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ABSTRACT

Current positioning systems are primarily based on the Global Positioning System (GPS). Although the GPS is
accurate within 10 m, it is mainly used for outdoor positioning services (Location-Based Service; LBS). However,
since satellite signals cannot penetrate buildings, indoor positioning has always been a blind spot for satellite signals.
As indoor positioning applications are extensive with high commercial values, they have created a competitive
niche in the market. Existing indoor positioning technologies are unable to achieve less than 10 cm accuracy except
for the Ultra Wide Band (UWB) technology. On the other hand, the Bluetooth protocol achieves an accuracy of 1 to
2 m. In this work, we use Bluetooth wireless signals to build a novel indoor positioning framework to avoid the high
manufacturing costs involved in the UWB technology. The Bluetooth signals are combined with the results from
artificial intelligence algorithms to improve accuracy. During laboratory indoor location tracking, the accuracy rate
is 96%, which provides effective indoor tracking for the movement of people.
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1 Introduction

1.1 Research Motivation
Currently, indoor positioning is not as widely used in daily life as outdoor positioning, and

fewer service types are provided. However, if accurate indoor positioning services can be provided,
outdoor positioning services can be extended indoors. At the same time, if indoor positioning
technology can be combined with other technologies such as physiological information acquisition
technology, then home medical care or home lifestyle identification can be performed to achieve
the goal of ubiquitous care. For example, indoor positioning technology can determine a patient’s
location, such as in the living room, bedroom or bathroom. By combining indoor positioning
technology with physiological information, the patient’s behavior, such as watching TV on the
sofa, going to bed in the bedroom, or staying in the bathroom for overly long, can be speculated.
The patient’s behavior can determine whether there is a possibility of an accident and provide
appropriate assistance.
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Furthermore, indoor positioning systems can provide the location of an automatically clas-
sified product to manufacturers to determine whether the product is classified correctly. Employ-
ees’ current locations can also be provided to managers through indoor positioning services
to determine whether or not the employees have entered restricted areas and violated safety
regulations. Other services such as indoor environment monitoring, indoor disaster protection,
rescue management [1,2], can all be accomplished with the advancement of indoor positioning
technology.

1.2 Research Purposes
Since indoor environments may be quite complicated, indoor positioning systems may

encounter difficulties that affect the accuracy, such as the attenuation of signal strength due to
different obstructions, signal drift or positioning algorithm design. In this work, the strength
of the Bluetooth wireless signal is used to calculate the person’s location. To obtain a person’s
position accurately and rapidly, the system needs to overcome interference signal sources in the
environment, such as the electromagnetic interferences generated by metal and electronic products,
which attenuates the signal strength and reduces positioning accuracy.

This work uses artificial intelligence to build a novel indoor positioning framework and
achieve accurate personnel positioning in a complex indoor environment. The proposed model is
used to process the signals and complete the establishment of the algorithm.

1.3 Literature Review
There are many different positioning methods for positioning systems. For wireless signal

positioning, multiple fixed communication receiving points are set up to communicate with the
measured object, and the relative distance is calculated. Many approaches have been proposed
to calculate the relative distance as well as the accuracy and computational complexity. Several
papers have proposed different methods of indoor personnel positioning.

In 2013, Tsuboi et al. [3] proposed the Ultra-High Frequency Radio Frequency Identification
(UHF RFID) based personnel positioning system with a path tracking function. The authors
proposed that the RFID method accurately and quickly calculates the personnel’s position and
records the personnel’s historical position through the database. The author installed several
passive RFID tags on the ceiling of the experimental environment to form an RFID tag array.
The subject holds a handheld reader. When the subject moves, the reader reads the RFID tag and
sends the tag number to the database to record the historical path and location. This method has
very low complexity in positioning calculations and implements localization quickly and accurately.
However, it requires a large number of RFID tag installations.

