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ABSTRACT

Pervious concrete (PC) is at risk of clogging due to the continuous blockage of sand into it during its service
time. This study aims to evaluate and predict such clogging behavior of PC using hybrid machine learning
techniques. Based on the 84 groups of the dataset developed in the earlier study, the clogging behavior of the PC
was determined by the algorithm combing the SVM (support vector machines) and particle swarm optimization
(PSO) methods. The PSO algorithm was employed to adjust the hyperparameters of the SVM and verify the
performance using 10-fold cross-validation. The predicting results of the developed model were assessed by the
coefficient of determination (R) and root mean square error (RMSE). The importance of the influential variables
on the clogging behavior of PC was evaluated as well. The results showed that the PSO algorithm can effectively
adjust the hyperparameters of the SVM model and can be used to construct the predictive model for the clogging
behavior of the PC. The combined algorithm has the advantage of higher reliability and validity than the random
hyperparameters selection. For the verification process, the developed model was able to obtain values of 0.9469
and 1.8148 for the R and RMSE, showing that the developed machine learning model can accurately be used
to evaluate and predict the clogging behavior of the PC, guiding the mix-design of PC from the perspective of
durability. The size of the clogging sand is the most important parameter and the thickness of the sample is the
least significant factor affecting the clogging behavior. The proportions of the smallest aggregate size and largest
aggregate size are the two most important design parameters of concrete with the consideration of the relatively
higher importance scores, showing these two aggregates should be given special attention in future PC design for
anti-clogging purposes.
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1 Introduction

With the gradual development of the economy and society, China is vigorously promoting the
process of environmental protection and striving to build “sponge cities” to build a harmonious
relationship between humans and nature [1–7]. The so-called “sponge city” is to modify the urban
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infrastructure, increase the versatility of the basic building facilities, and form a “spongy body”
that does not accumulate water on the road on rainy days and relieves the surface temperature
on sunny days [1,5,6]. At present, most pavements in China are composed of asphalt concrete,
hindering the water-air circulation of the city and accelerating the emergence of the heat island
effect [8–10]. To improve the atmospheric circulation and urban environment, pervious concrete
(PC) was proposed as a new type of green construction material [11,12]. As a kind of new
construction material, it is gradually showing its development advantages: (1) on the one hand,
by laying pervious concrete, the surface runoff after heavy rain can penetrate the ground and
reduce the pressure on municipal drainage facilities; (2) on the other hand, pervious concrete can
penetrate the surface water into the soil to supplement the moisture in the soil and regulate the
urban ecological environment [13–17]. However, as the PC is playing its role of infiltration, it is
inevitable that some small particles such as dust, sand, and gravel can penetrate the PC with the
water. The reduced permeability of PC can shorten the service life of the pavement. For instance,
it was found that the permeability of the PC was reduced by 90% after it was put into use for 5
years, resulting in impervious pavement that is unable to withstand urban flooding and freeze-thaw
damage [13,18,19].

As one kind of paving material that can be used in practical engineering construction, PC has
basically met the practical engineering requirements after many years of experimental research.
However, the main factors affecting the wide practical application of the PC are mainly reflected
in its durability [10,20]. PC is composed of coarse aggregate, cement, water, and water-reducing
agent. The coarse aggregate is taken as the skeleton, and the cement slurry is wrapped outside
the coarse aggregate to bond the coarse aggregate particles to form the point contact or surface
contact of space [21–24]. Due to the particularity structure of PC, it contains a lot of pores
inside. This is both an advantage and a disadvantage of the PC compared to the conventional
concrete [19]. Due to the existence of pore structure, the skeleton of PC is not a continuous
whole structure, so that the external media, especially water, air, small dust, and so on, can enter
freely, which is very unfavorable to the durability [3,18,25–27]. Borgwardt [28] evaluated the effects
of aggregate compositions on the clogging behavior in PC and pointed out that the decrease
of permeability depends on the aggregate sizes used for the design of the mixtures. Kayhanian
et al. [10,25] analyzed the PC with varying service time by the field tester of penetration coefficient
and drew the conclusion that the permeability coefficient of the PC drooped to one-thousandth
of the new one and the most significant influencing factor is the clogging sand with the sizes of
smaller than 38 microns. It can be seen that the earlier studies have considered the effects of the
composition of the mixture and the diameter of the clogging sand on the clogging performance
of PC. However, as far as the authors know, the prediction of the clogging behavior of PC has
not been effectively studied.

