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ABSTRACT

Breast cancer is considered an immense threat and one of the leading causes of mortality in females. It is curable
only when detected at an early stage. A standard cancer diagnosis approach involves detection of cancer-related
anomalies in tumour histopathology images. Detection depends on the accurate identification of the landmarks
in the visual artefacts present in the slide images. Researchers are continuously striving to develop automatic
machine-learning algorithms for processing medical images to assist in tumour detection. Nowadays, computer-
based automated systems play an important role in cancer image analysis and help healthcare experts make rapid
and correct inferences about the type of cancer. This study proposes an effective convolutional neural network-
based (CNN-based) model that exploits the transfer-learning technique for automatic image classification between
malignant and benign tumour, using histopathology images. Resnet50 architecture has been trained on new dataset
for feature extraction, and fully connected layers have been fine-tuned for achieving highest training, validation
and test accuracies. The result illustrated state-of-the-art performance of the proposedmodel with highest training,
validation and test accuracies as 99.70%, 99.24% and 99.24%, respectively. Classification accuracy is increased by
0.66% and 0.2% when compared with similar recent studies on training and test data results. Average precision
and F1 score have also improved, and receiver operating characteristic (RoC) area has been achieved to 99.1%.
Thus, a reliable, accurate and consistent CNNmodel based on pre-built Resnet50 architecture has been developed.
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1 Introduction

The International Agency for Research (IARC), a part of the World Health Organization
(WHO), coordinates and conducts both epidemiological and laboratory research into the causes
of human cancer; it reported that breast cancer is the most commonly occurring cancer worldwide
(11.7% of the total new cases). In the projected burden of cancer in 2040, it was estimated that in
2.3 million new cancer cases worldwide, one in every 8 cancers diagnosed in the year 2020 will turn
out to be breast cancer; it is the fifth leading cause of cancer mortality worldwide, with 685,000
deaths in the year 2020. In women, breast cancer ranks first in terms of incidence and mortality
in most countries around the world [1]. This high mortality rate can be reduced through timely
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detection of the disease, in its early stages. The manual detection method, fine needle aspiration
(FNA), is a simple and quick cytology procedure to discover cysts or cancer, by examining
the fluid characteristics extracted from the suspected area; however, the diagnosis processes are
subject to expert inferences on visual anomalies. This pathological challenge, associated with FNA,
encourages researchers to discover a new, automatic, quick and consistent method to analyse
and detect cancerous cells. The last decade has witnessed steady progress of the convolutional
neural network (CNN), which represented significant contribution towards automated detection
of tumour images and provides additional support to healthcare experts, allowing them to make
accurate decisions. Therefore, research developments are focused on computer-aided diagnostic
(CAD) methods for disease prognosis and diagnosis purposes. In CNN, breast cancer diagnosis is
carried out by examining the images acquired through different medical instruments like mammo-
graph, breast ultrasound, magnetic resonance imaging (MRI) or the open biopsy process. A typical
CAD system has four common steps: (a) input images, (b) pre-processing, (c) feature extraction
and (d) classification; after these steps, results are produced. A specialized artificial neural network
(ANN) model—CNN—includes all the above-mentioned steps.

ANN techniques have become popular among researchers due to their excellent learning
ability and built-in parameter tuning mechanism. As a result, ANN is widely used to examine
theoretical and applied science models. To study and determine the behavior of any model, correct
mapping between inputs and the target parameters of the model is an essential step. ANN
methods play a key role in modifying crucial internal parameters and providing an optimized
network weight. Some recent studies have described the use of an ANN method alone or in
conjunction with genetic algorithm (GA), particle swarm optimisation (PSO), whale optimization
algorithm and sequential quadratic programming (SQP), to simulate well-known multi-disciplinary
equations. In the studies [2–6], Emden-Fowler model for its second and third order systems
has been solved successfully. In other studies [7,8], Lane-Emden delay differential model was
analysed. Several authors have used conventional mathematical simulations like fractional dynam-
ics behaviours using Chebyshev polynomials converted into a linear equations [9], masses on
the vertices of equilateral triangle [10] and modelling of human liver with the Caputo-Fabrizio
fractional derivative [11] for their experimental models. Furthermore, researchers [12–16] presented
mathematical modelling in some different areas and have claimed that their proposed algorithms
can be suitably applied in diverse fields. Moreover, ANN has evolved as a promising technique in
the healthcare sector for diagnoses and processing medical images.