In 2015, Schafermeyer et al. [4] proposed a method that uses simple wall-mounted radio
frequency transceiver and IR sensors capable of fingerprint identifications for individual identi-
fication. The method achieved a classification accuracy of 98% when using a Gaussian mixture
model for classification. In the same year, Ma et al. [5] proposed a method to identify personnel
entering or leaving a building. The method used Wi-Fi signals and combined the One-Class SVM
and Binary-Class SVM classifiers.
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In 2016, Kim et al. [6] proposed a personnel location algorithm based on the wireless signal
strength received by a mobile phone. The authors used the K-Nearest Neighbor classification
(KNN) machine-learning algorithm to establish a positioning model. The KNN model was used
to group the positions of people according to the strength of the received signal. The positioning
error of this system was 0.33 to 8.67 m, and the accuracy varied significantly in environments
with many interferences.

In 2017, Alkandari et al. [7] proposed a method to estimate the speed between two fixed
points based on device-free passive localization (DfPL) [8]. The authors proposed using one access
point and onemonitoring point to detect DfPL and estimate the personnel’s indoor position. In
the same year, Oguntala et al. [9] proposed using the received signal strength of passive RFID to
measure the distance for personnel localization. The system used particle filters to analyze RSS
to localize the target position in an indoor environment.

In 2018, Cui et al. [10] proposed a ZigBee-based personnel positioning system. The authors
proposed a Zigbee railway tunnel employee positioning system to enable tunnel managers to
grasp the exact location of the tunnel personnel in real-time, achieve appropriate deployment
and effective command of employees, as well as improve management and emergency command
capabilities. The authors set up four Zigbee fixed nodes in the tunnel and used the K-means
machine learning method to establish a model. When the fixed node receives the signal sent by the
mobile node worn by the personnel, the signal strength calculated based on the received signal is
input into the model to calculate the current location of the personnel. The method used machine
learning to establish a model with an accuracy of 95% when the personnel’s error is within 2 m.

Al-Khaleefa et al. [11] proposed the maximum feature adaptive online sequential extreme
learning machine (MFA-OSELM) in 2019 to process the cyclic dynamic factors due to a person’s
movements in an internal environment. In the same year, Xue et al. [12] proposed a WiFi-based
localization model by modifying the large localization errors and enhancing the Gaussian process
regression (MEGPR). The model increased the effectiveness and feasibility of accurate indoor
positioning. However, it required a multitude of access points to provide Wi-Fi signals, thus
increasing the implementation cost.

2 Research Method

Nowadays, artificial intelligence is widely used in various systems. This study uses TensorFlow
as the framework to build the neural network and uses three different neural network architectures
to build a fall detection model. As the neural network strives to find the optimal weight value
and deviation, the obtained values will be closer to the desired result when the input data passes
through the function in the framework.

An activation function is added after the hidden layer of the neural network to determine
the desired result and calculate the optimal effect for building a predictive fall detection model.
Advantages and disadvantages comparisons of the multi-layer perceptron (MLP) and recurrent
neural network (RNN) models are shown in Table 1.



1462 CMES, 2022, vol.130, no.3

Table 1: Comparisons for MLP and RNN

Neural network Advantages Disadvantages

MLP A simple structure to The number of nodes is difficult to select,
solve classification problems the learning speed is slow,

and the overfitting problem exists.
RNN Handles continuous signals Vanishing gradient or exploding

gradient problems exist, and the signal
is poorly processed for a long time.

2.1 Multi-Layer Perceptron (MLP)
The MLP is a kind of feedforward neural network. It has a three-layered structure: an input

layer, a hidden layer and an output layer. The input layer is the current material to be learned.
The hidden layer is the feature node that needs to be learned, and each node is a neuron with
a nonlinear activation function so that its output meets the required results. The output layer is
the category that needs to be learned. Each layer is a fully-connected layer in the middle. The
multi-layer perceptron was widely used in the 1980s in problems such as speech recognition, image
recognition, machine translation and has achieved good results in classification problems.

2.2 Recurrent Neural Network (RNN)
Early neural network architectures have no time concept and no label learning for sequence

signals. In 1982, Hopfield [13] proposed a Hopfield neural network with 2n states, where the value
of each neuron is either 1 or 0, and the output is a four-bit binary number. There are 16 network
states in total due to the network’s recursive characteristics. If the network is stable, it converges
from any initial state to a stable state; otherwise, it does not diverge because each neuron has only
two states.