With the development of artificial intelligence technology, various machine learning models
are gradually used to evaluate and predict the performances of concrete materials [29–40]. Varying
machine learning techniques have been used to evaluate the mechanical strength of the reinforced
concrete (RC) slab [3,41]. Jamal et al. [42] analyzed the potential to use the multiple linear
regression and adaptive neuro-fuzzy reasoning systems for the estimation of the strength of
recycled aggregate concrete (RAC). Khademi et al. [43] used the same method in a follow-up
study to predict the compressive strength of RAC after curing of 28 days. The machine learning
model was adopted by Armaghani et al. [44] to model the shear capacity of the concrete beam.
The artificial neural network-based modeling approach was used for the strength prediction for
concrete incorporating agricultural and construction wastes [45]. The machine learning model was
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also used to evaluate the mechanical properties of concretes containing waste foundry sand [46].
The measured results of the methods mentioned above were consistent with the predicted ones,
indicating that the machine learning techniques are feasible for the performance prediction of the
concrete materials. However, limited studies can support accurate and efficient artificial intelligence
techniques that specifically target the clogging behavior of PC. Also, it should be noted that
the above machine learning techniques have been successfully adapted to the prediction of the
concrete materials, but these studies still have the limitations of uncertainty, time-consuming and
low efficiency. Therefore, it is necessary to propose more efficient and simple machine learning
techniques to evaluate the clogging behavior of the PC.

2 Research Objective

The main research objective of the present study is to predict the permeability of the PC after
the clogging materials penetrate through. The PSO algorithm was employed to obtain the opti-
mized structure of the SVM model, combining to construct a hybrid machine learning technique
to complete the prediction process. To construct the dataset for the proposed machine learning
model, the permeability and clogging tests of the PC were conducted. The PC was designed with 4
aggregate sizes (G1: 2.36–4.75 mm, G2: 4.75–9.50 mm, G3: 9.50–16.0 mm, and G4: 16.0–19.0 mm).
Considering to evaluate the influence of the thickness on the permeability, cuboid samples of
three different thicknesses (50, 75, 100 mm) with constant length (100 mm) and width (100 mm)
were used. The clogging tests were conducted by three types of clogging sands with different sizes
(0–0.25 mm, 0.25–0.5 mm, and 0.5–1 mm). The research process can be summarized in Fig. 1.

Figure 1: A research overview of the present study

3 Methodology

3.1 Overview of the Machine Learning Techniques
In this study, the particle swarm optimization (PSO) algorithm was employed to obtain the

optimized structure of the support vector machines (SVM) model to construct a hybrid machine
learning technique to complete the prediction process.

3.1.1 Support Vector Machines (SVM)
Support Vector Machine (SVM) is a supervised learning method, which can be widely used

in statistical classification and regression analysis [30,47]. It is mapping a vector into a higher
dimensional space, creating a hyperplane with maximum spacing in that space. Two parallel
hyperplanes (that is ω · x+ b= 0) are built on both sides of the hyperplanes separating the data,
and the distance between the two parallel hyperplanes is maximized by separating the hyperplanes
(as shown in Fig. 2) [47,48].
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Figure 2: Separation hyperplane with the largest geometric spacing

It is assumed that the larger the distance or gap between parallel hyperplanes, the smaller the
total error of the classifier. The algorithm complexity of the trained model is determined by the
number of support vectors, not by the dimension of data. Therefore, SVM is not easy to produce
overfitting. The model trained by SVM is completely dependent on the support vector. Even if all
non-support vector points in the training set are removed, and the training process is repeated,
the same model will still be obtained. If the number of support vectors obtained by training the
SVM is relatively small, then the model trained by SVM is easy to be generalized.

