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ABSTRACT

Multiple failure modes and strength degradation are usually inherent in the gear transmission system, which brings
new challenges for conducting fatigue reliability analysis and design. This paper proposes a novel dynamic fatigue
reliability analysismethod for failure dependence and strength degradation based on the combination of theCopula
function and Gamma process. Firstly, the dynamic simulation model of the gear transmission system is established
to obtain the dynamic stress-time history. The Gamma process is then used to describe the strength degradation
to establish the dynamic stress-strength interference model. The marginal distribution functions of tooth contact
fatigue and dedendumbending fatigue are calculated respectively based on the dynamic interferencemodel. Finally,
the joint distribution of the two failure modes can be obtained by the t-Copula function to characterize the
failure dependence, and so the dynamic fatigue reliability considering failure dependence can be estimated. The
effectiveness of the proposed method is illustrated with examples. The results reveal the temporal law of reliability
and the effects of failure dependence on dynamic fatigue reliability.

KEYWORDS

Gear transmission system; failure dependence; dynamic fatigue reliability; the Gamma process; the Copula
function

1 Introduction

The gear transmission system has the advantages of compact structure, high carrying capacity,
and high efficiency, and it is one of the most widely used transmission modes in the modern
industry. Although various fields have different requirements for using the gear transmission
system, the most fundamental requirement is high stability and high reliability [1]. There are
many potential failure modes in a gear transmission system due to uncertain factors such as load
cases, geometric parameters, and material properties [2–5]. Furthermore, the above uncertainties
have homology, and there will be different degrees of the dependence relationship between failure
modes [6]. When one failure occurs, the process of another failure mode will be affected. In the
design process of the gear transmission system, whether to consider the failure dependence has a
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significant impact on the reliability. Meanwhile, the structural strength will gradually degenerate
with increased service time, which aggravates gear failure probability growth, so the reliability
shows a downward trend. Therefore, it is necessary to introduce failure dependence and dynamic
reliability modeling in the whole design process to provide a more accurate reliability evaluation
for gear transmission system design.

Many scholars have studied reliability considering failure dependence and obtained outstand-
ing achievements. Many traditional methods are used to analyze the failure correlation of mechan-
ical components, most of these methods are based on correlation coefficients. Ditlevsen [7,8] given
the narrow reliability bounds theory through strict reasoning and proof, is widely accepted by
many scholars. This theory can solve mechanical structure reliability with multiple failure modes,
which is undoubtedly a milestone. Nevertheless, this method depends on the correlation coefficient,
and it is difficult to achieve accurate calculations with the increase of failure modes number.
Besides, the calculation result of this method is only an interval, which cannot give accurate
reliability. Based on Ditlevsen’s theory, Low et al. [9] simplified the calculation of fault probability
boundary by programming, and effectively expanded the application value of narrow reliability
bounds theory. Wang et al. [10] introduced the dependence function to quantify the failure
dependence among the components, and the method is applied to the parallel system. The research
results focused on the influence of the dependence relationship on structural reliability. Although
the above research effectively solves the problem of reliability solutions under the coexistence of
multiple failure modes, the description of dependency based on correlation coefficient has the
following limitations. First, the disadvantage of the linear correlation coefficient is that it may lose
the possibility of the theoretical solution, because it cannot determine the joint probability density
function. Second, the difficulty of solving the linear correlation coefficient with the increase of
failure modes is insurmountable. Most importantly, the linear correlation coefficient can only
reveal the first-order linear relationship, but it cannot describe the more complex and higher-order
actual relationship between failure modes [11,12]. In recent years, the applicability of the Copula
function in solving the problem of correlation is favored by many scholars and has achieved good
results. Tang et al. [13] studied the differences of two-dimensional variable correlation models
constructed by different Copula functions and analyzed their influence on reliability analysis
results. Pan et al. [14] established the dependence relationship between two output performance
characteristics of a structural system based on the Copula function. Eryilmaz et al. [15] developed
a Copula-based reliability modeling method that uses the multivariate Copula. Because the Copula
function only uses one parameter to describe the dependence relationship between variables, it
is not suitable for describing a high-dimensional situation. Therefore, some scholars transform
multivariate dependence into binary dependence, making the Copula function more practical
[16–18]. Shen et al. [19] evaluated the structural reliability under various failure modes by using
Rosenblatt transform and Monte Carlo simulation method. This research provides a new way to
solve the multivariate reliability problem.