Jordan [14] proposed a structure in 1986 where the learning method includes labeling the
sequence signal, and the output provides feedback to hidden nodes, as shown in the figure. First,
the network multiplies the input and the weight values of a neural network and adds on the
deviation value of the node. Then, the value that has been calculated once and the output values
are recalculated.

Since the RNN is modeled by serial signals, it achieves better results if the signals are corre-
lated before and after. Therefore, it is often applied to natural language, handwriting recognition,
weather, or sensor values.

However, as the network’s hidden layer becomes deeper and deeper, the gradient vanishing or
gradient exploding problem may occur, making it difficult to use in situations where the signal
time is long.

2.3 Activation Function
The activation function in neural networks mainly uses nonlinear equations to solve nonlinear

problems. Without activation functions, the neural network is a linear combination of operations.
Since both the hidden and the output layers are input results of the upper layer, they are
calculated with the weight value and the deviation. The calculation result is regarded as the layer’s
output so that the output and the input have only a linear relationship. The learned model cannot
solve nonlinear problems without using a nonlinear activation function. In this work, we have
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provided four different activation functions when learning the framework. Activation functions
with good outcomes are selected through experiments to establish a fall detection model.

2.3.1 Rectified Linear Unit (ReLU)
According to Eq. (1), the output is 0 when the value is negative, and the output remains

unchanged when the value is positive, as shown in Fig. 1. The result is easy to predict since the
algorithm is linear. Due to the rapid convergence, the algorithm effectively solves the gradient
vanishing and gradient exploding problems with a fast calculation speed. However, it is difficult
to activate a particular neuron when it has a value of 0, and the node has no effective results on
the data.

ReLU (x)=
{

x, x > 0
0, x ≤ 0

(1)

Figure 1: Using ReLU as the activation function

Figure 2: Using ELU as the activation function

2.3.2 Exponential Linear Unit (ELU)
According to Eq. (2), a nonlinear value is provided as the output when the value is negative,

as shown in Fig. 2. Although the amount of calculation increases, the unit provides a smooth
solution and solves the shortcomings of the ReLU.
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ELU (x)=
{

x, x > 0
σ(ex − 1), x ≤ 0

(2)

2.3.3 Hyperbolic Tangent Function
The result calculated according to Eq. (3) compresses the input values to between −1 and

1, as shown in Fig. 3. The effect is better when the feature is obvious. However, the gradient
vanishing problem occurs when the value is larger or smaller when the function includes an
exponential calculation with a longer calculation time.

tanh (x)= ex − e−x

ex + e−x (3)

Figure 3: Using Tanh as the activation function

2.3.4 Sigmoid Function
The result calculated according to Eq. (4) compresses the input value to between 0 and 1,

as shown in Fig. 4. The effect is better with the bi-partition, but the function is an exponential
calculation. As a result, the calculation time is longer, and the gradient vanishing problem may
occur.

Sigmoid (x)= 1
1+ e−x (4)

Figure 4: Using the sigmoid function as the activation function



CMES, 2022, vol.130, no.3 1465

3 System Structure

The proposed system combines low-power Bluetooth radio frequency technology, Raspberry
Pi embedded system, artificial intelligence and cloud database and other related equipment and
technologies. It also uses artificial intelligence algorithms to improve the accuracy of indoor
positioning.

3.1 Hardware Architecture
The system architecture diagram is shown in Fig. 5. The architecture of the proposed system

incorporates four hardware devices: wearable devices worn by the user, information receivers for
receiving the packets, routers for establishing the local networks and management computers with
interface programs.

Wearing Device

End User

Gateway Reference Point

Reference Point
Manager

Wired network

Figure 5: The indoor positioning hardware architecture

The system continuously sends information packets to the information receiving device
through the Bluetooth broadcast mode. The information receiver first uses the algorithm to
calculate the RSSI value of the packet and sends the user’s positioning information to the
computer through the wired network. The management computers first analyze the user’s status
information in the packet, calculate the current user location through the positioning algorithm,
display the user’s location in the management interface program and finally upload the positioning
information to the cloud database for storage.