3.1.2 Particle Swarm Optimization (PSO)
Particle Swarm Optimization (PSO) is a kind of evolutionary computing technology proposed

by Eberhart et al. [49] and originated from the study on the predatory behavior of birds. The
algorithm was originally inspired by the rules of the movement of birds and based on a simplified
model of swarm intelligence. According to the observation of the swarm behavior of animals,
particle swarm optimization algorithm (PSO) makes use of the sharing of information among the
individuals in the swarm to make the whole swarm movement evolve from disorder to order in
the problem-solving space, to obtain the optimal solution [3,36,50]. In the PSO algorithm, the
solution to each optimization problem is a bird in the search space. All particles have a fitness
value determined by the optimized function, and each particle has a velocity that determines the
direction and distance they fly. The particles then follow the current optimal particle to search
the solution space. PSO is initialized as a group of random particles (random solutions). In each
iteration, the particle updates itself by tracking two “extremes.” The first is the optimal solution
found by the particle itself, which is called the individual extreme Pbest. The other extreme value
is the optimal solution found by the whole population at present, and this extreme value is the
global extreme value Gbest. Alternatively, instead of using the entire population as a particle’s
neighbor, the extreme value among all neighbors is a local extreme value. The flowchart of the
PSO algorithm can be described in Fig. 3.
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Figure 3: Flowchart of the PSO algorithm

3.2 Dataset Collection
In the present study, The 84 groups of permeability tests (7 types of PC with different aggre-

gate combinations; 3 different sample thicknesses; 4 different clogging conditions) were carried
out to simulate the clogging behavior of the PC. Aggregates of 4 types (which are named G1,
G2, G3, and G4) were used to produce the PC. The aggregate sizes of G1, G2, G3, and G4
were 2.36–4.75 mm, 4.75–9.50 mm, 9.50–16.0 mm, and 16.0–19.0 mm, respectively. Generally, the
typical water-cement ratio of PC ranges from 0.29 to 0.33, and 0.3 was selected here for preparing
samples [5,8,41] without considering its effect in the modeling process. The aggregate-cement ratio
was determined to be 4.5 based on previous studies [51,52]. In 1 m3 of pervious concrete, the
weight of aggregates, cement, and water used was 1,620, 360, and 110 kg, with the high-range
water reducer volume of 700 ml. The samples were cured in a moist cabinet at 95% humidity and
20◦C for 24 h, and then demoulded and placed in the isothermal curing cabinet at the specified
humidity and temperature for 28 days.

The design of the PC mixtures was conducted with the varying proportions of the four
types of aggregates (see Table 1). PC samples with 3 different thicknesses (which are 50, 75, and
100 mm) were adopted. Clogging sands of 3 types (the average sizes of which are 0–0.25 mm,
0.25–0.5 mm, and 0.5–1 mm) were employed to simulate the clogging behavior. The testing results
of the permeability coefficients for varying PC and clogging sands are given in Table 1 (k0 and
k1 mean the permeability before and after the clogging test, respectively).

The dataset collected can be summarized in Table 2.

Fig. 4 gives the matrix diagram of correlation coefficients.

It can be observed from Fig. 4 that the correlation coefficients of the most input parameters
are lower than 0.5, showing that these input parameters cannot raise the issue of multicollinearity
problem according to the study by Koopialipoor et al. [53]. Therefore, these input parameters can
be employed to conduct the machine learning process to simulate the clogging behavior of PC
under the clogging materials.
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Table 1: Testing results of the permeability coefficients

Number
of mixes

Mixes Thickness
[mm]

k0
[mm/s]

Clogging
sand sizes
[mm]

k1
[mm/s]

Clogging
sand sizes
[mm]

k1
[mm/s]

Clogging
sand sizes
[mm]

k1
[mm/s]