In our present study, an ANN technique was implemented for adjusting network weights
recursively for minimizing detection errors. In the prior reported work [17], researchers have
proposed a dataset and applied a two-class computer-based classification; they obtained accuracy
within the ranges of 80% to 85%. With this background, this study aims to propose an effective
classifier with high classification rate and accurate detection of malignant and benign tumours
from breast histopathology images. Some images of benign and malignant tumours are shown in
Fig. 1.

The prime objective of this study is to provide an effective model, with a high accuracy rate,
for the classification of cancerous and non-cancerous images. The remaining sections are organised
as follows: Section 2 is dedicated to the literature review, Section 3 introduces the CNN concepts,
Section 4 describes research methodology with experimental outcomes and Section 5 concludes
the study and unfolds further research opportunities.
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Figure 1: Different breast cancer biopsy images [17]. (a–d) Benign tumour images. (e–h) Malignant
tumour images

2 Literature Review

This literature review includes the research papers that used pre-trained systems for breast
cancer classification. Some substantial and relevant studies have been discussed in this section.

In a study, researcher have developed a deep feature-based model (DeCAF) [18], for the
classification of breast histopathology images, and the pre-trained BVLC Caffenet model, which
is available for free in the café library, was implemented as a feature extractor. Various outputs
obtained from different fully connected layers were analysed individually and in different combi-
nations. Logistic regression was used as a base classifier for the evolution of these deep features.
The experimental outcome has exhibited a high accuracy rate and better performance than hand-
made features for image recognition. In an experimental work [19], a transfer-learning method
was employed to classify histopathological images, and a pre-trained CNN was used to encode
the local features into Fisher vector (FV). Authors also introduced a new adaptation layer that
enhances discriminant characteristics of features and improves classification accuracy. VGG-VD
was implemented for accomplishing transfer learning. The study [20] presented a classification
scheme to generate and assign confidence score to images of each class. The classification was
based on the Kernel principal component analysis (KPCA) ensemble method, and the proposed
scheme was successfully tested on two different datasets: (a) breast cancer and (b) optical coher-
ence tomography. This study has also imposed a research challenge to find an optimiser, to
reduce the fixed size parameters applied in this work. In the reported work [21], 1.2 million high-
resolution images have been categorised in 1,000 different classes through a large, deeper and
focused neural network in the ImageNet (LSVRC-2010) competition. This novel model consisted
of 60 million parameters, 650,000 neurons and five convolution stages. The fully connected layers
applied the SoftMax function. Experiment outcome reported the lowest error rates of 37.5%
and 17.0%, respectively. The research work [22] provides an automatic two-step classifier for
slide investigation. In the first step, coarse regions were analysed in the whole slide to obtain
diverse spatially localised features, after which the detailed analysis of the selected tiled region
was completed. This experiment used elastic net classifier and weighted voting classifier for cancer
detection on brain image dataset. The research paper [23] presented a probabilistic classifier that
combines multiple-instance learning and relational learning. The instance-based learning was used
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for the classification task, whereas relationship-learning map was used for the changes in the
cell formation due to cancer. This approach had been evaluated on breast and Barrett’s cancer
tissue microarray datasets. In another work, the researcher had developed an accurate, reliable,
and multistage method for measuring the neoplastic nuclei size for pleomorphism grading [24].
In the preliminary stage, image quality, staining value and tissue appearance were observed. In
a later stage, machine-learning methods were used to score and remove abnormality that existed
in nuclear contour, for better segmentation. A study has discussed difficulties associated with
multiclass classification due to broad variability, high coherency, and inhomogeneity of colour
distribution. In this paper, authors had resolved these issues and proposed a breast cancer multi-
classification method, which used a structured deep-learning model [25]. This model includes a
training stage, extracting features and optimises inter-class distances. The validation stage was
used for parameter tuning, while the testing stage comprised model evaluation. The final accuracy
was obtained as 93.2% for multi-class binary classification on the breast biopsy image dataset. A
study has addressed an intra-embedding supervised classification method to classify histopathology
images; in this innovative work [26], Fisher encodings are embedded with CNN architecture.
The results of the work concluded that the proposed method can successfully resolve the issues
of high dimensionality and busty visual components, which are associated with FV. This model
was evaluated in lymphoma and breast cancer datasets, where highest classification accuracies
on different magnification levels were reported on the breast cancer histopathology dataset. An
experimental work [27] was focused on the use of colour-textural characteristics of the breast
cancer histopathology images, for effective classification. In this work, different classifiers, namely
support vector machine (SVM), decision tree, nearest neighbour and discriminant analysis, were
included for creating an ensemble classifier. The proposed model was studied on various optical
magnification levels, to acquire better discriminative features. A CNN-based approach was applied
in [28], where patch-level classifications were carried out on breast cancer biopsy images. The
maximum accuracies reported 77.8% for four classes and 83.3% for two classes, for instance,
carcinoma/non-carcinoma through the CNN-SVM model. Another approach [29] had examined 74
features and their importance was inferred, based on pixel level, contrast and texture. Additional
features were also studied like geometry and context for significant contribution, to achieve a
better accuracy rate. In the novel work [30], researchers have applied CNN for correct detection
of smoke in a region from video frames.

