+p(σ3)p(σ4)q(σ5)q(ρ1)m+p+q(ρ2)nxmm!ynn!zpp!uqq!,(|x|<14,|y|<1,|z|<1,|u|<1);

X93(4)(σ1,σ1,σ2,σ4,σ1,σ2,σ3,σ5;ρ2,ρ1,ρ1,ρ1;x,y,z,u)=m,n,p,q=0(σ1)2m+n(σ2)n+p(σ3)p(σ4)q(σ5)q(ρ1)n+p+q(ρ2)mxmm!ynn!zpp!uqq!,(|x|<14,|y|<1,|z|<1,|u|<1); X94(4)(σ1,σ1,σ2,σ4,σ1,σ2,σ3,σ5;c,c,c,c;x,y,z,u)=m,n,p,q=0(σ1)2m+n(σ2)n+p(σ3)p(σ4)q(σ5)q(c)m+n+p+qxmm!ynn!zpp!uqq!,(|x|<14,|y|<1,|z|<1,|u|<1),

where (a)m:=Γ(a+m)Γ(a),(a+mCZ0)={1(m=0)a(a+1)(a+m1)(m=nN).

Here, C,Z0 and N denote the sets of complex numbers, non-positive integers, and positive integers, respectively.

Recently, many authors have obtained several recursion formulas involving hypergeometric functions in several variables. In Opps et al. , introduced the recursion formulas for the Appell’s function F2 and gave its applications to radiation field problems. Wang  presented the recursion formulas for Appell functions F1, F2, F3 and F4. Sahai et al. [26,27] established the recursion formulas for Lauricella’s triple functions, Srivastava hypergeometric functions in three variables, k-variable Lauricella functions and the Srivastava-Daoust and related multivariable hypergeometric functions. Shehata et al.  discussed and derived new recursion relations for the Horn’s hypergeometric functions. In this present paper, we aim to establish several recursion formulas for the new hypergeometric functions in four variables defined by (1.1)–(1.4).

The following abbreviated notations are used in this paper. We, for example, write X91(4) for the series X91(4)(σ1,σ1,σ2,σ4,σ1,σ2,σ3,σ5;ρ1,ρ1,ρ2,ρ1;x,y,z,u) and X91(4)(σ1+n) for X91(4)(σ1+n,σ1+n,σ2,σ4,σ1,σ2,σ3,σ5;ρ1,ρ1,ρ2,ρ1;x,y,z,u). The notation X91(4)(σ1+n,σ2+n1) stands for X91(4)(σ1+n,σ1+n,σ2+n1,σ4,σ1+n,σ2+n1,σ3,σ5;ρ1,ρ1,ρ2,ρ1;x,y,z,u) and X91(4)(σ1+n,σ2+n1,ρ1+n2) stands for X91(4)(a1+n,σ1+n,σ2+n1,σ4,σ1+n,σ2+n1,σ3,σ5;ρ1+n2,ρ1+n2,ρ2,ρ1;x,y,z,u), etc.

Main Results

Here, we establish several recursion formulas for our hypergeometric functions in four variables.

Theorem 2.1 The following recursion formulas hold true for the numerator parameter σ1, σ2, σ3, σ4, σ5 of the X91(4):

X91(4)(σ1+n)=X91(4)+2xρ1n1=1n(σ1+n1)X91(4)(σ1+1+n1,ρ1+1)+yσ2ρ1n1=1nX91(4)(σ1+n1,σ2+1,ρ1+1),

X91(4)(σ1n)=X91(4)2xρ1n1=1n(σ1+1n1)X91(4)(σ1+2n1,ρ1+1)yσ2ρ1n1=1nX91(4)(σ1+1n1,σ2+1,ρ1+1),