1 G2[40%] + G4[60%]

50

22.5 0.25 14.8 0.5 11.3 1 7.6
2 G2[60%] + G4[40%] 17.3 6.8 5.7 5.4
3 G2[40%] + G3[60%] 21.6 14.1 10.1 7.9
4 G2[60%] + G3[40%] 22 11.8 8.9 5.8
5 G1[40%] + G3[60%] 17.2 8.7 7.9 5
6 G1[60%] + G3[40%] 16.8 6.9 5.6 5.2
7 G2[40%] + G3[20%]

+G4[20%]
18.2 6.9 6.7 5.3

8 G2[40%] + G4[60%]

75

22.5 14.3 10.8 7.7
9 G2[60%] + G4[40%] 17.3 7.2 5.9 4.1
10 G2[40%] + G3[60%] 21.6 13 10.4 8.7
11 G2[60%] + G3[40%] 22 10.5 7.2 6.4
12 G1[40%] + G3[60%] 17.2 7.6 5.9 7.4
13 G1[60%] + G3[40%] 16.8 6.8 6.2 6.8
14 G2[40%] + G3[20%]

+G4[20%]
18.2 8.9 8.6 7.1

15 G2[40%] + G4[60%]

100

22.5 14 10.9 7.3
16 G2[60%] + G4[40%] 17.3 6.8 5.2 6.2
17 G2[40%] + G3[60%] 21.6 12.7 9.9 6.5
18 G2[60%] + G3[40%] 22 11.7 8 6.6
19 G1[40%] + G3[60%] 17.2 9.4 7.7 6.7
20 G1[60%] + G3[40%] 16.8 6.5 6.4 4.8
21 G2[40%] + G3[20%]

+G4[20%]
18.2 8.2 8.2 5.9

Table 2: Summary of the dataset collection

Input parameters Values

Aggregate G1 [1] 0.4, 0.6
Aggregate G2 [1] 0.4, 0.6
Aggregate G3 [1] 0.2, 0.4, 0.6
Aggregate G4 [1] 0.4, 0.6
Sample thickness [mm] 50, 75, 100
Clogging sand sizes [mm] 0.25, 0.5, 1

3.3 Model Validation
Two coefficients, RMSE (root-mean-square error) and R (correlation coefficient), were

employed to conduct the model validation process by evaluating the predictive performances of
the models developed in the present study. Regarding the RMSE, it is defined by the following
equation:

RMSE=
√√√√1
n

n∑
i=1

(
y∗i − yi

)2 (1)
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in which y∗i represents the predicted permeability coefficient; yi represents the measured value of
the permeability coefficient; n is the number of PC samples to conduct the permeability tests. R
is determined by the following equation:

R=
∑n

i=1
(
y∗i − y∗

)
(yi− y)√∑n

i=1
(
y∗i − y∗

)2√∑n
i=1 (yi− y)2

(2)

in which the y∗i and yi represent the predicted and measured values of the permeability coefficients.

Figure 4: Matrix diagram of correlation coefficients

3.4 Hyperparameter Tuning
In the present study, the 10-fold cross-validation method was employed for the hyperparameter

tuning process. In this method, the dataset of the permeability coefficients is divided into 10
subsets, in which the 9 subsets are used for the training process and 1 subset is employed to
validate the predicted results. Regarding the 1 subset used to validate the predicted results, the
minimum value of the RMSE should be determined after the 20 iterations to represent the
optimized structure of the SVM model in this fold. That is to say; such a validation process
should be conducted 20 times using the PSO algorithm to obtain the hyperparameters of the SVM
model. Finally, the optimized structure of the SVM model and the corresponding hyperparameters
can be determined after the cross-validation of 10 times. It should be noted that since there is the
possibility of overfitting, the predicted performance of the SVM model is required to validate by
comparing the testing dataset.