Based on earlier research work, it can be summarised that the use of machine-learning
methods, especially deep learning algorithm, can be efficiently optimised for cancer cell detection,
segmentation and classification. Review of literature also highlighted the importance of input
image quality, feature extraction and classifier for development of an effective computer-based
system. A lot of contributions have already been made in the recent years, but there is always
scope for achieving better classification accuracy, which is the basis of our research work.

3 CNN Architecture

Automatic feature extraction is the prime benefit of using CNN. This concept was originated
through experimental work done by Hubel et al. [31] in 1968. They had analysed the cortex
responses on different light intensities for simple, complex and hypercomplex patterns. Based
on this concept, Fukushima [32] had proposed a “Neocognitron” neural network process model
to recognise visual patterns, using the “learning-without-a-teacher” concept. This model applies
the novel S-layer and C-layer. The S-layer portrayed geometrical features, and the C-layer was
applied to down-step the S-output, by responding selectively for a single-stimulus pattern. CNN
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architecture is more complex due to multiple layers, which implement a convolution operation
to extract local and global features, to determine the underlying pattern of an image. Extracted
features are extremely useful; they guide the network towards the learning direction and lead
to automatic decision-making. CNN model has another important layer—pooling layer—which
reduces the dimension received from the previous layer. In a single CNN architecture, there can
be many combinations of convolution and pooling layers. These intermediate layers are used to
identify spatial visual patterns from images, as shown in Fig. 2. These convolution and pooling
layers are discussed in Subsections 3.1 and 3.2, respectively.