X91(4)(σ2+n)=X91(4)+yσ1ρ1n1=1nX91(4)(σ1+1,σ2+n1,ρ1+1)+zσ3ρ2n1=1nX91(4)(σ2+n1,σ3+1,ρ2+1), X91(4)(σ2n)=X91(4)yσ1ρ1n1=1nX91(4)(σ1+1,σ2+1n1,ρ1+1)zσ3ρ2n1=1nX91(4)(σ2+1n1,σ3+1,ρ2+1), X91(4)(σ3+n)=X91(4)+zσ2ρ2n1=1nX91(4)(σ2+1,σ3+n1,ρ2+1), X91(4)(σ3n)=X91(4)zσ2ρ2n1=1nX91(4)(σ2+1,σ3+1n1,ρ2+1), X91(4)(σ4+n)=X91(4)+uσ5ρ1n1=1nX91(4)(σ5+1,σ4+n1,ρ1+1), X91(4)(σ4n)=X91(4)uσ5ρ1n1=1nX91(4)(σ5+1,σ4+1n1,ρ1+1), X91(4)(σ5+n)=X91(4)+uσ4ρ1n1=1nX91(4)(σ4+1,σ5+n1,ρ1+1), X91(4)(σ5n)=X91(4)uσ4ρ1n1=1nX91(4)(σ4+1,σ5+1n1,ρ1+1).

Proof. From the definition of the hypergeometric function X91(4) and the relation

(σ1+1)2m+n=(σ1)2m+n(1+2mσ1+nσ1)

we obtain the following contiguous relation:

X91(4)(σ1+1)=X91(4)+2xρ1(σ1+1)X91(4)(σ1+2,ρ1+1)+yσ2ρ1X91(4)(σ1+1,σ2+1,ρ1+1).

To find a contiguous relation for X91(4)(σ1+2), we replace σ1 by σ1 + 1 in (16) and simplify. This leads to:

X91(4)(σ1+2)=X91(4)+2xρ1n1=12(σ1+n1)X91(4)(σ1+n1+1,ρ1+1)+yσ2ρ1n1=12X91(4)(σ1+n1,σ2+1,ρ1+1).

Iterating this process n-times, we obtain (5). For the proof of (6), replace the parameter σ1 by σ11 in (15). This implies that

X91(4)(σ11)=X12xρ1σ1X91(4)(σ1+1,ρ1+1)yσ2ρ1X91(4)(σ2+1,ρ1+1).

Iteratively, we get (6).

The recursion formulas from (7)(14) can be proved in a similar manner.

Theorem 2.2 The following recursion formulas hold true for the numerator parameter σ2, σ3, σ4, σ5 of the X91(4):

X91(4)(σ2+n)=N2n(nn1,n2)(σ1)n1(σ3)n2yn1zn2(ρ1)n1(ρ2)n2X91(4)(σ1+n1,σ2+N2,σ3+n2,ρ1+n1,ρ2+n2),

X91(4)(σ2n)=N2n(nn1,n2)(σ1)n1(σ3)n2(y)n1(z)n2(ρ1)n1(ρ2)n2X91(4)(σ1+n1,σ3+n2,ρ1+n1,ρ2+n2),

X91(4)(σ3+n)=n1n(nn1)(σ2)n1zn1(ρ2)n2X91(4)(σ2+n1,σ3+n1,ρ2+n1), X91(4)(σ3n)=n1n(nn1)(σ2)n1(z)n1(ρ2)n1X91(4)(σ2+n1,ρ2+n1), X91(4)(σ4+n)=n1n(nn1)(σ5)n1un1(ρ1)n1X91(4)(σ4+n1,σ5+n1,ρ1+n1), X91(4)(σ4n)=n1n(nn1)(σ5)n1(u)n1(ρ1)n1X91(4)(σ5+n1,ρ1+n1), X91(4)(σ5+n)=n1n(nn1)(σ4)n1un1(ρ1)n1X91(4)(σ4+n1,σ5+n1,ρ1+n1), X91(4)(σ5n)=n1n(nn1)(σ4)n1(u)n1(ρ1)n1X91(4)(σ4+n1,ρ1+n1),

where (nn1,n2)=n!n1!n2!(nn1n2)! and N2=n1+n2.