In this paper, the Copula function is used to characterize the dependence relationship of
failure modes in solving the fatigue reliability of the gear transmission system. The Gamma
process is introduced to describe the strength degradation, and combined with the dynamic stress-
time history to establish the dynamic fatigue reliability model. The research results reveal the
influence of failure dependence and strength degradation on gear transmission systems reliability,
which has an excellent guiding significance for the design and maintenance of gears.
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This paper has four parts. The Copula function theory is introduced in Section 2, and the
reliability model of the gear transmission system considering failure dependence is constructed.
The strength degradation and dynamic stress-strength interference model are detailed in Section 3.
The Gamma process is used to reveal the law of strength degradation. Section 4 proposes an
engineering practice example to validate the proposed approach. It is shown to be more in line
with the engineering practice than the reliability calculation results without failure dependence.

2 Reliability Model of the Gear Transmission System

The coexistence of multiple failure modes is an essential feature of the mechanical structure.
There is a different degree of dependence relationship that exists between various failure modes.
For example, there is a positive relationship between fatigue crack growth and fatigue pitting of
gear teeth. The failure dependence will seriously affect the structure safety function and make the
reliability analysis and modeling more complex. According to the mechanical principle and gear
transmission characteristics, the reliability model under different failure modes is established. The
reliability of the gear transmission system considering the failure dependence is researched.

2.1 Reliability Model Based on Dedendum Bending Fatigue
It is easy for the dedendum to produce fatigue crack in the transmission process, resulting in

the bending fatigue fracture. The dedendum bending stress of gears can be calculated as [20]

σF =YFaYSaYeYβ

Ft
bmn

KAKVKFβKFα (1)

where Ft is the rated tangential tooth force at the transverse pitch, b is the active face width,
mn is the normal module, YFa is the tooth form factor, YSa is the bending stress concentration
coefficient, Ye is the contact ratio factor, Yβ is the helix angle coefficient, KA is the work condition
coefficient, KV is the dynamic load coefficient, KFβ is the longitudinal load distribution coefficient,
KFα is the load distribution coefficient.

Dedendum bending fatigue strength of gears can be calculated as

σFS = σF limYSTYNTYδrelTYRrelTYX (2)

where σF lim is the experimental gear bending fatigue strength, YST is the experimental gear tooth
stress concentration coefficient, YNT is the life coefficient, YδrelT is the relative sensitive coefficient,
YRrelT is the relative surface condition coefficient, YX is the size coefficient.

According to the stress-strength interference theory, the performance function of dedendum
bending fatigue can be expressed as

g1 (X1)= σFS− σF (3)

If the value of the performance function is negative, the structure is a failure. On the contrary,
if the value is positive, the structure is safe. The border between the negative and positive domains
is called the limit state (g1 (X1)= 0). X1 contains all the random variables in Eqs. (1) and (2).
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2.2 Reliability Model Based on Tooth Contact Fatigue
The tooth contact fatigue is the common cause of gear failure and is affected by design geom-

etry, material, manufacturing, and other variables. The contact stress of gears can be calculated
as [20]

σH =ZHZEZeZβ

√
Ft
d1b

u± 1
u

KAKVKHαKHβ (4)

where d1 is the pinion pitch diameter, u is the gear ratio, KHα is the longitudinal load distribution
coefficient, KHβ is the transverse load distribution coefficient, ZH is the nodal field coefficient, ZE
is the elastic coefficient, Ze is the contact ratio coefficient, Zβ is the spiral angle coefficient.

Allowable contact fatigue strength of gears can be calculated as

σHS = σH limZNTZLZVZRZWZX (5)

where σH lim is the experimental flank contact fatigue strength, ZNT is the life coefficient, ZL is
the lubricant coefficient, ZV is the velocity coefficient, ZR is the tooth fineness coefficient, ZW is
the hardening coefficient, ZX is the size coefficient.

The performance function of tooth contact fatigue can be expressed as

g2 (X2)= σHS− σH (6)

X2 contains all the random variables in Eqs. (4) and (5). It can be seen that X1 and X2 have
the same random variables, so there is a certain degree of the dependence relationship between
the two failure modes. Therefore, it is necessary to establish a joint distribution among failure
modes to describe their correlation accurately.

2.3 Copula Function
Sklar’s theorem: Any multivariate joint distribution can be written in terms of univariate

marginal distribution functions and a Copula function, which describes the dependence structure
between the two variables. In other words, the Copula function connects the joint distribution of
multivariate random variables with their respective marginal distribution. The Copula function has
the following properties [16,21,22].