Figure 2: Schematic diagram of typical CNN architecture

3.1 Convolution Layer
The key function of the CNN model is executed by its convolve layer, which significantly iden-

tifies the different shapes of the input image, using different filters (or kernels). More specifically,
one filter can only detect one pattern; therefore, multiple filters are generally used to determine
complete image components. To understand the convolution process, for example, an n * n size
image and an m * m size filter (such as m = 1, 3, 5. . .and m < n) are fed to a convolution layer
such that the filter slides over the image to form an m * m image region. For this image region, a
dot operation takes place between corresponding pixels of the filter and the specific image region.
The result of this operation provides most valuable pixel information, which expresses a particular
pattern. The mean of all m * m pixels is calculated, which is stored in a single-cell output matrix
(i.e., feature map). This process is repeated until the filter slides on every possible location over the
image. Once the whole process is complete, the feature map is generated. Two important methods,
stride and padding, also affect the feature map result during this convolution process. A stride ‘s’
determines the value of jump or movement of the filter from current location to next location
over the image; generally, the values are s = 1, 2 or 3, whereas padding adds some additional rows
and columns in an image with the pixel value = 0. Padding ensures the proper representation of
corner and edge pixel values in the feature map. This feature maps are fed to the next layer, as
illustrated in Fig. 3.

Eq. (1) is expressing the mathematical operation performed during the convolution process.
Suppose Xi,j is the height and width of an image region and Fv1,v2 is filter used in a convolution
process, where v1 = v2, filter size is Fv1,v2 < X i,j and ∗ is a dot operator, then each movement of
the filter over the particular region of image (i.e., m * n) involves two actions: (a) dot operation:
the pixel-wise dot operations are performed between the specific pixels of the selected image region
and the corresponding pixel of the applied filter and (b) summation: all resultants are summed
together to form a single input value, to contribute a cell value in the feature matrix. Following
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expression with bias, provides the complete feature matrix that can be referred [33].

Input image(Xi,j) ∗Filter(Fv1,v2)=

⎛
⎜⎝

v1−1
2∑

m=−v1+1
2

v2−1
2∑

n=−v2+1
2

Xi−m,j−n ∗ Fm,n

⎞
⎟⎠ (1)

Figure 3: Illustration of convolve process

The size of convolutional layer can be defined as Eq. (2), where input size (R), Filter size
(F), padding (p) and stride (s) are used in a particular layer:

Feature map output size (o)= (R−F + 2p)
s

+ 1 (2)

3.2 Pooling Layers
Pooling layer is the crucial next stage; it comprises decreasing the matrix size of the con-

volution layer. Pooling layers are arranged just after one or more convolution layers so that it
can retain the most significant values from feature map. Two popular pooling methods are max
pooling and average pooling. The max pooling method contains only the maximum value from a
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specific sub matrix (i.e., m * n) of the feature map; average pooling collects the mean value of the
feature submatrix, which can be referred to in Eq. (3) [34].

Pijq= max
(m,n)∈Fi,j

Pmnq (3)

Here, Fi,j is a complete feature matrix of a particular layer ‘q’, and Emnq are matrix elements
on the feature map submatrix (m*n). Once this process is complete for all possible subregions of
the feature map, the complete downsized output matrix can be obtained for further processing.

3.3 Classification Layer
3.3.1 The Classifier

Classification refers to assigning a single label to an unknown sample in the pool of different
classes, whereas a classifier is a mathematical function applied to learn the underlying hidden
patterns from the training dataset such that the input data can be mapped with their actual label.
Once learning is complete, the classifier is used to predict unlabelled data. A fully connected
(FC) ANN is usually applied as a classifier, followed by the flatten layer. This FC layer contains
collection of nodes, like human brain neurons, and they are arranged in multiple layers of input,
hidden and output. All nodes of one layer are linked with every node of the next layer. The final
feature vectors are forwarded to this FC network, and input layers of the FC network are fed
forward to the subsequent hidden layer. Every node of each layer has some specific weight; it is
multiplied with the prior layer output and added with the bias values of its own layer. The last
layer determines the most suitable class for the input image, and each node has its own summation
and activation function. The activation function is a mathematical process which decides whether
a node value needs to be activated (or triggered) or not for the prediction purpose, based on some
predefined threshold value. The most popular activation functions are binary step (B), sigmoid (S),
relu (R), tanH (Th) and SoftMax (Sm). The following Table 1 summarises some of the functions,
with Eqs. (4)–(8).