Proof. The proof of (19) is based upon the principle of a mathematical induction on nN. For n = 1, the result (19) is true obviously following (7). Suppose (19) is true for n = m, that is,

X91(4)(σ2+m)=N2m(nn1,n2)(σ1)n1(σ3)n2yn1zn2(ρ1)n1(ρ2)n2X91(4)(σ1+n1,σ2+N2,σ3+n2,ρ1+n1,ρ2+n2),

Replacing σ2 with σ2+ 1 in (27) and using the contiguous relation (7) for n = 1, we get

X91(4)(σ2+m+1)=N2m(nn1,n2)(σ1)n1(σ3)n2yn1zn2(ρ1)n1(ρ2)n2×{X91(4)(σ1+n1,σ2+N2,σ3+n2,ρ1+n1,ρ2+n2)+(σ1+n1)y(ρ1+n1)X91(4)(σ1+n1+1,σ2+N2+1,σ3+n2,ρ1+n1+1,ρ2+n1)+(σ3+n2)z(ρ2+n2)X91(4)(σ1+n1,σ2+N2+1,σ3+n2+1,ρ1+n1,ρ2+n2+1)}.

By a simplification, (28) takes the form

X91(4)(a2+m+1)=N2m(nn1,n2)(σ1)n1(σ3)n2yn1zn2(ρ1)n1(ρ2)n2×X91(4)(σ1+n1,σ2+N2,σ3+n2,ρ1+n1,ρ2+n2)+N2m+1(nn11,n2)(σ1)n1(σ3)n2yn1zn2(ρ1)n1(ρ2)n2×X91(4)(σ1+n1,σ2+N2,σ3+n2,ρ1+n1,ρ2+n2)+N2m+1(nn1,n21)(σ1)n1(σ3)n2yn1zn2(ρ1)n1(ρ2)n2×X91(4)(σ1+n1,σ2+N2,σ3+n2,ρ1+n1,ρ2+n2).

Using the Pascal’s identity in (29), we have X91(4)(σ2+m+1)=N2m+1(nn1,n2)(σ1)n1(σ3)n2yn1zn2(ρ1)n1(ρ2)n2×X91(4)(σ1+n1,σ2+N2,σ3+n2,ρ1+n1,ρ2+n2).

This establishes (19) for n = m + 1. Hence, by induction, the result given in (19) is true for all values of n. The recursion formulas (20)(26) can be proved in a similar manner.

Theorem 2.3 The following recursion formulas hold true for the denominator parameter ρ1, ρ2 of the X91(4):

X91(4)(ρ1n)=X91(4)+(σ1)2xn1=1n1(ρ1n1)(ρ1+1n1)X91(4)(σ1+2,ρ1+2n1)+σ1σ2yn1=1n1(ρ1n1)(ρ1+1n1)X91(4)(σ1+1,σ2+1,ρ1+2n1)+σ4σ5un1=1n1(ρ1n1)(ρ1+1n1)X91(4)(σ4+1,σ5+1,ρ1+2n1),

X91(4)(ρ2n)=X91(4)+σ4σ5un1=1n1(ρ2n1)(ρ2+1n1)X91(4)(σ4+1,σ5+1,ρ2+2n1).

Proof. Applying the definition of the hypergeometric function X91(4) and the relation

1(ρ11)m+n+q=1(ρ1)m+n+q(1+mρ11+nρ11+qρ11),

we have:

X91(4)(ρ11)=X91(4)+(σ1)2xρ1(ρ11)X91(4)(σ1+2,ρ1+1)+σ1σ2yρ1(ρ11)X91(4)(σ1+1,σ2+1,ρ1+2n1)+σ4σ5uρ1(ρ11)X91(4)(σ4+1,σ5+1,ρ1+2n1).

