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ABSTRACT

This study establishes a multiscale andmulti-material topology optimization model for thermoelastic lattice struc-
tures (TLSs) consideringmechanical and thermal loading based on theExtendedMultiscale Finite ElementMethod
(EMsFEM). The corresponding multi-material and multiscale mathematical formulation have been established
with minimizing strain energy and structural mass as the objective function and constraint, respectively. The
Solid Isotropic Material with Penalization (SIMP) interpolation scheme has been adopted to realize micro-scale
multi-material selection of truss microstructure. The modified volume preserving Heaviside function (VPHF) is
utilized to obtain a clear 0/1 material of truss microstructure. Compared with the classic topology optimization
of single-material TLSs, multi-material topology optimization can get a better structural design of the TLS. The
effects of temperatures, size factor, and mass fraction on optimization results have been presented and discussed
in the numerical examples.
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1 Introduction

Analysis and design of thermoelastic structures are an important part of structural design
in many mechanical and aerospace engineering applications. Topology optimization [1–4] design
is an effective strategy to improve the performance of the thermoelastic structure. Many studies
had been carried out with considering structure failure caused by thermal stresses [5]. Rodrigues
et al. [6] established a topology optimization model to design the 2D linear thermoelastic structure.
Deng et al. [7] investigated a multi-objective topology design optimization of the thermoelastic
structure. Zhang et al. [8], and Deaton et al. [5] studied the minimum strain energy and minimum
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weight design of the thermoelastic structure, respectively. Takalloozadeh et al. [9] provided a level-
set topology optimization model subjected to the thermal loading. Takezawa et al. [10] optimized
the structure considering the structural strength and thermal conductivity constraints.

However, most researchers only focused on single-material topology optimization. For exam-
ple, Zhang et al. [11,12] studied the single-material topology optimization based on Moving
Morphable component method. But the single-material structure design cannot meet the special
functional requirements, such as negative thermal expansion structure [13], zero expansion struc-
ture [14], etc. In order to seek optimal structural performance, the topology design optimization
of multi-material lattice structures is proposed. The multi-material structure topology optimization
was firstly studied by Thomsen [15]. Then, Sigmund et al. [16] studied the topology design opti-
mization of three-phase material structures using the SIMP interpolation scheme. By improving
the SIMP scheme, the Discrete Material Optimization scheme [17], Shape Functions with Penaliza-
tion scheme [18], and Bi-value Coding Parameterization scheme [19] were proposed. Multi-material
topology optimization considering thermal loads was conducted by Gao et al. [20] and Giraldo-
Londoño et al. [21]. A multiscale topology design optimization with multiple micro materials [22]
was presented. Multi-material topology optimization subjected to multiple volume constraints was
investigated by Zhang et al. [23]. López et al. [24] designed multi-material structures considering
structural cost and manufacturability. Ye et al. [25] proposed an effective method to optimise
multi-material structures with the minimum weight as the objective function.

Most of the above research focus on isotropic material, and few types of research con-
sider the multi-material lattice structure. However, the lattice structure is more and more widely
used in aerospace and civil engineering because the lattice structure with a variety of porous
microstructures [26,27] has the advantages of a high ratio of stiffness [28–30]. A large number of
micro-members in the lattice structure will make the modeling and analysis of the lattice structure
difficult. Therefore, multiscale analysis models are utilized to achieve the analysis and optimization
of the lattice structure. Zhang et al. [31] used the EMsFEM to build the analysis model for
the lattice structure based on the MsFEM [32,33]. The concurrent multiscale optimization of
theTLS subjected to thermal and mechanical loads by using the EMsFEM was provided by Yan
et al. [34,35]. Moreover, multiscale topology design optimization of TLSs based on clustering
method was proposed by Yan et al. [36]. But there are few studies on multi-material TLSs. By
using the same analysis method, the multiscale design optimization of the multi-material TLSs is
achieved in the paper. The multi-material and multiscale design optimization of the TLS, where
the microstructure is composed of multiple materials, is studied subjected to the thermal and
mechanical loading, as shown in Fig. 1. At the macroscale, an artificial element density (Pi ) is
a design variable to optimize the macroscopic topology configuration of the structure. At the
microscale, the cross-sectional (Aj) and material selection parameters (Ej, αj) are design variables
to optimize the microscopic unit cell configuration. Considering the manufacturing cost, the unit
cell of microscale lattice structural configuration has been adopted.