3.2 Wearing Device
The device uses Texas Instruments’ CC2541 Bluetooth wireless chip, the core of which is an

8051 microcontroller. The power source is a 3.7 V 1000 mAh polymer lithium battery with a
working endurance of about one month. The components of the wearable device are shown in
Fig. 6.

The embedded development software of the wearable device is the IAR Embedded Workbench
F, and the program is developed using the C language.
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Warning buzzer

Bluetooth module

Switch

Debug port

Emergency button

Charging hole

Power warning light

Figure 6: The components of the wearable device

For the system to have low power consumption, automatic detection of power and increased
stability, three functions have been added: a low power consumption mode, ADC voltage detection
and a watchdog timer (WDT). The low power consumption mode switches to sleep mode after
completing an event to reduce power consumption. The ADC voltage detection checks whether
or not the current battery power is sufficient when the system is turned on. The WDT checks
whether or not the program continues to operate upon the completion of an event. The flowchart
of the wearable device system is shown in Fig. 7.

The device is on

System initiates

Voltage detection

Information packet 
sending program

Detection program
Watchdog timer 

program

Combine information 
packet

Broadcast 
information packet

Lower power mode

Acquire the user’s
status

Each event ends

Whether to 
respond

Clear count

Restart

Yes

No

Figure 7: Flowchart for the wearable device
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3.2.1 Voltage Detection
The Analog-to-Digital Converter (ADC) converts the analog voltage value into a digital value

after comparing the reference voltage with the voltage to be measured. Since the power supply
used by the wearing device is a 3.7 V polymer lithium battery, the ADC function is used to detect
whether or not the battery is sufficient. In the proposed system, if the device’s battery voltage
is higher than 2.2 V upon being turned on, the battery indicator lights up to indicate that the
battery is sufficient. On the contrary, the indicator light is off if the power supply is insufficient
or the device malfunctions. The flowchart for power detection is shown in Fig. 8.

Acquire the reference 
voltage source

Acquire the detection 
voltage source

>2.2V
Turn on the power 

indicator

Turn on

EndYes

No

Figure 8: Flowchart for power detection

3.2.2 The Watchdog Timer (WDT)
The system is based on the information packet of the device. Therefore, a WDT is added

to the program to ensure that the device sends packets accordingly. The timer is reset after the
execution of each event designed by the developer. When an error occurs in the main program
and the count value is not cleared for a certain time after the main program crashes, the WDT
sends a signal to restart the system to return it to normal and ensure its stability. The flowchart
of the watchdog timer is shown in Fig. 9.

Acquire the reference 
voltage source

Acquire the detection 
voltage source

>2.2V
Turn on the power 

indicator

Turn on

EndYes

No

Figure 9: Flowchart of the watchdog timer

3.2.3 Low-Power Sending Packet Program
The 8051 chip provides three low-power modes, as shown in Table 2. The system uses

Power Mode 2 because Power Mode 1 wakes up every 4 microseconds, which leads to
excessive power consumption by the chip. Since power consumption reduction is one of the
system’s goals, Power Mode 1 is not selected. The wake-up time for Power Mode 2 can be set
according to the developer’s needs to ensure low power consumption. Furthermore, since the
system is designed to broadcast packet information once every 100 ms, it is designed to enter sleep
mode at other times to reduce power consumption.
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Table 2: Power mode

Mode Function Wake Power
Consumption (μA)

Power Mode 1 Low-frequency oscillator (LFO) Wake up every 4 ms 270
internal digital

Power Mode 2 Low-frequency oscillator Set to wake up according 1
(LFO) sleep clock to the sleep clock

Power Mode 3 None External triggers 0.5
interrupt the program

3.3 Indoor Positioning System Process
The flowchart of the indoor positioning system is shown in Fig. 10. The receiver receives the

packet sent by the wearable device and discards the packet information not sent by the device. The
receiver’s internal algorithm then calculates the RSSI value of the received packet. Next, the RSSI
value of the packet is sent to the computer interface program via the TCP/IP socket. Finally, the
computer interface program uses a positioning algorithm to calculate the user’s location and marks
the location on the computer interface program. The management personnel monitors all users’
locations in the field through the interface program. When a user accidentally falls or activates
the emergency button, the displayed user mark will be marked in different colors so that the
management personnel can quickly proceed to the location and deal with the situation.