Using this contiguous relation to the X91(4) with the parameter ρ1n for n-times, we get the result (30). The recursion formula (31) can be proved in a similar manner.

Theorem 2.4 The following recursion formulas hold true for the numerator parameter σ1, σ2, σ3, σ4, σ5 of the X92(4):

X92(4)(σ1+n)=X92(4)+2xρ1n1=1n(σ1+n1)X92(4)(σ1+1+n1,ρ1+1)+yσ2ρ2n1=1nX92(4)(σ1+n1,σ2+1,ρ2+1),

X92(4)(σ1n)=X92(4)2xρ1n1=1n(σ1+1n1)X92(4)(σ1+2n1,ρ1+1)yσ2ρ2n1=1nX92(4)(σ1+1n1,σ2+1,ρ2+1),

X92(4)(σ2+n)=X92(4)+yσ1ρ2n1=1nX92(4)(σ1+1,σ2+n1,ρ2+1)+zσ3ρ1n1=1nX92(4)(σ2+n1,σ3+1,ρ1+1), X92(4)(σ2n)=X92(4)yσ1ρ2n1=1nX92(4)(σ1+1,σ2+1n1,ρ2+1)zσ3ρ1n1=1nX92(4)(σ2+1n1,σ3+1,ρ1+1), X92(4)(σ3+n)=X92(4)+zσ2ρ1n1=1nX92(4)(σ2+1,σ3+n1,ρ1+1), X92(4)(σ3n)=X92(4)zσ2ρ1n1=1nX92(4)(σ2+1,σ3+1n1,ρ1+1), X92(4)(σ4+n)=X92(4)+uσ5ρ1n1=1nX92(4)(σ5+1,σ4+n1,ρ1+1), X92(4)(σ4n)=X92(4)uσ5ρ1n1=1nX92(4)(σ5+1,σ4+1n1,ρ1+1) X92(4)(σ5+n)=X92(4)+uσ4ρ1n1=1nX92(4)(σ4+1,σ5+n1,ρ1+1), X92(4)(σ5n)=X92(4)uσ4ρ1n1=1nX92(4)(σ4+1,σ5+1n1,ρ1+1).

Theorem 2.5 The following recursion formulas hold true for the numerator parameter σ2, σ3, σ4, σ5 of the X92(4):

X92(4)(σ2+n)=N2n(nn1,n2)(σ1)n1(σ3)n2yn1zn2(ρ1)n2(ρ2)n1X92(4)(σ1+n1,σ2+N2,σ3+n2,ρ1+n2,ρ2+n1),

X92(4)(σ2n)=N2n(nn1,n2)(σ1)n1(σ3)n2(y)n1(z)n2(ρ1)n2(ρ2)n1X92(4)(σ1+n1,σ3+n2,ρ1+n2,ρ2+n1),

X92(4)(σ3+n)=n1n(nn1)(σ2)n1zn1(ρ1)n1X92(4)(σ2+n1,σ3+n1,ρ1+n1), X92(4)(σ3n)=n1n(nn1)(σ2)n1(z)n1(ρ1)n1X92(4)(σ2+n1,ρ1+n1), X92(4)(σ4+n)=n1n(nn1)(σ5)n1un1(ρ1)n1X92(4)(σ4+n1,σ5+n1,ρ1+n1), X92(4)(σ4n)=n1n(nn1)(σ5)n1(u)n1(ρ1)n1X92(4)(σ5+n1,ρ1+n1), X92(4)(σ5+n)=n1n(nn1)(σ4)n1un1(ρ1)n1X92(4)(σ4+n1,σ5+n1,ρ1+n1), X92(4)(σ5n)=n1n(nn1)(σ4)n1(u)n1(ρ1)n1X92(4)(σ4+n1,ρ1+n1),

where N2=n1+n2.