(1) C (u1,u2, · · · ,un) is the n-dimensional distribution function defined on [0, 1]n, C : In =
[0, 1]n → [0, 1];

(2) For vector u= (u1,u2, · · · ,un), if there is any vector ui = 0, i= 1, 2, · · · ,n, Cn (u)= 0;

(3) When ui,i �=k,i=1,2,··· ,n= 1, ∀0≤ uk ≤ 1, Cn (u)=Cn (1, · · · , 1,uk, 1, · · · , 1)= uk;

(4) C (u1,u2, · · · ,un) is monotonically increasing for any of its variables.

Supposing that x1,x2, · · · ,xn are random variables, their marginal distributions are
F1 (X1) ,F2 (X2) , · · · ,Fn (Xn), respectively, and their joint distribution is H (x1,x2, · · · ,xn). Then,
there is a Copula function C (·) that connects the marginal distribution and the joint distribution.

H (x1,x2, · · · ,xn)=C (F1 (X1) ,F2 (X2) , · · · ,Fn (Xn)) (7)
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According to the inverse transformation of cumulative distribution function for marginal dis-
tribution xi = F−1 (ui) , i= 1, 2, · · · ,n, the Copula function of the n-dimensional random variables
can be formulated as

C (u1,u2, · · · ,un)=H
[
F−1 (u1) ,F

−1 (u2) , · · · ,F−1 (un)
]

(8)

When the random variables are two-dimensional, the Copula function is C (u1,u2) =
H
[
F−1 (u1) ,F−1 (u2)

]
. Combined with the above two failure modes, the reliability of gear trans-

mission system considering failure dependence can be expressed as

R=RC = 1−P (g1 ≤ 0)−P (g2 ≤ 0)+P (g1 ≤ 0,g2 ≤ 0)
= 1−Fg1 (g1)−Fg2 (g2)+C

(
Fg1 (0) ,Fg2 (0)

)
=C (1, 1)−C

(
Fg1 (0) , 1

)−C
(
1,Fg2 (0)

)+C
(
Fg1 (0) ,Fg2 (0)

) (9)

3 Dynamic Stress-Strength Interference Model

3.1 Dynamic Stress-Strength Interference Theory
The normal operation of a mechanical structure depends on the relationship between strength

and stress. In the design service period, if the stress at any moment is greater than the structural
strength, the structure will fail; when the stress is less than the strength, the structure will appear
cumulative fatigue damage, reducing the structure strength until it fails [23–27]. The traditional
structural reliability analysis based on the static stress-strength interference model does not con-
sider the influence of time-variant strength on reliability. Due to the impact of random factors
such as material oxidation, load fluctuation, and environmental corrosion, the structural strength
will gradually decrease in engineering practice, showing a deterioration trend called strength
degradation [28–30]. The dynamic stress-strength interference model is constructed, as shown in
Fig. 1.

Figure 1: Dynamic stress-strength interference theory

As time goes on, the mean value of structural strength and its probability density distribution
function f (r) decreases gradually, while the failure probability of the structure increases. When
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t= 0, there is a certain safety margin between strength and stress, and the structure will not fail.
At tx moment, the f (r) decreases to f (r)′ and intersects with the probability density function of
structural stress g (s), leading to structural failure. The structural function considering the strength
degradation can be expressed as

Z (t)= g [R (t) ,S (t)]=R (t)−S (t) (10)

where Z (t) is the reliability over time, R (t) is the random process of structural strength, S (t) is
the random process of structural stress, t is the service time.

The structural reliability considering the strength degradation during the service period T is

PS (T)=P {Z (t) > 0, t∈ [0,T ]} =P {R (t) > S (t) , t ∈ [0,T ]} (11)

3.2 Gamma Process
Strength degradation is an external characterization of structural performance degradation

under the action of various stochastic factors, which will lead to the reduction of structural
safety and reliability. From the macroscopic point of view, strength degradation is a continuous
process with randomness and irreversibility, which is caused by the characteristics of the structure
as well as stress effects. The effects caused by strength degradation should be fully considered
when performing structural dynamic reliability analysis. Stochastic process theory is usually used
to describe the general law of strength degradation. Since the Gamma process [31,32] is an
independent and non-negative incremental process, it is considered a natural choice to describe the
degradation process. The Gamma process can describe both small degradation fluctuations and
drastic steps, and is well characterized for the degradation mechanism of various structures. The
probability density function Q describing the structural strength degradation using the Gamma
process can be formulated as

Ga (q|v,u)= uv

Γ (v)
qv−1 exp (−uq) I(0,∞) (q) (12)

where Γ (v)= ∫∞t=0 t
v−1e−tdt is the Gamma function, IA (q) is an indicative function, if q ∈A, then

IA (q) = 1, if q /∈ A, then IA (q) = 0, u > 0 is the dimension parameter, v (t) > 0 is the shape
parameter.