In the present research, the minimum strain energy of the structure and structural mass are
considered as the objective function and constraint, respectively. The paper mainly introduces the
following five parts. Section 2 provides the basic formula of the computation of strain energy of
the multi-material TLSs by using the EMsFEM. Section 3 elaborates the material interpolation
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model. The modified SIMP interpolation scheme of the multi-material microstructure is proposed.
In Section 4, the problem formulation and sensitivity analysis of the topology optimization of the
multi-material TLS are introduced. Section 5 provides numerical examples to achieve multiscale
topology design optimization of multi-material TLSs. Conclusions are provided in Section 6.

Figure 1: Schematic of the multi-material and multiscale topology design optimization of the TLS

2 Strain Energy of Multi-Material TLSs

According to the reference [8], it indicates that the strain energy of the thermoelastic structure
is more useful than the compliance. Thus, the topology design optimization for the TLS with
minimum strain energy is studied. This concurrent multiscale optimization for multi-material
lattice structure combines the homogenization method with the EMsFEM using the framework of
PAMP [37]. The EMsFEM proposed in Zhang et al. [31] extends the FEM method to multiscale
analysis of the structure made of heterogeneous material. In the EMsFEM, the structure is
discretized by a number of macro-element and material in macro-element can be heterogeneous.
And the stiffness matrix of each macro-element is constructed in a similar way with the traditional
FEM but based on numerical shape functions, which is obtained by applying microscale FEM
analysis to each macro-element. On the micro-scale, the relationship between the macro-node
displacement and micro-node displacement is obtained based on shape functions. On the macro-
scale, the displacement of the macrostructure is obtained by traditional FEM analysis methods. As
shown in Fig. 2, the multiscale shape function matrix N of a plane four-node element composed
of a truss microstructure can be expressed as

N= [Rx(1)T Ry(1)T Rx(2)T Ry(2)T . . .Rx(n)T Ry(n)T] (1)

where n is the number of nodes in the microscopic unit cell. Rx(j) and Ry(j) can be expressed as{
Rx(j)= [N1xx(j)N1xy(j) N2xx(j)N2xy(j)N3xx(j)N3xy(j) N4xx(j)N4xy(j)]
Ry(j)= [N1yx(j)N1yy(j)N2yx(j)N2yy(j)N3yx(j)N3yy(j) N4yx(j)N4yy(j)]

(2)

where Niyx(j) (i= 1, 2, 3, 4; j= 1, 2, . . . , n) is the coupled term of the shape functions. In
physical terms, it refers to the nodal displacements of the micro-node j in the truss microstructure
in the y-direction, when node i of the macro-element experiences a unit displacement in the
x-direction. The specific solution of the shape function with periodic boundary conditions and
structural analysis of TLSs based on the EMsFEM can refer to Yan et al. [35,36].

Considering the discrete finite element format, the strain energy of the TLS is presented as

φ = 1
2
UT · K ·U−UT ·Fth+φth (3)
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where K is the equivalent stiffness matrix (ESM) of the TLS. U is the macro-displacement vector.
Fth is the equivalent thermal load vector (ETLV) of the TLS. φth is the strain energy with only
due to thermal loads.

Figure 2: The macro-element composed of the truss microstructure

The microstructure consists of multiple materials, as shown in Fig. 1. Each rod is given a
candidate material property, and there are M rods with up to M material properties. We can get
the whole potential energy of the TLS by assembling the potential energy of all truss unit cells.
The ESM and ETLV of the macro-element are determined as

K=
H∑
i=1

Pai Ke =
H∑
i=1

Pai ·
⎛
⎝ M∑

j=1

(θθθjRj)
TEjAj

Lj
θθθjRj

⎞
⎠ (4)

Fth =
H∑
i=1

Pai F
th
e =

H∑
i=1

Pai ·
⎛
⎝ M∑
j=1

(θθθjRj)
T
EjAjαj�T

⎞
⎠ (5)