4 Results and Analysis

4.1 Performance of the PSO Algorithm
To determine the best form of the SVM model, the hyperparameters were tuned by the 10-fold

cross-validation by evaluating the RMSE values obtained from the testing dataset. After the 10
folds of cross-validation during the hyperparameter tuning process, the relationship between the
fold number and RMSE can be obtained, as shown in Fig. 5.
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Figure 5: Relationship between the fold number and RMSE

As can be seen from Fig. 5, the minimum value of RMSE (0.12 mm/s) can be obtained at
the tenth fold in the dataset for verification. Therefore, the hyperparameter obtained at the tenth
fold was used in this study to construct the SVM model for the permeability prediction of PC.
Fig. 6 gives the relationship between the iterations (which have been conducted 20 times in this
study) and RMSE.

Figure 6: Relationship between the iteration and RMSE using the PSO algorithm

It can be observed from Fig. 6 that the values of the RMSE greatly decreased as the iteration
time increases, proving that the PSO algorithm can be useful to adjust the SVM model. In
addition, after about 8 iterations, the RMSE value can achieve convergence and nearly reach the
minimum value, showing that the best model structure of the SVM is determined in this folding.
In the process of 10-fold cross-validation, the optimal SVM model in the whole process was
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selected after 10 times, and the corresponding optimization hyperparameters were determined. It is
worth noting that the predictive results of the SVM should be validated by evaluating the testing
dataset.

4.2 Performance of the SVM-PSO Algorithm
After the hyperparameters tuning, the predictive performance of the SVM-PSO algorithm to

evaluate the permeability and clogging behavior was conducted. Figs. 7 and 8 show the compar-
ison results between the measured and predicted permeability regarding the training and testing
datasets, respectively.

Figure 7: Results of the training dataset

Figure 8: Results of the testing dataset

It can be seen from Figs. 7 and 8 that the predicted permeability is in good agreement with
the measured permeability (when the PC was faced with the clogging sands with sizes), indicating
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that this method can well establish the nonlinear relationship between the clogging behavior and
the input variables (including the composition of the aggregate sizes in the concrete, sample
thicknesses, and the clogging sand sizes). The statistical parameters for these comparisons between
the training and testing datasets were further obtained, as shown in Figs. 7 and 8. The RMSE
values of the training and testing dataset were 1.2943 and 1.8148, respectively. The higher values
of R for the training and testing dataset are 0.9725 and 0.9469, respectively. The above results
show that the proposed SVM-PSO algorithm did not have the issue of overfitting during the
modeling process.

Fig. 9 (training dataset) and Fig. 10 (testing dataset) give the comparison of the measured
and predicted dataset regarding each data number. The histogram in the figures represents the
difference between the measured and predicted ones. The results also show that the measured
values are in good agreement with the predicted values except for a few noise points. These results
are acceptable to prove that the proposed SVM-PSO algorithm can better predict the permeability
and clogging behavior of PC.

Figure 9: Comparison of the measured and predicted permeability regarding the training dataset

Figure 10: Comparison of the measured and predicted permeability regarding the testing dataset
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4.3 Variable Importance for the Permeability of PC
The relative importance of the varying design parameters was also evaluated in this study.

The proportions of G1–G4, and sample thickness are the influential variables concerning the PC
itself while the clogging size is the external factor that determines the clogging behavior (perme-
ability coefficient after clogging). Fig. 11 shows the importance scores of these input parameters
employed as the input in the SVM-PSO algorithm.

In Fig. 11, the value corresponding to each parameter indicates its importance score. The
changes in parameters with higher importance scores have a greater impact on the clogging
behavior (permeability coefficient after clogging) of the PC. It can be seen from Fig. 11 that the
size of the clogging sand is the most important parameter that affects the clogging behavior,
indicating that as the size of the clogging sand varies from 0.25 to 1 mm, its response to the
clogging behavior is extremely significant. Therefore, in the future laying process of the PC in
the actual road pavements, the clogging sands within this size range (0.25–1 mm) should be
considered to avoid the clogging behavior. The thickness of the sample is the least significant
factor affecting the clogging behavior. In fact, this is easy to understand, as most experimental
studies on PC do not specifically focus on the sample thickness of PC. The proportions of G1
aggregate (the smallest aggregate size) and G4 aggregate (the largest aggregate size) are the two
most important design parameters of concrete, which indicates that the influence of G1 aggregate
and G4 aggregate on the seepage attenuation behavior of PC is significant. Therefore, these two
aggregates should be given special attention in future PC design for anti-clogging purposes.