Power on the wearing 
device

Confirm interface 
program and receiver 

status

Enter the 
experimental 
environment

Send status 
information 

Bluetooth packet
from Reference Point

The wearing device
to receiver receives 

packet
Calculate RSSI value

Send packets back to 
the interface program 

via TCP/IP

Start positioning 
algorithm

Display personnel 
location in the 

interface program

Figure 10: Flowchart of the indoor positioning system

The flowchart of the management interface program system used by the management person-
nel is shown in Fig. 11. The management personnel can check the user’s position at any time
through the management interface program to ensure the user’s safety. After the user installs the
wearable device, the device must be paired with the transmitter device through the management
interface program. When a user enters the detection area, the user’s location and status can be
read on the management interface program. When the user leaves the detection area, the user
must use the management interface program to unpair the wearable device and retrieve the device
for later use.
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System initiates Receive packetTurn on Positioning algorithm

Query historical 
information

Add, modify and 
delete personnel 

information

Personnel 
exception

Warning message

Update personnel 
location and status

Data upload database

Yes

No

Figure 11: Flowchart of the management interface program system

3.4 The Information Receiver
The information receiver uses the Raspberry Pi 3B as its development platform. Due to

the device’s small size, strong computing power and multiple functions, the proposed system
adds a USB Bluetooth receiver to its microcomputer and uses the C language to develop a
packet receiving program. This program’s main functions are to receive information packets from
the wearable device, confirm that the packet information is correct, calculate the RSSI value
of the packet, reassemble the packet information, and send it to the computer. The flowchart of
the information receiver program is shown in Fig. 12. The information receiver automatically finds
and receives the packet information broadcasted by the wearable device, recombines the device
number, the user status and the RSSI value of the packet information into a new information
packet. Finally, it sends the new packet to the interface program for processing using the TCP/IP
Socket.

System initiatesTurn on the power Search packet

Is packet 
correct?

Calculate packet’s 
RSSI value

Combine information
and send to interface

program 

Yes

No

Figure 12: Flowchart of the information receiver program
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3.5 The Indoor Positioning Model
The system uses artificial intelligence to establish a positioning model and finds an optimal

algorithm to solve the environmental factors that affect indoor positioning. Spyder and Python
are used as the development software to create the model. The system uses Tensorflow to build a
model and various neural network models to find a high-accuracy model. The established model
is reproduced in C/C++, and the algorithm is applied to the indoor positioning system.

3.5.1 Acquire Training Materials
Four or six information receivers can be placed depending on the requirements, and the

experimental field is divided into thirty-two areas.

Two placements for the information receivers have been proposed to ensure the quality of
information receivers. When the signals are affected by environmental factors, the placement with
six information receivers can be used; otherwise, four information receivers are sufficient. In
addition, since the information receivers are placed in an array, the experiment field can be divided
into thirty-two blocks (Block 1–Block 32) to cover all areas and avoid noise interference from
the testing environment, as shown in Fig. 13. According to these two placement methods, thirty-
two regional receiver signals are acquired as the training materials, providing five thousand seven
hundred thirty-two signals in total.

11 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

(a) (b)

Figure 13: Information receiver placements and subdivisions (a) For four information receivers and
(b) 6 information receivers

3.5.2 Model Architecture
We have compared two neural network models to determine which area the user is in: the

multi-layer perceptron (MLP) and recurrent neural network (RNN). Four thousand two hundred
and eighty-three signals are used for training when building the architecture, and one thousand
four hundred and ninety-nine three signals are used for testing the trained model architecture.
The input unit is the receiver of either four or six signal strength values, and the output unit has
thirty-two nodes to represent thirty-two areas. After modifying the number of nodes, the number
of layers, and the activation function of the intermediate hidden layer, we use the framework
provided by Tensorflow for training and select a model with low resource consumption and high
accuracy. Regarding the setting of the number of hidden layers, we refer to the paper proposed
by Xu et al. [15] in 2020.