φth = 1
2

H∑
i=1

M∑
j=1

(αj�T)2EjAjLjPai (6)

where H is the number of macro-elements in the structure. M is the number of micro rods in the
microstructure. Pi represents the macro-element density. Here a= 3 is the penalty coefficient in the
method of porous anisotropic materials [37] to force the macro-density towards 0–1. Ke and Fth

e
represent the ESM and ETLV of each macro-element, respectively. Aj and Lj are the cross-
sectional area and length of the j-th microrod, respectively. αj is the thermal expansion coefficient
of j-th rod. The value range of Aj is [0.0001,0.3]. �T denote the temperature rise and Ej is the
elastic modulus of j-th rod. The microrod α-β in the two different coordinate systems is shown
in Fig. 3. Rj = [Rx(A)T Ry(A)T Rx(B)T Ry(B)T] is the shape function of j-th rod in the truss

microstructure. θ = [− cos θ − sin θ cos θ sin θ
]
is the coordinate system conversion angle of

the rod element. θ is the included angle between the microrod and X axis.
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Figure 3: A microrod in the two different coordinate systems

3 Material Interpolation Scheme

In order to get a better performance structure, the microstructure is comprised of multiple
materials. For a microstructure with n solid materials, the material of each microrob is inter-
polated by n candidate base materials by using the material interpolation scheme. The SIMP
interpolation scheme is modified by the VPHF [38] to make 0/1 discrete choices clearly. In the
optimization problem subjected to mechanical and thermal loading, the elastic modulus and
thermal expansion coefficient compute the ESM and ETLV of the macro-element, respectively.
The interpolation for elastic modulus Ej, thermal expansion coefficient αj and density ρj of the
j-th rod be expressed as

Ej =
n∑

k=1

ωkE
(n−k+1)
j (7)

αj =
n∑

k=1

ωkα
(n−k+1)
j (8)

ρj =
n∑

k=1

ωkρ
(n−k+1)
j (9)

and

ωk = [1− (x̄kj − x̄kj δkn)]
k−1∏
p=1

x̄pj (10)

δkn =
{
1, k= n
0, k �= n

(11)

where E(n−k+1)
j denotes the original elastic modulus of the (n−k+ 1)-th material. α

(n−k+1)
j is the

original thermal expansion coefficient of the (n−k+1)-th material. ρ
(n−k+1)
j is the original density
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of the (n− k+ 1)-th material. x̄kj is the set of design variables obtained by VPHF [38] according

to Eq. (12).

x̄kj =
⎧⎨
⎩

η[e−β(1−xjk/η) − (1−xjk/η)e−β ] 0≤ xjk ≤ η

η+ (1− η)

[
1− e−

β(xjk−η)

1−η + (xjk−η)e−β

1−η

]
η < xjk ≤ 1

(12)

where xjk denotes the design variable of the j-th rod related to the k-th candidate original
material. β affects the sharpness of the projection. η denotes the parameter obtained by solving
the volume conservation equation according to the volume before and after projection. In order to
improve calculation efficiency, a constant η = 0.5 is adopted here. The curve according to Eq. (12)
with different penalty parameters β is shown in Fig. 4. As the penalty parameter β increases,
the penalty effect dramatically increases, which prompts material design variables after the penalty
to 0 or 1.

Figure 4: Penalty of the VPHF with different β values and η = 0.5

The elastic modulus, the thermal expansion coefficient and density of the j-th rod in a
microstructure interpolated using two materials can express as the following formulations

Ej = x̄1j E
1
j + (1− x̄1j )E

2
j (13)

αj = x̄1j α
1
j + (1− x̄1j )α

2
j (14)

ρj = x̄1j ρ
1
j + (1− x̄1j )ρ

2
j (15)

where x̄1j denotes the design variable of the j-th rod related to two candidate base materials after

projection.
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4 Multi-Material and Multiscale Topology Optimization of TLSs

4.1 Optimization Formulation
The topology optimization of the TLS with multi-material microstructure under mechanical

and thermal loading is studied. The cross-sectional area of micro rods, macro-elements density,
and the candidate base materials of microstructure are design variables. The minimum structural
strain energy is chosen as the objective function subjected to the mass constraint. The optimization
formulation of multi-material TLS is shown as

Find Pi,Aj,xjk(i= 1, . . . ,H)(j= 1, . . . ,M)(k= 1, . . . , n)

Min Φ =UT · K ·U− 2UT ·Fth + 2φth

S.t. ϕ =
H∑
i=1

M∑
j=1

PiAjLjg0ρj/M0 ≤ ϕ̄

ϕk =
M∑
j=1

AjLjρ
(k)
j

/ M∑
j=1

AjLjρj = ϕ̄k(k= 1, . . . , n)