Figure 11: Variable importance for permeability of the PC

It can be seen from Fig. 12 that there is a negative correlation between the proportion of G1
aggregate and the permeability coefficient (see Fig. 12a), indicating that the aggregates of small
size are not conducive to the permeability of permeable concrete. This is because the small size of
aggregate is easy to fill into the skeleton structure and reduces the air voids. However, regarding
the G2, G3, and G4 aggregates, the influence of the aggregate proportions on the permeability
coefficient is relatively random (see Figs. 12b–12d). Also, it can be observed that thickness is a
favorable factor for the permeability of the pervious concrete, which can be inferred from the
positive correlation in Fig. 12e. This may be because more permeable paths appear in the thicker
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Figure 12: Sensitive analysis of different input variables: (a) Proportion of G1 aggregate; (b)
Proportion of G2 aggregate; (c) Proportion of G3 aggregate; (d) Proportion of G4 aggregate; (e)
Sample thickness; (f) Clogging sand sizes
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concrete specimens, increasing the permeability coefficients. From Fig. 12f, it is obvious that the
size of the blocking particle is an unfavorable variable for the permeability coefficient. Larger
clogging particles can significantly reduce the permeability coefficient of pervious concrete.

5 Conclusions

This study aims to evaluate and predict the clogging behavior, one of the most durable
properties of the PC in the mix design, using hybrid machine learning techniques. Based on the
84 groups (varying proportions of aggregates with different sizes, varying sample thicknesses, and
varying clogging sands with different sizes) of the dataset developed in the earlier study, the
clogging behavior of the PC can be determined by the algorithm combing the SVM and PSO
methods. Specifically, the PSO algorithm is used to adjust the hyperparameters of the SVM and
verify the results using 10-fold cross-validation. The prediction results of the optimized model
were evaluated by R and RMSE. In addition, this study also reveals and discusses the importance
of the influence on the clogging behavior of the PC from the perspective of internal and external
causes. The conclusions obtained can be highlighted as follows:

(1) The PSO algorithm can effectively adjust the hyperparameters of the SVM model and can
be used to construct the predictive model for the clogging behavior of the PC. The combined
algorithm has the advantage of higher reliability and validity than the random hyperparameters
selection. The developed machine learning model can accurately be used to evaluate and predict
the clogging behavior of the PC, guiding the mix-design of PC from the perspective of durability.
For the verification process, the developed model was able to obtain values of 0.9469 and 1.8148
for the R and RMSE, showing that the developed machine learning model can accurately be used
to evaluate and predict the clogging behavior of the PC, guiding the mix-design of PC from the
perspective of durability.

(2) From the perspective of the influential ranking to the clogging behavior in the PC, the
size of the clogging sand is the most important parameter, indicating the clogging sands within
this size range (0.25–1 mm) should be considered to avoid the clogging behavior. The thickness
of the sample is the least significant factor affecting the clogging behavior. The proportions of
G1 aggregate (the smallest aggregate size) and G4 aggregate (the largest aggregate size) are the
two most important design parameters of concrete, showing that the influence of G1 aggregate
and G4 aggregate on the seepage attenuation behavior of PC is significant. Therefore, these two
aggregates should be given special attention in future PC design for anti-clogging purposes.

Considering the limitation that only 84 datasets of permeability were employed in this study,
more testing results should be collected to improve the accuracy of the developed machine
learning model regarding future development. A model comparison study should be carried out as
well to evaluate the efficiency and accuracy of different machine learning models in the prediction.
Also, a user-friendly tool should be developed in the future to facilitate the practical application
of engineers.
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