CMES, 2022, vol.130, no.3 1471

3.5.3 Multi-Layer Perceptron Positioning Model
The architecture diagram of the multi-layer perceptron positioning model is shown in Fig. 14.

The input layer has either four or six signal strength values, and the output layer has thirty-two
nodes. Each node needs to be multiplied and added with all input values.
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Figure 14: The multi-layer perceptron positioning model

3.5.4 Recurrent Neural Network Positioning Model
The architecture diagram of the recurrent neural network (RNN) positioning model is shown

in Fig. 15. The input layer has four or six signal strength values, and the output layer has thirty-
two nodes. Since RNN is a recursive architecture, only one (out of four or six) signal strength
value is input at a time. The positioning model input signal is only input once compared to the
fall action, so it cannot find the correlation of the continuous signal. As a result, the MLP has
a better effect than the RNN.
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Figure 15: The recurrent neural network positioning model
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4 Experimental Result and Discussion

4.1 Acquire Indoor Positioning Model Test Data
There are two ways to place the information receivers, using either four or six receivers and

dividing the experimental field into thirty-two areas. The receivers are placed in the experimental
field, as shown in Fig. 16.

10.6M

6.8M

1

4

2 3

5 6

Figure 16: The placement of receivers in the experimental field

The locations of the receivers are at 1, 3, 4 and 6 for the placement with four information
receivers and at 1, 2, 3, 4, 5, and 6 for the placement with six information receivers. The training
materials also adapt to the thirty-two-area receiver signals based on these two placement methods.
Each area obtains one hundred seventy-five to one hundred and eighty-two data values, and a
total of five thousand seven hundred thirty-two signals are acquired. The signal values of thirty-
two areas are shown in Fig. 17.
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Figure 17: The signal values from the 32 areas
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4.2 The Indoor Positioning Model Accuracy and Resource Consumption
The model is divided into two structures, with four or six information receivers, to select the

optimal number for information receivers placement. The wearable device is updated once per
second, and the calculations are performed by a computer. As such, the architecture is expected
to consume a lot of resources.

4.2.1 The MLP Indoor Positioning Model Accuracy and Resource Consumption
The MLP is a fully connected layer architecture, and the number of weights on a single node

in the hidden layer is the number of input nodes. For example, the hidden layer has six input
units, which means that each node of the layer has six weight values and one deviation value. The
MLP model training architecture is shown in Table 3. Since there are only four or six input data
values, the model needs more features to learn 32 different regions. The structure has a two-layer
design to filter the data and preserve the features as the data is not filtered.

Table 3: The MLP model training architecture

Number of Number of Number of Dropout Activation
receivers layers nodes function

6 2 1st layer 24 nodes 0.9 Relu
2nd layer 36 nodes

6 2 1st layer 32 nodes 0.9 Relu
2nd layer 48 nodes

4 2 1st layer 24 nodes 0.9 elu
2nd layer 36 nodes

4 2 1st layer 32 nodes 0.9 elu
2nd layer 48 nodes

The MLP model training results are shown in Table 4, where the accuracy obtained by six
information receivers is higher than that of the four receivers. The reason being that there are
more input data with more extracted features, leading to a better learning effect.

Table 4: The MLP model training result

Number of Architecture Training Test
receivers accuracy (%) accuracy (%)

6 1st layer 24 hidden nodes 97.9 96.2
2nd layer 36 hidden nodes
32 output nodes

6 1st layer 32 hidden nodes 99 96.9
2nd layer 48 hidden nodes
32 output nodes

4 1st layer 24 hidden nodes 96 93.5
2nd layer 36 hidden nodes
32 output nodes

4 1st layer 32 hidden nodes 96.7 94
2nd layer 48 hidden nodes
32 output nodes
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The model resources for the MLP implementation is shown in Table 5, which shows all
weights and calculation times of the MLP model. Since the algorithm is performed on a computer,
resource cost is not the primary concern, and the calculation time is much shorter than the time
required to update the interface program.