Theorem 2.6 The following recursion formulas hold true for the denominator parameter ρ1, ρ2 of the X92(4):

X92(4)(ρ1n)=X92(4)+(σ1)2xn1=1n1(ρ1n1)(ρ1+1n1)X92(4)(σ1+2,ρ1+2n1)+σ2σ3zn1=1n1(ρ1n1)(ρ1+1n1)X92(4)(σ2+1,σ3+1,ρ1+2n1)+σ4σ5un1=1n1(ρ1n1)(ρ1+1n1)X92(4)(σ4+1,σ5+1,ρ1+2n1),

X92(4)(ρ2n)=X92(4)+σ1σ2yn1=1n1(ρ2n1)(ρ2+1n1)X92(4)(σ1+1,σ2+1,ρ2+2n1).

Theorem 2.7 The following recursion formulas hold true for the numerator parameter σ1, σ2, σ3, σ4, σ5 of the X93(4):

X93(4)(σ1+n)=X93(4)+2xρ1n1=1n(σ1+n1)X93(4)(σ1+1+n1,ρ1+1)+yσ2ρ2n1=1nX93(4)(σ1+n1,σ2+1,ρ2+1),

X93(4)(σ1n)=X93(4)2xρ1n1=1n(σ1+1n1)X93(4)(σ1+2n1,ρ1+1)yσ2ρ2n1=1nX93(4)(σ1+1n1,σ2+1,ρ2+1),

X93(4)(σ2+n)=X93(4)+yσ1ρ2n1=1nX93(4)(σ1+1,σ2+n1,ρ2+1)+zσ3ρ1n1=1nX93(4)(σ2+n1,σ3+1,ρ1+1), X93(4)(σ2n)=X93(4)yσ1ρ2n1=1nX93(4)(σ1+1,σ2+1n1,ρ2+1)zσ3ρ1n1=1nX93(4)(σ2+1n1,σ3+1,ρ1+1), X93(4)(σ3+n)=X93(4)+zσ2ρ1n1=1nX93(4)(σ2+1,σ3+n1,ρ1+1), X93(4)(σ3n)=X93(4)zσ2ρ1n1=1nX93(4)(σ2+1,σ3+1n1,ρ1+1), X93(4)(σ4+n)=X93(4)+uσ5ρ1n1=1nX93(4)(σ5+1,σ4+n1,ρ1+1), X93(4)(σ4n)=X93(4)uσ5ρ1n1=1nX93(4)(σ5+1,σ4+1n1,ρ1+1), X93(4)(σ5+n)=X93(4)+uσ4ρ1n1=1nX93(4)(σ4+1,σ5+n1,ρ1+1), X93(4)(σ5n)=X93(4)uσ4ρ1n1=1nX93(4)(σ4+1,σ5+1n1,ρ1+1).

Theorem 2.8 The following recursion formulas hold true for the numerator parameter σ2, σ3, σ4, σ5 of the X93(4):

X93(4)(σ2+n)=N2n(nn1,n2)(σ1)n1(σ3)n2yn1zn2(ρ1)N2X93(4)(σ1+n1,σ2+N2,σ3+n2,ρ1+N2),

X93(4)(σ2n)=N2n(nn1,n2)(σ1)n1(σ3)n2(y)n1(z)n2(ρ1)N2X93(4)(σ1+n1,σ3+n2,ρ1+N2),

X93(4)(σ3+n)=n1n(nn1)(σ2)n1zn1(ρ1)n1X93(4)(σ2+n1,σ3+n1,ρ1+n1), X93(4)(σ3n)=n1n(nn1)(σ2)n1(z)n1(ρ1)n1X93(4)(σ2+n1,ρ1+n1), X93(4)(σ4+n)=n1n(nn1)(σ5)n1un1(ρ1)n1X93(4)(σ4+n1,σ5+n1,ρ1+n1), X93(4)(σ4n)=n1n(nn1)(σ5)n1(u)n1(ρ1)n1X93(4)(σ5+n1,ρ1+n1), X93(4)(σ5+n)=n1n(nn1)(σ4)n1un1(ρ1)n1X93(4)(σ4+n1,σ5+n1,ρ1+n1), X93(4)(σ5n)=n1n(nn1)(σ4)n1(u)n1(ρ1)n1X93(4)(σ4+n1,ρ1+n1),

where N2=n1+n2.