Table 1: Various popular activation functions

Activation functions Formula

Sigmoid S(θ)= 1
1+e−θ (4)

Relu R = max (0, θ) (5)

Binary step B(θ)=
{

0 when θ < 0
1 when θ ≥ 0

(6)

TanH Th(θ)=
[

2
1+e−2θ

]
− 1 (7)

Softmax Sm(θ)i = eθi∑k
j=1 e

θj
(8)

3.3.2 The Cost Function
The cost function represents the learning ability of a classifier. It represents the gap between

predicted and actual class of input dataset; this gap should be minimum. A counter feedback
(i.e., backpropagation) process is employed to re-adjust neuron weights of all hidden layers in the
opposite direction. After tuning the network weight, the updated cost value is checked, and gaps
are analysed again. This learning process is repeated until and unless the optimum value, in the
form of global minima, is achieved and the network classifies the maximum correct labels for
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given dataset. The cost function can be mathematically expressed as Eq. (9)

Cost (C) = 1
M

M∑
i=1

(Ŷi −Yi)
2 (9)

where X is the set of input samples {X1, X2 . . .XM} and Y is the corresponding true labels {Y1,
Y2 . . ..YM} of X. The total number of samples are M and the predicted output label (Ŷ i) for
sample ‘i’ is such that Ŷ i = f(Xi).

4 Research Methodology

4.1 Breast Cancer Dataset
In this study, we have used a BreakHis open dataset, which contains different breast cancer

classes in two main categories, benign and malignant. A total of 7,909 images of 40×, 100×,
200× and 400× magnification levels were obtained from 82 patients. Out of these, 2,480 belonged
to the benign and 5,429 to the malignant class. Each image has been represented by an 8-bit
RGB channel, with the size of 700× 460 pixels. Total number of images, based on different
magnification levels, are summarised in the Table 2.

Table 2: Dataset description according to each magnification level

Magnification Total

40× 1,995
100× 2,081
200× 2,013
400× 1,820
Total of images 7,909

The benign tumour is further sub-classified into adenosis, fibroadenoma, phyllodes and tubu-
lar adenoma. Malignant tumour type is sub-categorised into ductal carcinoma, lobular carcinoma,
mucinous carcinoma and papillary carcinoma. In this experimental work, all images have been
manually partitioned into benign or malignant; this allows the problem to be formulated into
binary classification. Data augmentation has also been applied due to lesser number of training
data samples. The complete dataset was divided into training (6327 images), validation (790
images) and test subsets (792).

4.2 Proposed Model
In this experimental work, a multi-layered deep CNN framework Resnet50 was tuned for

transferring the learning process. ResNet-50 is a prebuilt model which has been trained on the
ImageNet dataset for identifying different images of 1,000 classes. ImageNet pre-trained weights
were supplied as initial weights for the proposed deep neural network. The residual layers present
in ResNet50 plays an important role, to transfer large gradient values to its prior adjacent layers.
Due to this layer, the model can effectively extract complex and relevant patterns and resolve the
vanishing gradient problem [35,36]. In our experimental setup, all pre-train model layers are kept
open to learn new features from biopsy images. The feature matrices, acquired from CNN layers,
were supplied to the fine-tuned FC layer, where the sigmoid function was used in the output layer.
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Further, the Adam optimiser was applied, with the learning rate 0.00001, for achieving better
accuracy. The loss function was set to binary cross entropy. Loss function indicates the difference
between the actual and predicted value. Epoch was set to 80. The available data were highly
imbalanced in their sample number, so for the data balancing, proper weights for each class were
assigned; please refer to Fig. 4. The whole dataset was divided into different subsets as follows:
training dataset with 6,327 images to train the model, validation dataset has 790 images for tuning
network parameters and test subsets have 792 images to evaluate model performance.

Figure 4: Indicating imbalanced dataset

The data augmentation has been applied additionally to generate flipped, zoom, shearing
and scaling training datasets, whereas validation and test datasets have been only scaled. Images
have been randomly selected from every category. The proposed architecture delivers an adequate
performance with excellent accuracy and other model measures rates. Fig. 5 shows the flow chart
of the proposed model.