Table 5: The model resources for the MLP implementation

Number of Architecture Number of Calculation
receivers weights time (ms)

6 1st layer 24 hidden nodes 1068 hidden layers 4
2nd layer 36 hidden nodes 1184 output layers
32 output nodes

6 1st layer 32 hidden nodes 1808 hidden layers; 4.8
2nd layer 48 hidden nodes 1568 output layers
32 output nodes

4 1st layer 24 hidden nodes 1020 hidden layers 3.9
2nd layer 36 hidden nodes 1184 output layers
32 output nodes

4 1st layer 32 hidden nodes 1744 hidden layers 4.5
2nd layer 48 hidden nodes 1568 output layers
32 output nodes

4.2.2 The RNN Indoor Positioning Model Accuracy and Resource Consumption
The indoor positioning model does not implement the algorithm due to the low training

accuracy. The model architecture of RNN training is shown in Table 6. In terms of model design,
it also uses two layers like the MLP and performs filtering and features retention simultaneously.

Table 6: The model architecture of RNN training

Number of Number of Number of Dropout Activation
receivers layers nodes function

6 2 1st layer 24 nodes 0.9 Relu
2nd layer 36 nodes

6 2 1st layer 32 nodes 0.9 Relu
2nd layer 48 nodes

4 2 1st layer 24 nodes 0.9 Relu
2nd layer 36 nodes

4 2 1st layer 32 nodes 0.9 Relu
2nd layer 48 nodes

The RNN model training results are shown in Table 7. From the result, it can be seen that
the learning effect is undesirable. The RNN’s strength lies in its ability to retain the previous
calculation features, and the model cannot be used fully when the data is input only once. Since
each hidden node is divided into the input weight and historical calculation weight, the data
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representing the history is 0, leading to a calculated value of 0 and no memorized historical
features. As a result, the accuracy of the calculation is very low.

Table 7: The RNN model training results

Number of Architecture Training Test
receivers accuracy (%) accuracy (%)

6 1st layer 24 hidden nodes 53.5 51
2nd layer 36 hidden nodes
32 output nodes

6 1st layer 32 hidden nodes 68 66
2nd layer 48 hidden nodes
32 output nodes

4 1st layer 24 hidden nodes 48.6 46
2nd layer 36 hidden nodes
32 output nodes

4 1st layer 32 hidden nodes 55 5
2nd layer 48 hidden nodes
32 output nodes

4.2.3 The Indoor Positioning Model Comparison
The comparisons of the three architectures are shown in Table 8. In the MLP implementation,

the architectures with six receivers and four receivers are selected; and in the RNN implemen-
tation, the architecture with the best effect is selected for comparison. The accuracy rate of the
MLP’s user positioning architecture with six receivers is about 2.5% higher than that of the four
receivers architecture, with just slightly more resource consumption of weights and calculation
times. The accuracy rate of the RNN’s user positioning architecture is about 30% lower than that
of the MLP, with significantly more weights and calculation times. According to the comparison
result, the MLP’s user positioning architecture is chosen for the proposed system. The cost can
be reduced using the four receivers implementation; otherwise, six receivers will be used.

Table 8: The Comparison of the indoor positioning architectures

Comparison Model Number of Number of Consumption Accuracy
items nodes weights time (ms) rate (%)

MLP positioning 6 receivers 1st layer 32 hidden nodes 3376 4.8 97.95
architecture 2nd layer 48 hidden nodes

32 output nodes
MLP positioning 4 receivers 1st layer 32 hidden nodes 3312 4.5 95.35
architecture 2nd layer 48 hidden nodes

32 output nodes
RNN positioning 6 receivers 1st layer 32 hidden nodes 6704 9 67
architecture 2nd layer 48 hidden nodes

32 output nodes



1476 CMES, 2022, vol.130, no.3

5 Conclusion

This paper proposes a novel indoor positioning system using artificial intelligence algorithms
and various neural network models for learning a low-resource, high-accuracy algorithm. The
proposed algorithm can build effective and resource-efficient models to be used in different appli-
cations. Furthermore, experiments have shown that the number of receivers can vary according to
the field’s size to implement the system at low costs. The system also provides a convenient user
interface for the management personnel to quickly and effectively solve abnormal user problems.