Theorem 2.9 The following recursion formulas hold true for the denominator parameter ρ1, ρ2 of the X93(4):

X93(4)(ρ1n)=X93(4)+σ1σ2yn1=1n1(ρ1n1)(ρ1+1n1)X93(4)(σ1+1,σ2+1,ρ1+2n1)+σ2σ3zn1=1n1(ρ1n1)(ρ1+1n1)X93(4)(σ2+1,σ3+1,ρ1+2n1)+σ4σ5un1=1n1(ρ1n1)(ρ1+1n1)X93(4)(σ4+1,σ5+1,ρ1+2n1),

X93(4)(ρ2n)=X93(4)+(σ1)2xn1=1n1(ρ2n1)(ρ2+1n1)X93(4)(σ1+2,ρ2+2n1).

Theorem 2.10 The following recursion formulas hold true for the numerator parameter σ1, σ2, σ3, σ4, σ5 of the X94(4):

X94(4)(σ1+n)=X94(4)+2xcn1=1n(σ1+n1)X94(4)(σ1+1+n1,c+1)+yσ2cn1=1nX94(4)(σ1+n1,σ2+1,c+1),

X94(4)(σ1n)=X94(4)2xcn1=1n(σ1+1n1)X94(4)(σ1+2n1,c+1)yσ2cn1=1nX94(4)(σ1+1n1,σ2+1,c+1),

X94(4)(σ2+n)=X94(4)+yσ1cn1=1nX94(4)(σ1+1,σ2+n1,c+1)+zσ3cn1=1nX94(4)(σ2+n1,σ3+1,c+1), X94(4)(σ2n)=X94(4)yσ1cn1=1nX94(4)(σ1+1,σ2+1n1,c+1)zσ3cn1=1nX94(4)(σ2+1n1,σ3+1,c+1), X94(4)(σ3+n)=X94(4)+zσ2cn1=1nX94(4)(σ2+1,σ3+n1,c+1), X94(4)(σ3n)=X94(4)zσ2cn1=1nX94(4)(σ2+1,σ3+1n1,c+1), X94(4)(σ4+n)=X94(4)+uσ5cn1=1nX94(4)(σ5+1,σ4+n1,c+1), X94(4)(σ4n)=X94(4)uσ5cn1=1nX94(4)(σ5+1,σ4+1n1,c+1) X94(4)(σ5+n)=X94(4)+uσ4cn1=1nX94(4)(σ4+1,σ5+n1,c+1), X94(4)(σ5n)=X94(4)uσ4cn1=1nX94(4)(σ4+1,σ5+1n1,c+1).

Theorem 2.11 The following recursion formulas hold true for the numerator parameter σ2, σ3, σ4, σ5 of the X94(4):

X94(4)(σ2+n)=N2n(nn1,n2)(σ1)n1(σ3)n2yn1zn2(c)N2X94(4)(σ1+n1,σ2+N2,σ3+n2,c+N2),

X94(4)(σ2n)=N2n(nn1,n2)(σ1)n1(σ3)n2(y)n1(z)n2(c)N2X94(4)(σ1+n1,σ3+n2,c+N2),

X94(4)(σ3+n)=n1n(nn1)(σ2)n1zn1(c)n1X94(4)(σ2+n1,σ3+n1,c+n1), X94(4)(σ3n)=n1n(nn1)(σ2)n1(z)n1(c)n1X94(4)(σ2+n1,c+n1), X94(4)(σ4+n)=n1n(nn1)(σ5)n1un1(c)n1X94(4)(σ4+n1,σ5+n1,c+n1), X94(4)(σ4n)=n1n(nn1)(σ5)n1(u)n1(c)n1X94(4)(σ5+n1,c+n1), X94(4)(σ5+n)=n1n(nn1)(σ4)n1un1(c)n1X94(4)(σ4+n1,σ5+n1,c+n1), X94(4)(σ5n)=n1n(nn1)(σ4)n1(u)n1(c)n1X94(4)(σ4+n1,c+n1),

where N2=n1+n2.