4.3 Evaluation Parameters and Metrics
The utility of the model is mainly measured by accuracy rate of its classification. The

confusion matrix is used to analyse the additional quality parameters like precision, recall and
F1 score. A 2 * 2 confusion matrix represents performance measures for binary classification; it is
inferenced in Fig. 6. Here, a different cell element contains the true positive (TP), false negative
(FN), false positive (FP) and true negative (TN) values. The TP refers to correct prediction of true
positive class, FP refers to the cases where there is an actual negative class—but it is determined as
a positive class—TN is referred as the negative class correctly predicted and FN shows a positive
class incorrectly as a negative class.

The accuracy outcome is an important measure for any CNN model. It represents the ratio
of total correct prediction (TP + TN) over all predictions (i.e., TN + TN + FP + FN) generated
by the model. Accuracy, precision, recall and the F1 score can be calculated from the equations,
Eqs. (10)–(13).

Accuracy (A)= (TP+TN)

(TP+TN+FP+FN)
(10)

Precision (P)= TP
(TP+FP)

(11)

Recall or true positive rate (TPR)= TP
(TP+FN)

(12)
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F1 score = 2 ∗ (Precesion ∗Recall)
(Precesion+Recall)

(13)

Figure 5: Step-by-step illustration of proposed model process

Predicted Class

Positive Class

(0)

Negative Class

(1)

Actual 

classes

Positive 
Class(0)

True Positive False Negative 

Negative 
Class(1)

False Positive True Negative

Figure 6: Representing 2 * 2 confusion matrix for the binary classification
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4.4 Experimental Results
This study was setup in Colab Notebook, offered by the google cloud platform, with a Tesla

T4 GPU. Python and Keras, were used for the programming and model-tuning purposes. For
performance evaluation, the Sklearn library [37] was employed, and conclusion was drawn from
confusion matrices. This study consists of six major steps: (a) image pre-processing and data
augmentation, (b) feature extraction, (c) network training and FC layer fine-tuning, (d) model
accuracy evaluation using validation dataset, (e) finalisation of model and (f) final performance
evaluation on accuracies and other parameters using unseen test data set, as presented in Fig. 5.

Image processing is an important step; it enhances the quality of image and prepares input
images for network learning. Data augmentation was necessary due to lesser number of available
images, which were further divided into train, validation and test datasets. Feature extraction
has been carried out through the prebuilt model, Resnet50. The pre-trained weights were loaded
initially, and the network layers have been kept trainable, allowing the model to learn new patterns
from the provided unseen medical dataset. Fine-tuning was carried out through redefining the
FC layer, and hyper parameters have been tuned by multiple runs for the optimum accuracy on
training and validation dataset. Model training epochs were set as 80. Once the training was
completed, the final accuracy on the test dataset was obtained. The experimental result projected
exemplary training accuracy, 99.70%, and validation accuracy as 99.24%. Fig. 7a illustrates a
graphical representation of the achieved accuracies for training and test datasets during 80 epochs.
Fig. 7b determines model perfection, through the loss ratios obtained for training and validation
as 0.190 and 0.0694, respectively.

Figure 7: Demonstration of training and validation samples (a) accuracies and (b) the loss values

When the model was evaluated through untouched test dataset, encouraging results were
found, with 99.24% accuracy and a loss value of 0.0491. Further, for deeper analysis of the model,
confusion matrix and other evaluation parameters, such as precisions, recall, F1 score, were also
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carefully observed; this concluded that the model is correctly classifying each sample of different
data subsets; refer to Tables 3a and 3b.

Table 3: (a) Classification accuracies and sample data used (b) confusion matrix attributes

Evaluation method Data-subset Performance (in %) Sample size (number of images)

Model accuracies Training 99.70 6327
Validation 99.24 790
Test 99.24 792

ROC Area 99.1 –

(a)

(b)

Receiver operating characteristics (RoC) analysis is a well-defined graphical representation
to show the trade-off between true positive rate and false positive rate for binary classification
tasks [38]. The area under the curve (AUC) is also important to determine model’s capability, to
distinguish between one class and another. In this experiment, RoC area was found as 99.1% as
depicted in Fig. 8. This clearly indicates that the proposed model can classify input images into
their correct class.