The Gamma process has the following characteristics.

(1) The probability of Q (0)= 0 is 1;

(2) When ζ > t≥ 0, Q (ζ )−Q (t)∼Ga (v (ζ )− v (t) ,u);

(3) Q (t) has the independent increment.

The mathematical expectation E (Q (t)) and variance Var (Q (t)) of the Gamma process are⎧⎪⎨
⎪⎩
E (Q (t))= v (t)

u
Var (Q (t))= v (t)

u2

(13)
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Although there are some fluctuations in the strength degradation process, it is generally a
stationary random process during engineering experience. Therefore, the shape parameter is a
linear function v (t)= at, where a is a constant. So, Eqs. (12) and (13) can be written as

Ga (q|at,u)= uat

Γ (at)
qat−1 exp (−uq) I(0,∞) (q) (14)

⎧⎪⎨
⎪⎩
E (Q (t))= at

u
Var (Q (t))= at

u2

(15)

Considering the essential characteristics of structural strength degradation, the P−S−N curve
is used to determine the values of a and u. The steps are as follows:

(1) The S−N curve is transformed into the S− t curve. The α and β are two constants.

N = f (t) ,S= α
√

β/f (t) (16)

(2) Let SPi
(
tj
)−SPi (tj+1

)=ΔQ̂ij, i= 1, 2, · · · ,m, j= 1, 2, · · · ,n denote the strength degradation

of the S − t curve with survival rate Pi in the time
[
tj, tj+1

]
. Then the estimated values of the

mean value and variance of the strength degradation are as follows.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ̂j = 1
m

m∑
i=1

ΔQ̂ij

σ̂ 2
j = 1

m− 1

m∑
i=1

(
ΔQ̂ij − 1

m

m∑
i=1

ΔQ̂ij

)2 (17)

(3) The estimated values of characteristic parameters a and u of the Gamma process are
calculated. Finally, the final parameters are estimated by averaging a and u obtained from all-time
intervals.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
â= 1

n

n∑
j=1

u2j
(
μ̂j+ σ̂ 2

j

)
(
tj+1− tj

) (
uj+ 1

)
û= 1

n

n∑
j=1

μ̂j

σ̂ 2
j

(18)

Combined with the above introduction, the flow chart of this paper is shown in Fig. 2.
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Figure 2: Flow chart of the thesis

4 Dynamic Fatigue Reliability Analysis Considering Failure Dependence

4.1 Dynamic Fatigue Reliability Model
Taking a certain type of EMU gear transmission system as the research object, the dynamic

model is constructed according to actual geometric parameters and constraints. According to the
615 kW input power and 4,200 r/min driving gear speed, constant traction torque is applied to
the model. The geometric parameters of the gear pair are shown in Table 1. The values of each
random variable in X1 and X2 are obtained by referring to the standards and manuals, as shown
in Table 2.

Table 1: Geometric parameters of the gear pair

Gear Number of teeth Tooth width/mm Pressure angle/(◦) Normal module/mm Helix angle/(◦)
Pinion 35 70 20 6 17.5
Wheel 85 68
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Table 2: Information of X1 and X2

Parameter Value Parameter Value Parameter Value Parameter Value

YST 2.000 YNT 0.980 YδrelT 0.600 YRrelT 1.120
YX 1.000 YFa 1.249 YSa 1.152 Ye 1.100
Yβ 0.107 KA 1.100 KV 1.060 KFβ 1.200
KFa 1.060 Ft 73180.370 σF lim 405.000 ZH 0.876
Zβ 1.000 Ze 0.690 ZE 146.000 KHα 0.336
KHβ 0.532 σH lim 510.000 ZNT 1.000 ZL 0.920
ZV 1.026 ZR 1.014 ZW 1.000 ZX 1.000

The load-time history of the gear transmission system is obtained by dynamic analysis. The
stress-time history is obtained by substituting the load-time history into Eqs. (1) and (4), as shown
in Fig. 3. It can be seen that the fluctuation of dedendum bending stress and tooth contact stress
fluctuate randomly with time, respectively. Therefore, when the strength degenerates to a certain
extent, the gear transmission system may fail, even if the average strength is not less than the
stress.