According to comparisons of various indoor positioning frameworks, we have found that the
MLP architecture is superior to the RNN architecture regardless of whether four or six receivers
are used. Therefore, we have decided to use the MLP for the indoor positioning framework in
this work. The proposed system has achieved a 95% positioning accuracy with four receivers and
close to 98% accuracy with six receivers. In conclusion, the proposed indoor positioning system
has significantly improved accuracy compared to previous indoor positioning systems.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Estrin, D., Culler, D., Pister, K., Sukhatme, G. (2002). Connecting the physical world with pervasive

networks. IEEE Pervasive Computing, 1(1), 59–69. DOI 10.1109/MPRV.2002.993145.
2. Pottie, G. J., Kaiser, W. J. (2000). Wireless integrated network sensors. Communications of the ACM, 43(5),

51–58. DOI 10.1145/332833.332838.
3. Tsuboi, T., Ueda, H. (2013). Indoor trace tracking algorithm with pattern-based positioning technique of

UHF band RFID. 19th Asia-Pacific Conference on Communications, pp. 339–344, Bali Island, Indonesia.
4. Schafermeyer, E. R., Wan, E. A., Samin, S., Zentzis, N., Preiser, N. et al. (2015). Multi-resident identification

using device-free IR and RF fingerprinting. Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pp. 5481–5484. Milan, Italy.

5. Ma, W., Zhu, X., Huang, J., Shou, G. (2015). Detecting pedestrians behavior in building based on Wi-Fi
signals. IEEE International Conference on Smart City/SocialCom/SustainCom, pp. 1–8. Chengdu, China.

6. Kim, J., Ji, M., Jeon, J. I., Park, S., Cho, Y. (2016). K-NN based positioning performance estimation for
fingerprinting localization. Eighth International Conference on Ubiquitous and Future Networks, pp. 468–470.
Vienna, Austria.

7. Alkandari, M., Basu, D., Hasan, S. F. (2017). A Wi-Fi based passive technique for speed estimation in
indoor environments. Workshop on recent trends in telecommunications research. pp. 1–3.

8. Kosba, A. E., Saeed, A., Youssef, M. (2012). Robust WLAN device-free passive motion detection. IEEE
Wireless Communications and Networking Conference, pp. 3284–3289. Paris, France.

9. Oguntala, G., Obeidat, H., Al Khambashi, M., Elmegri, F., Abd-Alhameed, R. A. et al. (2017). Design
framework for unobtrusive patient location recognition using passive RFID and particle filtering. Internet
Technologies and Applications, pp. 212–217. Wrexham, UK.

10. Cui, Y., Gao, S., Zheng, Y. (2018). Application of ZigBee location fingerprint method in positioning of
railway tunnel staff. Chinese Automation Congress, pp. 3283–3287. Xi’an, China.

11. Al-Khaleefa, A. S., Ahmad, M. R., Isa, A. A. M., Al-Saffar, A., Esa, M. R. M. et al. (2019). MFA-OSELM
algorithm for WiFi-based indoor positioning system. Information-An International Interdisciplinary Journal,
10(4), 146. DOI 10.3390/info10040146.

http://dx.doi.org/10.1109/MPRV.2002.993145
http://dx.doi.org/10.1145/332833.332838
http://dx.doi.org/10.3390/info10040146


CMES, 2022, vol.130, no.3 1477

12. Xue, M., Sun, W., Yu, H., Tang, H., Lin, A. et al. (2019). Locate the mobile device by enhancing
the WiFi-based indoor localization model. IEEE Internet of Things Journal, 6(5), 8792–8803. DOI
10.1109/JIOT.2019.2923433.

13. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences of the United States of America, 79(8), 2554–2558. DOI
10.1073/pnas.79.8.2554.

14. Jordan, M. I. (1986). Serial order: A parallel distributed processing approach (No. 8604 ICS Technical
Report). University of California at San Diego, La Jolla, CA.

15. Xu, P., Aamir, M., Shabri, A., Ishaq, M., Aslam, A. et al. (2020). A new approach for reconstruction of
IMFs of decomposition and ensemble model for forecasting crude oil prices. Mathematical Problems in
Engineering, 2020(3), 1–23. DOI 10.1155/2020/1325071.

http://dx.doi.org/10.1109/JIOT.2019.2923433
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1155/2020/1325071