Theorem 2.12 The following recursion formulas hold true for the denominator parameter c of the X94(4):

X94(4)(cn)=X94(4)+(σ1)2xn1=1n1(cn1)(c+1n1)X94(4)(σ1+2,c+2n1)       +σ1σ2yn1=1n1(cn1)(c+1n1)X94(4)(σ1+1,σ2+1,c+2n1)       +σ2σ3zn1=1n1(cn1)(c+1n1)X94(4)(σ2+1,σ3+1,c+2n1)       +σ4σ5un1=1n1(cn1)(c+1n1)X94(4)(σ4+1,σ5+1,c+2n1).

Conclusion

Hypergeometric functions in several variables play an essential role in diverse areas of science and engineering. The advancements in applied mathematics, mathematical physics, and other areas of science have led to increasing interest in the study of hypergeometric functions. Also, special functions and its properties are used to solve various problems in science and engineering. In this paper, we have derived several recursion formulas for new hypergeometric functions in four variables. Also, some interested particular cases and consequences of our results have been discussed. In the future, these recursion formulas for the hypergeometric functions in four variables may find applications in various branches of mathematics, mathematical physics, engineering and related areas of study.

Data Availability: The data used to support the findings of this study are available from the corresponding author upon request.

Authors’ Contributions: All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no competing interests.