Figure 3: Stress-time history of the gear pair (a) Dedendum bending stress (b) Tooth contact stress
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The strength degradation is described by Gamma random process. The P− S −N curve of
the gear material can be obtained by querying the corresponding mechanical material manual, as
shown in Fig. 4, and the specific parameters are shown in Table 3. Since the P− S −N curves
of gear and base materials are similar, this paper directly uses the P− S−N curves of the base
material to characterize the gear performance.

Figure 4: The P–S–N curve of the gear material

Table 3: Parameters estimation of the P−S−N curve

Parameters Survival rate P

0.50 0.90 0.95 0.99

α 24.49 20.88 20.38 18.83
β −7.39 −6.06 −5.30 −4.77
S−N curve expression: Sβ ×N = α

Define the unit of operating time of the gearing system as h, the N = f (t) = 4200× 60t =
2.52× 105t. Substituting the data in Table 3 into Eq. (16) to obtain the S–t curve data, as shown
in Eq. (19).⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P= 0.50, S= −7.39

√
1024.49/2.52× 105t

P= 0.90, S= −6.06
√
1020.88/2.52× 105t

P= 0.95, S= −5.30
√
1020.38/2.52× 105t

P= 0.99, S= −4.77
√
1018.83/2.52× 105t

(19)

The value of strength degradation D̂ij in any time interval can be calculated from the function
of the S–t curve. The parameters uj and aj of the Gamma process are obtained by substituting

the D̂ij in different time intervals into Eqs. (17) and (18), as shown in Table 4. Then, u= 29.6223,
a= 19.2490.
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Table 4: Values of uj and aj corresponding to time interval
[
tj, tj+1

]
j 2 3 4 5 6 7 8 9

uj 2.4791 6.0127 10.6402 16.2586 22.7800 30.1248 38.2194 46.9945
aj 10.0644 12.9571 15.3054 17.3441 19.1609 20.8006 22.2906 23.6495

Through the above analysis, the strength degradation of the gear pair can be described as
a Gamma process with a shape parameter of 19.2490t and a dimension parameter of 29.6223.
By substituting the dynamic stress-time history and Gamma process into Eq. (3) and Eq. (6), the
dynamic fatigue reliability model of the gear is constructed. The performance function values of
tooth contact and dedendum bending are obtained by numerical calculation.

4.2 Characterization of Failure Dependence
Nonparametric kernel distribution estimation is used to select the optimal Copula function.

The core idea of this method is to use nonparametric kernel distribution to estimate the marginal
distribution of F (g1) and F (g2), and preliminarily screen out the Copula functions that can
describe the correlation of failure modes. At the same time, the relevant parameters of each
Copula function are calculated. Finally, the optimal Copula function is selected by comparing the
Square Euclidean distance between each Copula function and the empirical Copula function.

The marginal distribution functions of F (g1) and F (g2) are determined by the kernel distri-
bution estimation method, and the accuracy of the marginal distribution functions is verified by
comparing with the empirical distribution function. The results are shown in Fig. 5. It can be
seen that the kernel distribution estimation and the empirical distribution coincide, so the marginal
distribution functions obtained by the kernel distribution estimation can be used to construct the
Copula function.

Figure 5: Marginal distribution of limit state functions (a) Dedendum bending (b) Tooth contact

The bivariate frequency histogram (shown in Fig. 6) is drawn as the joint density function for
the two failure modes to choose the appropriate Copula function. Fig. 6 shows the frequency his-
togram has tail symmetry, so the Gauss Copula function and t-Copula function are preliminarily
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selected to fit the dependence relationship of two failure modes. The expressions of the Gauss
Copula function and t-Copula function are as follows:

CGa (g1,g2,R)=
∫ Φ−1(g1)

−∞

∫ Φ−1(g2)

−∞
1

2π
√
1−R2

exp

(
2RX1X2−X2

1 −X2
2

2
(
1−R2

)
)
dX1dX2 (20)

Ct (g1,g2;R,m)=TR,m
(
t−1
m (g1) , t

−1
m (g2)

)
(21)

where Φ−1 (·) is the inverse function of the standard normal distribution function. R is an n-
dimensional coefficient matrix. TR,m (·) is the n dimension distribution function with the coefficient
matrix R, and the degree of freedom m. t−1

m is the inverse function of the one-dimensional
distribution function.