⎧⎨
⎩
AL ≤Aj ≤AU
0≤ ε ≤ xjk ≤ 1
0< ε ≤Pi ≤ 1

(16)

where ϕk denotes a mass ratio of the k-th candidate base material. The purpose of a given mass
ratio constraint for each material in the microstructure is to obtain a multi-material structure.
ϕ̄ is the upper limit of the mass fraction. g0 represents the area of a macro-element. M0 denotes
the total mass of the TLS. AL and AU are upper and lower limits of the cross-sectional area of
the microrod, respectively. ε denotes lower limit of macro-density to avoid a numerical singularity.
ϕ̄k is the limit of the mass fraction with the k-th candidate base material in microstructure. Other
variables share the same meaning with those in Section 2.

4.2 Filter Scheme
To eliminate the checkerboard pattern at the macroscale, a linear density filter [39,40] is

utilized. The filtered density P̄i of element i is expressed as follows

P̄i =
∑

xj∈Ne
i
W(xj)vjPj∑

xj∈Ne
i
W(xj)vj

(17)

W(xj)=
R− |xj−xi|

R
(18)

where Ne
i is the neighborhood of element e. xj is the spatial (center) location of element j. vj is

the volume of element j. R is the filter radius of the center of element e.

To reduce the number of gray elements at the macroscale, the VPHF projection is used.
Substituting the Eq. (17) into the Eq. (12), the penalized element density P̃i = P̃i(P̄i(Pj)) can be
given.
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4.3 Sensitivity Analysis
Sensitivity analysis is mainly divided into the adjoint sensitivity method and direct derivative

method. Sensitivity analysis of multi-scale lattice structure can adopt the direct derivative method
and the specific process can refer to Yan et al. [34]. The analytical sensitivity of the multi-material
TLS can be directly given here. The finite element equilibrium equation of thermoelastic structure
is presented as

K ·U= Fm+Fth (19)

where Fm is the applied mechanical load and independent of the design variables. Derivation of
the cross-sectional area of the microrod Aj on both sides of the Eq. (19), the derivative of the
displacement with respect to the cross-sectional area of the microrod Aj is

∂U
∂Aj

= ∂K−1

∂Aj
(Fm+Fth)+K−1 ∂Fth

∂Aj
(20)

The derivative of the strain energy with respect to the cross-sectional area of the microrod
Aj is

∂φ

∂Aj
=−UT ∂K

∂Aj
U+ 2UT ∂Fth

∂Aj
− 2FthK−1 ∂Fth

∂Aj
− 2Fth ∂K−1

∂Aj
(Fm+Fth)− 2UT ∂Fth

∂Aj
+ ∂φth

∂Aj

= (2Uth−U)T
∂K
∂Aj

U− 2(Uth)T
∂Fth

∂Aj
+ ∂φth

∂Aj

(21)

where Uth denotes the displacement due to thermal loads. The other variables have been defined
in Sections 2 and 3. The derivative of the structural ESM, the ETLV, and the strain energy only
due to thermal loading with respect to the area of the microrod are shown as

∂K
∂Aj

=
H∑
i=1

P̃ai

⎛
⎝ M∑
p=1

∂RpT

∂Aj
θθθp

Tkpeθθθ
pRp+ (θθθjRj)

TEj
Lj

θθθjRj+
M∑
p=1

(θθθpRp)
Tkpeθθθ

p ∂Rp

∂Aj

⎞
⎠ (22)

∂Fth

∂Aj
=

H∑
i=1

P̃ai

⎛
⎝ M∑
p=1

∂RpT

∂Aj
θθθp

T
(EpApαp�T)+ (θθθjRj)

T
(Ejαj�T)

⎞
⎠ (23)

∂φth

∂Aj
=

H∑
i=1

P̃ai Ej(αjT)2Lj (24)

Similarly, the sensitivity of micro-scale design variable xjk related to the candidate base
materials of microstructure is

∂φ

∂xjk
= (2Uth−U)T

∂K
∂xjk

U− 2(Uth)T
∂Fth

∂xjk
+ ∂φth

∂xjk
(25)
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The derivative of the ESM, the ETLV, and the strain energy only due to the thermal loading
with respect to the microscopic material design variable xjk are provided

∂K
∂xjk

=
H∑
i=1

P̃ai

⎛
⎝ M∑
p=1

∂RpT

∂xjk
θθθp

Tkpeθθθ
pRp+ (θθθjRj)