References Agarwal, P., Chand, M., Purohit, S. D. (2015). A note on generating functions involving the generalized gauss hypergeometric functions. National Academy Science Letters, 37(5), 457459. DOI 10.1007/s40009-014-0250-7. Agarwal, P., Qi, F., Chand, M., Jain, S. (2017). Certain integrals involving the generalized hypergeometric function and the Laguerre polynomials. Journal of Computational and Applied Mathematics, 313, 307317. DOI 10.1016/j.cam.2016.09.034. Agarwal, P., Choi, J., Jain, S. (2015). Extended hypergeometric functions of two and three variables. Communications of the Korean Mathematical Society, 30(4), 403414. DOI 10.4134/CKMS.2015.30.4.403. Çetinkaya, A., K.ymaz, I. O., Agarwal, P., Agarwal, R. (2018). A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators. Advances in Difference Equations, 2018:156. DOI 10.1186/s13662-018-1612-0. Purohit, S. D., Jolly, N., Bansal, M. K., Singh, J., Kumar, D. (2020). Chebyshev type inequalities involving the fractional integral operator containing multi-index Mittag-Leffler function in the kernel. Applications and Applied Mathematics, 6, 2938. Suthar, D. L., Purohit, S. D., Araci, S. (2020). Solution of fractional kinetic equations associated with the (p, q)-Mathieu-type series, discrete dynamics in nature and society. Article ID 8645161, 7. DOI 10.1155/2020/8645161. Chandola, A., Pandey, R. M., Agarwal, R., Purohit, S. D. (2020). An extension of beta function, its statistical distribution, and associated fractional operator. Advances in Difference Equations, Article no. 684. DOI 10.1186/s13662-020-03142-6. Agarwal, P. (2014). Certain properties of the generalized gauss hypergeometric functions. Applied Mathematics & Information Sciences, 8(5), 23152320. DOI 10.12785/amis/080526. Choi, J., Agarwal, P. (2014). Certain fractional integral inequalities involving hypergeometric operators. East Asian Mathematical Journal, 30(3), 283291. DOI 10.7858/eamj.2014.018. Nisar, K. S., Suthar, D. L., Agarwal, R., Purohit, S. D. (2020). Fractional calculus operators with appell function kernels applied to srivastava polynomials and extended Mittag-Leffler function. Advances in Difference Equations, Article no. 148. DOI 10.1186/s13662-020-02610-3. Purohit, S. D., Khan, A. M., Suthar, D. L., Dave, S. (2021). The impact on raise of environmental pollution and occurrence in biological populations pertaining to incomplete H-function. National Academy Science Letters, 44(3), 263266. DOI 10.1007/s40009-020-00996-y. Frankl, F. I. (1973). Selected works in gas dynamics. Nauka, Moscow (in Russian). Mathai, A. M., Saxena, R. K. (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Springer-Verlag, Berlin, Heidelberg and New York. Niukkanen, A. W. (1983). Generalised hypergeometric series NF(x1,, xN) arising in physical and quantum chemical applications. Journal of Physics A: Mathematical and General, 16, 18131825. DOI 10.1088/0305-4470/16/9/007. Sneddon, I. N. (1980). Special functions of mathematical physics and chemistry. Third ed., Longman, London and New York. Srivastava, H. M., Kashyap, B. R. K. (1982). Special functions in queuing theory and related stochastic processes. Academic Prees, New York, London and San Francisco. Berdyshev, A. S., Hasanov, A., Ryskan, A. R. (2020). Solution of the neumann problem for one four-dimensional elliptic equation. Eurasian Mathematical Journal, 11(2), 9397. DOI http://dx.doi.org/10.32523/2077-9879-2020-11-2-93-97. Hasanov, A., Berdyshev, A. S., Ryskan, A. R. (2020). Fundamental solutions for a class of four-dimensional degenerate elliptic equation. Complex Variables and Elliptic Equations, 65(4), 632647. DOI 10.1080/17476933.2019.1606803. Srivastava, H. M., Hasanov, A., Ergashev, T. G. (2020). A family of potentials for elliptic equations with one singular coefficient and their applications. Mathematical Methods in Applied Sciences, 43(10), 61816199. DOI 10.1002/mma.6365. Exton, H. (1976). Multiple hypergeometric functions and applications. IHalsted Press, New York, London, Sydney and Toronto. Sharma, C., Parihar, C. L. (1989). Hypergeometric functions of four variables (I). The Journal of the Indian Academy of Mathematics, 11, 121133. Younis, J. A., Aydi, H., Verma, A. (2021). Some formulas for new quadruple hypergeometric functions, Journal of Mathematics. Article ID 5596299, 10. DOI 10.1155/2021/5596299. Srivastava, H. M., Karlsson, P. W. (1984). Multiple gaussian hypergeometric series. Ellis Horwood Ltd., Chichester. Opps, S. B., Saad, N., Srivastava, H. M. (2009). Recursion formulas for Appell’s hypergeometric function F2 with some applications to radiation field problems. Applied Mathematics and Computation, 207, 545558. DOI 10.1016/j.amc.2008.11.006. Wang, X. (2012). Recursion formulas for Appell functions. Integral Transforms and Special Functions, 23(6), 421433. DOI 10.1080/10652469.2011.596483. Sahai, V., Verma, A. (2015). Recursion formulas for multivariable hypergeometric functions. Asian-European Journal of Mathematics, 8(4), 1550082, 50. Sahai, V., Verma, A. (2016).Ecursion formulas for the Srivastava-Daoust and related multivariable hypergeometric functions. Asian-European Journal of Mathematics, 9(4), 1650081, 35. DOI 10.1142/S1793557116500819. Shehata, A., Moustafa, S. I. (2021). Some new results for horn’s hypergeometric functions γ1 and γ2. Journal of Mathematics and Computer Science, 23(1), 2635.