Figure 8: RoC curve and AUC evolution performed on test dataset
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The individual class performance with precision, recall and F1-score is shown in Table 4.
In this table, benign class is encoded as ‘0’ and malignant class is represented as ‘1’. Parameter
‘Precision’ depicts the proportion of TP values over total samples predicted for positive inclusion
of FP—please refer to Eq. (11). Precision value is an important parameter, as it indicates unbiased
and precise model performance for positive class predictions. ‘Recall’ parameter also represents the
proportion of positive class over sum of predicted TP and FN samples—please refer to Eq. (12).
F1-score represents harmonic mean of precision and recall value—please refer Eq. (13). The term
‘Support’ defines the class samples involved in this calculation. The higher values of accuracy,
precision, recall and F1 indicate superior model performance.

Table 4: Individual class and average accuracy scores generated on 792 data samples

Precision Recall F1-score Support

0 99 99 99 248
1 99 99 99 544
Accuracy 99 792
Macro average 99 99 99 792
Weighted average 99 99 99 792

The following Table 5 illustrates the comparative performance of the model in similar studies.
In this comparison, only two-class classification on the same BreakHis dataset have been consid-
ered. The exemplary accuracy, precision and F1 score rate of our proposed model can be noticed.
A comparative account of accuracy of model is depicted in Fig. 9.

Table 5: Comparative result of our proposed model with similar recent studies [39]

Paper Model used Accuracy Precision Recall F1 score

[39] CNN (image levels) 89.6 – – –
[18] CNN with DeCAF

features (image
Level)

83 – – –

[40] CNN-CT
histogram (200X)

97.19 98 98.2 98

[41] Dense net features
and SVM

97.96 – – –

[42] Fine-tuned
Resnet-18
(magnification
independent)

98.42 98.75 99.01 98.88

[43] CNN with
ensemble

99.04 98.94 99.65 –

Proposed model Training dataset 99.70
Validation dataset 99.24 – – –
Test dataset 99.24 99.12 99.12 99.12
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Figure 9: Illustration of accuracy performance of proposed model with latest similar work

5 Conclusion and Future Work

This study discussed the general functioning of the CNN model and proposed a model that
was effective in the classification of cancerous and non-cancerous histopathology images taken
from the Breakhis dataset. It was quite a challenging task to extract the prominent features
due to variability in H&E stain, colour intensities, irregular shapes, high resolution and large
sizes of images. Manual analysis of these images are always hard and time-consuming and are
subject to the expertise level of specialists. Highly unbalanced and smaller sample images were
another associated problem in the study; however, necessary steps, such as data augmentation and
proper class weights, were taken to resolve these issues. The strength of our proposed model is
based on the network’s learning ability and accurate classification capabilities of the BreakHis
dataset. The extracted feature also adequately determines the complex local and global features
of histopathology images, and supports the redesigned FC layer learning. For the evaluation of
the proposed model, only calculating the accuracy parameter is not enough. Therefore, other
performance measures—RoC, precision, recall and F1 score—have also been calculated; this allows
true and reliable detection of image classification. The results were encouraging when compared
with similar recent works. The regularisation and dropout values can be tuned further for better
results; however, the testing results adequately prove that the proposed model is outperforming
previous models, and it is appropriate for providing preliminary assistance to the healthcare
experts for quick and accurate decision-making. Thus, a reliable and consistent CNN model
based on pre-built Resnet50 architecture, which exploits the transfer learning technique, has been
developed.

In future, this work will be extended to study one or more model parameters and their
optimisation, like network complexity, image channels, computational time and space complex-
ity. Furthermore, experiments for the multiclass classification on same dataset will/can also be
carried out.
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