TAj
Lj

∂Ej
∂xjk

θθθjRj+
M∑
p=1

(θθθpRp)
Tkpeθθθ

p ∂Rp

∂xjk

⎞
⎠ (26)

∂Fth

∂xjk
=

H∑
i=1

P̃ai

⎛
⎝ M∑
p=1

∂RpT

∂xjk
θθθp

T
(EpApαp�T)+ (θθθjRj)

T ∂Ej
∂xjk

(Ajαj�T)+ (θθθjRj)
T ∂αj

∂xjk
(AjEj�T)

⎞
⎠ (27)

∂φth

∂xjk
=

H∑
i=1

P̃ai Lj

(
∂Ej
∂xjk

(αjT)2+ 2EjαjT2 ∂αj

∂xjk

)
(28)

where the derivative of the elastic modulus and thermal expansion coefficient with respect to the
microscopic material variable are

∂Ej
∂xjk

= ∂Ej
∂x̄kj

∂x̄kj
∂xjk

=
n∑

k=1

∂ωk

∂x̄kj

∂x̄kj
∂xjk

E(n−k+1)
j (29)

∂αj

∂xjk
= ∂αj

∂x̄kj

∂x̄kj
∂xjk

=
n∑

k=1

∂ωk

∂x̄kj

∂x̄kj
∂xjk

α
(n−k+1)
j (30)

where the derivative of filtered design variables x̄kj obtained by VPHF [38] with respect to the

microscopic material design variable is

∂x̄kj
∂xjk

=
⎧⎨
⎩

β + e
−β

(
1− xjk

η

)
+ e−β 0≤ xj ≤ η

β e−
β(xjk−β)

1−η + e−β η < xj ≤ 1
(31)

The derivative of the objective function with respect to the macro-density Pi is

∂φ

∂Pi
= ∂P̃i

∂Pi
·
⎛
⎝aP̃a−1

i (2Uth−U)TKU− 2aP̃a−1
i (Uth)TFth+

H∑
i=1

aP̃a−1
i

M∑
j=1

Ej(αjT)2AjLj

⎞
⎠ (32)

4.4 Optimization Implementation
The topology optimization flow chart of multi-material TLS is shown in Fig. 5. The specific

optimization process is given as follows

(1) Set the macro-element density, the cross-sectional area of the micro rods, and the number
of candidate materials in the microstructure.

(2) According to the Eq. (17), filter the macro-element density. And penalize the macro-
element density and microscopic material design variables by the VPHF [38] projection.

(3) According to the multi-material interpolation scheme Eqs. (13)–(15) to calculate the elastic
modulus matrix E, thermal expansion coefficient matrix α and density matrix ρ.
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(4) According to the Eqs. (4)–(6), calculate the structural ESM K, ETLV Fth and strain energy
φth.

(5) Solve the equilibrium equation of the multi-material TLS to get the macro-node displace-
ment and get the micro-node displacement through the shape function.

(6) According to Eqs. (21)–(29), calculate structural sensitivity analysis to obtain
∂φ

∂Pi
,

∂φ

∂xjk

and
∂φ

∂Aj
.

(7) Optimize the multi-material TLS with the sequential quadratic programming method [41]
and judge the iterative convergence condition. If the program is not convergent, update the
design variables and go to Step 2; otherwise, the optimization is finished.

Figure 5: Optimization flow chart of the multi-material TLS

5 Numerical Examples

We take the microstructure with two materials as an example. The elastic modulus, thermal
expansion coefficients and densities of the two candidate base materials are given in Table 1.
Comparing the ratio of elastic modulus to the density of the two materials, it is found that
Material 1 is higher than Material 2. The product of the thermal expansion coefficient and elastic
modulus is higher than Material 2 compared to Material 1. Thus, Material 2 has the advantage
in mechanical properties, and Material 1 has better resistance to thermal deformation. Elastic
modulus and thermal expansion coefficients of the microstructure can be obtained by the material
interpolation scheme in Section 3, as shown in Fig. 6.
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Table 1: Properties of the two candidate base materials