Figure 6: Bivariate frequency histogram

The parameters estimation results for the Gauss Copula and t-Copula functions are calcu-
lated, respectively. The coefficient matrix R of Gauss Copula is as follows:

RGa=
[
1.0000 0.9269
0.9269 1.0000

]
(22)

The coefficient matrix R and degree of freedom m of t-Copula are as follows:

Rt=
[
1.0000 0.9276
0.9276 1.0000

]
, m= 7.6936 (23)

It is substituting the R and m into Eqs. (20) and (21) to calculate the density function
and distribution function of the two Copula functions. The Square Euclid distance between
the alternative Copula function and the empirical Copula function was then calculated through
Eqs. (24) and (25). Eq. (24) is the expression of the empirical Copula function. Eq. (25) is the
Square Euclid distance of the Gauss Copula function and t-Copula function, reflecting the fitting
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degree of the Copula function to the failure dependence. The smaller the distance, the better the
fitting effect. The results are shown in Table 5.

Ĉ (u, v)= 1
n

n∑
i=1

I[Fn(xi)≤u]I[Gn(yi)≤v],u, v∈ [0, 1] (24)

d2gau=
n∑
i=1

∣∣∣Ĉn (ui, vi)−Cgau (ui, vi)
∣∣∣2 ,d2t =

n∑
i=1

∣∣∣Ĉn (ui, vi)−Ct (ui, vi)
∣∣∣2 (25)

where I[·] is a characteristic function, when Fn (xi)≤ u, the I[Fn(xi)≤u] = 1, otherwise, I[Fn(xi)≤u] = 0.

According to the results in Table 5, the Square Euclid distance between the t-Copula function
and the empirical Copula function was the smallest. It indicates that the t-Copula function is
more appropriate to describe the dependence relationship. The density function and distribution
function of the t-Copula is shown in Fig. 7. It can be seen that the t-Copula function has good
tail correlation characteristics, which can well fit the dependence relationship between the tooth
contact fatigue and dedendum bending fatigue.

Table 5: The square Euclid distance of two Copula functions

Copula function Gauss Copula t-Copula

Value 0.4586 0.4342

Figure 7: The t-Copula function diagram (a) Density function (b) Distribution function diagram

4.3 Dynamic Fatigue Reliability Analysis Results
Substituting the above-calculated parameters into Eq. (9), the dynamic fatigue reliability of

gear transmission system considering failure dependence is obtained, as shown in Fig. 8.

It can be seen from Fig. 8 that the reliability gradually decreases due to the strength degra-
dation with the increase of service time. The dynamic fatigue reliability of the gear transmission
system has an inevitable fluctuation. The main reason for the reliability fluctuation is that both the
dynamic contact stress and dedendum bending stress has randomness. Because of the dependence
relationship between the two failure modes, the reliability is lower than that of the single failure
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mode, and the fluctuation is more obvious. The results show that the failure dependence greatly
influences the reliability of the gear transmission system. In this paper, only infant mortality
(assume 400 hours) is analyzed, and the reliability is following the description of the bathtub
curve. The study provides a theoretical basis for considering the correlation in the design stage.
Compared with the deterministic reliability analysis, the result is more suitable for engineering
practice.

Figure 8: Dynamic fatigue reliability of the gear transmission system

5 Conclusions

In this paper, a novel dynamic fatigue reliability analysis method for failure dependence
and strength degradation is proposed, which provides an effective approach for dynamic fatigue
reliability analysis of gear transmission systems in the design stage. We first constructed each
failure mode’s function based on stress-strength interference and gear transmission theory, then
used the Copula function to characterize the dependence relationship between failure modes.
Simultaneously, we introduce the Gamma process to describe structural strength degradation to
construct a dynamic fatigue reliability model.

A practical engineering example illustrated the dynamic fatigue reliability considering failure
dependence is more in line with the engineering practice, reflecting the influence of failure depen-
dence and strength degradation on reliability. The results show that the gear strength degradation
follows the Gamma process with a shape parameter of 19.2490t and a dimension parameter
of 29.6223. The reliability of the gear transmission system considering failure dependence is
about 0.94 after 400 h, which is lower than that under a single failure mode. It shows that the
dependence relationship has a significant influence on structural reliability. The safety of the design
can be guaranteed by considering the failure dependence and strength degradation.

This study opens avenues for more accurate calculation of failure probability and determina-
tion of design parameters in the design stage. Moreover, the research results can provide essential
data for making maintenance cycles and plans.
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