Material 1 Material 2

Elastic modulus 1.0× 106 1.9× 106

Thermal expansion coefficient 1.0× 10−5 1.25× 10−5

Density 4500 7500

In this section, a two-end clamped beam subjected to both mechanical and thermal load-
ing is considered. The length and width of the two-end clamped beam are L=40 and W=
20, respectively. The mesh is composed of nx × ny = 40 × 20 macroelements, where nx and
ny denote the number of macro-elements in the X and Y directions, respectively. Considering
the connectivity [42] between microstructures, a square microstructure consisting of 20 bars is
selected, as shown in Fig. 7. In all examples, a mechanical load and a thermal load are applied
to the structure as shown in Fig. 7. The mass of the base material available for microunit cell
M0 = 8.39× 106 is given. In the optimization formulation of the two-material structure, the mass
ratio of materials 1 and 2 are constrained as ϕ̄1 = 0.4, ϕ̄2 = 0.6. The upper and lower limits of
the cross-sectional area of the microrod are 0.0001 and 0.3, respectively. When the cross-sectional
area of the microrod reaches a lower limit, the microrod can be ignored due to weak bearing
capacity. The above parameters are the same for the following examples.
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Figure 6: Elastic modulus and thermal expansion coefficients of j-th rod of the microstructure
based on the material interpolation scheme. (β = 100 and η = 0.5)

5.1 Comparison of Single-Material Optimization and Multi-Material Optimization
In this example, a mechanical load Fy =−1000 and a thermal load �T= 50◦C are applied to

the structure. The upper limit of mass fraction is ϕ̄ = 0.1. We compare single material optimization
results with two material optimization results under the same load conditions and constraints.
The minimum strain energy of the multi-material optimization with two materials is 13.50. And
the result of the single-material optimization with Material 1 and Material 2 are 15.88 and
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14.20, respectively. The mass constraints of all the optimizations are active. Compared with single-
material optimization, the strain energy of the optimized multi-material TLS decreases by 15.0%
and 4.9%, respectively. We found that the multi-material optimization result is better than the
single-material optimization result. As shown in Fig. 8, the macro-configurations of multi-material
optimization and single-material optimization are all V-shaped configurations. Comparing the
multi-material optimization result with single-material optimization results, we found that more
materials are distributed into the microstructure. In the multi-material optimization result, green
robs indicate Material 1 and orange robs indicate Material 2. The good mechanical properties
are distributed on the X-shaped diagonal in microstructure, used to resist mechanical loads.
Multi-material design enhances the bearing properties of microscopic unit cells.

Figure 7: Design domain and boundary conditions of a two-end clamped beam

5.2 Multi-Material Optimization with Different Ground Structures Considering Size Factors
In this example, a mechanical load Fy =−1000 and a thermal load �T= 50◦C are applied to

the structure. The upper limit of the mass fraction is ϕ̄ = 0.1. Assuming that the microstructure
is composed of the same substructures. The length of the vertical rods in the microstructure will
change to 1/m of the original length. The size factor m is equal to 1, 2, and 4, as shown in
Fig. 9. At the micro-scale, ground structures consist of 6 rods, 20 rods and 72 rods which the
size factor m equals 1, 2, and 4. Loads and constraints are the same as mentioned above. The
results of the multi-material optimization with the different ground structures are 23.44, 13.50 and
12.99, respectively. The mass constraints are always active. As the number of ground structural
members increases, the minimum strain energy of the structure decreases gradually. Because the
number of design variables increases, the feasible domain and the possibility of better optimization
results become larger. The minimum strain energy at n= 2 is reduced by 42% relative to the
minimum strain energy at n= 1. But the minimum strain energy at n= 4 is reduced by 4% relative
to the minimum strain energy at n= 2. Therefore, taking the ground structure of n= 2 is the most
reasonable, which can reduce the amount of calculation and obtain better optimization results. We
obtain the macro-micro topology optimization configuration with different ground structures, as
shown in Fig. 10. As the number of ground structural members increases, the amount of material
distributed to the macrostructure decreases, and the microstructure material gradually increases.
The good mechanical properties are mainly distributed in the diagonal rods of microstructure that
is used to resist mechanical loads. The material with good thermal properties distributes in the
horizontal rods that can relieve the compressive stress caused by the thermal load in the horizontal
direction.
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Figure 8: Comparison of single-material optimization and multi-material optimization.
(a) Macro topological configuration and micro material distribution with the single Material 1
(b) Macro topological configuration and micro material distribution with the single Material 2
(c) Macro topological configuration and micro material distribution with the multi-material
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Figure 9: Microstructures with different size factors [36]

5.3 Multi-Material Optimization Results with Different Temperatures
In this example, a mechanical load Fy = −1000 is applied to the structure and the upper

limit of the mass fraction is ϕ̄ = 0.1. The optimization is performed by varying the magnitude
of the thermal loads, as shown in Fig. 11. The results of the multi-material TLSs will increase
from 12.70, 13.50 to 16.96, when the thermal load �T is increased from 0◦C, 50◦C to 100◦C.
The mass constraints are always active. The macro topology configurations are all the V-shape
with the change of temperatures, but distributions of micro-material will change with the different
temperatures, as shown in Fig. 11. And the choice of material properties of each microrod will
also change with the different temperature. When there is no temperature load, the horizontal rod
with good mechanical Material 2 is mainly subjected to bending. When there is a temperature
load, the horizontal rods are distributed with the Material 1 to relieve the compressive stress
caused by the thermal loading.

5.4 Multiscale Optimization of the Multi-Material Structure with Different Mass Fractions
In this example, a mechanical load Fy =−1000 and a thermal load �T= 50◦C are applied to

the structure. As shown in Fig. 12, the curve of strain energy of the multi-material TLSs change
with the base material mass fraction. As the mass fraction increase, the minimum strain energy
gradually decreases, but the downward trend has gradually slowed down. All macro topology
configurations develop into V-shape with the change of mass fraction. As the amount of materials
increases, the distribution of macroscopic materials firstly will gradually increase, then materials
are mainly distributed into the microstructure. The increase of macroscopic materials will increase
the mechanical load-bearing capacity of the structure, but at the same time, it will reduce the ther-
mal load-carrying capacity. So it cannot be distributed more in the macrostructure. As the amount
of material increases, the material with good mechanical properties is distributed to the longitudi-
nal rod and the diagonal rod at the bottom end, which is used to improve the mechanical bearing
capacity and reduce the tensile stress generated by the mechanical load.

In Fig. 13, the curves of the microstructure acturl mass fraction and the macroscopic actural
mass fraction change with the constrained mass fraction. The microstructure acturl mass fraction
is the ratio of actul microstructure mass to initial microstructure mass. With the increase of
the total mass constraint, the microstructure mass fraction gradually increase. Due to the more
material distribution into the microstructure, the cross-sectional areas of the micro rods will
increase. Comparing the actual total mass fraction with the constrained total mass fraction, we
found that the total mass constraint is not active when the constrained mass fraction is larger
than 0.50 in this example.
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Figure 10: Multiscale optimization of multi-material lattice structures with different ground
structures. (a) Macro topological configuration and micro material distribution with the size
factor m= 1 (b) Macro topological configuration and micro material distribution with the size fac-
tor m= 2 (c) Macro topological configuration and micro material distribution with the size factor
m= 4
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Figure 11: Multiscale optimization of multi-material lattice structures with different temperatures.
(a) Macro topological configuration and micro material distribution at �T = 0◦ (b) Macro
topological configuration and micro material distribution at �T = 50◦ (c) Macro topological
configuration and micro material distribution at �T= 100◦
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Figure 12: Strain energy of the multi-material structure changes with the mass fraction
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Figure 13: Actual material fraction of microscopic and macroscopic structure

6 Conclusion

A multiscale and multi-material topology design optimization model of TLSs subjected to
mechanical and thermal loading based on the EMsFEM is established in this research. Different
from the traditional minimum compliance optimization, the corresponding multi-material and
multiscale mathematical formulation has been established with minimizing strain energy as the
objective function. And the mass constraint is considered. The following conclusions are obtained.

The SIMP interpolation scheme has been adopted to realize micro-scale multi-material selec-
tion of truss microstructure. The modified VPHF is utilized to obtain a clear 0/1 material of truss
microstructure. Compared with the traditional single-material topology optimization, multiscale
topology optimization of multi-material TLSs allow increase design freedom for potentially better
solutions to obtain the structure for better performance. The influence of temperatures, size
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factors, and structural mass fraction on the optimization results are introduced. As the temper-
ature and mass fraction increase, the strain energy gradually increases. Temperature and mass
fraction have little effect on the macro topological configuration, but have a more significant effect
on the distribution of microscopic materials. The macro topological configurations and micro
material distributions of multi-material TLSs are presented. The topology optimization of TLS
with the microstructure composed of multiple materials realizes the improvement of structural
performance.
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