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ABSTRACT

This investigative study is focused on the impact of wavelet on traditional forecasting time-series models, which
significantly shows the usage of wavelet algorithms. Wavelet Decomposition (WD) algorithm has been combined
with various traditional forecasting time-series models, such as Least Square Support Vector Machine (LSSVM),
Artificial Neural Network (ANN) and Multivariate Adaptive Regression Splines (MARS) and their effects are
examined in terms of the statistical estimations. The WD has been used as a mathematical application in tradi-
tional forecast modelling to collect periodically measured parameters, which has yielded tremendous constructive
outcomes. Further, it is observed that the wavelet combined models are classy compared to the various time series
models in terms of performance basis. Therefore, combining wavelet forecasting models has yielded much better
results.
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1 Introduction

Due to the predictive importance, researchers have developed various forecasting models. As
better environmental forecasting arts can be used to make appropriate management decisions,
researchers are continually striving to improve the effectiveness and efficiency of the models. For
decades the term wavelet has been used for the exploration of signal processing and geophysics.
Therefore, this article looks at the WD combined with various traditional forecast time-series
models. For decades the term wavelet has been used for the exploration of signal processing and
geophysics. The last decade has shown vast interest in wavelets; it is a subject area that can
be appropriate applicable and coalesced in various fields such as applied mathematics, physics,
electrical engineering, etc.
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Consequently, the WD has significantly impacted various fields, such as image processing,
differential equations, statistics, and chemical signal processing [1,2]. WD algorithm is used as a
mathematical approach for extracting nontrivial and potentially useful information from different
data types such as historical data information, re-analysis, local or global climate model simula-
tions, etc. Usually, WD based models are required to analyse the datasets and decomposing them
thoroughly. Its hypothesis is to get better re-construct datasets with minimal losses. The wavelet
transform technique uses the signal frequency from the time domain to the wavelet domain.
Therefore, the newly acquired domain has contained more complex basis functions called wavelets,
mother wavelets, or analysing wavelets [3].

Wavelet-based models are a noteworthy edge in de-noising the datasets to develop an efficient
model. It has made it easy to analyse streamflow processes on different parameters without elim-
inating the effects of the time-frequency accompanied by conventional bandpass filters. The WD
tool can let on information within the signal in both frequencies, time and scale domains [4,5].
The WD application controls the time-frequency or signal scale content and judges the temporal
variation spectrum [6]. In contrast, the Fourier transforms interpret a quite different perspective
that allows estimating the signal frequency but is not suitable to estimate the time-frequency
dependence. Therefore, the wavelet transform has its origins in the Fourier transform. Thus, the
WD has allowed for tracking the time evolution of processes at various scales in the signal as it
has both time and scale measures of localisation. The WD tool signals can be classified as high
limited frequency events or a significant number of scale-variable methods because it provides
explicit information for rate forecasting classification [7]. In a review of the applications of the
wavelet transform in hydrological dataset modelling describing the multifaceted information that
can be obtained from such an analysis and recognition of seasonality, streamflow trends, and data
de-noising.

The performance and accuracy of the traditional time series forecasting models continuously
may be improved. Therefore, it can be inspired by the researchers to intend an improved version
of the models [8]. This study describes the performance impact of the WD as an optimization
in the traditional time series models in which the optimal response is continuously exchanged
during the simulation and can be approved. The effectiveness of the models has been tested on
two different streamflow datasets, including Indus and Chenab Rivers.

2 Study Areas and Data Utilization

To endorse the discussed TS forecast models and forecast the rivers, streamflow of the rate
of the rivers have been collected 484 and 550 months, respectively, from two renowned Indus and
Chenab Rivers of Pakistan (Figs. 1–2).
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Figure 1: 484 months streamflow rate of Indus River

Figure 2: 550 months streamflow rate of Chenab River

3 Methodology

The use of wavelet application with the various traditional forecasting models such as
LSSVM, ANN and MARS has improved the efficiency of the models and found excellent out-
comes. These tractable combined models have been implemented as efficient tools on streamflow
datasets to forecast phenomena that provide comprehensive signals information. The developed
combined wavelet with AI models implements the following two-step protocol for forecasting
activities.

(1) The WD methodology has been used as a preprocessor of input datasets. As a result, it has
a time-frequency signal analysis at distinct intervals in the time-domain and considerable
detail about input datasets.

(2) After obtaining the input signal by WD, it has been used for further processes as AI input
in various traditional forecasting models.

Initially, the forecasting time-series datasets have been decomposed into a sub-time-series
{W1,W2, · · · ,Wp,Cp} by the WD algorithm, where, W1, W2, · · · ,Wp and Cp have been described
as detailed time-series and background time-series, respectively. Commonly, these have different
roles in the forecasting time-series datasets and each sub-time-series have different behaviour.
Therefore, the attribute and influence on the forecasting time-series dataset have different from
each other. The developed LSSVM, ANN and MARS forecast models in which t are the input
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sub-time-series of the models, and the forecasting time-series datasets at t+T time have the output
of models. Where T is described as the measurement of forecast time-frequency. Finally, wavelet
network models (WNM) were created, in which certain weights have been learned using specific
techniques [9]. The key object of forecasting time-series datasets to the WNM algorithm is to
construct combined models with the WD algorithm.

3.1 Wavelet Decomposition (WD)
The algorithm of WD ability to de-noise non-stationary signals into sub-signals at different

levels has a suitable resource for improved streamflow elucidation [10]. The novel developed
forecasting models have been individual capacities that comprised WD and some conventional
AI model techniques. The combined wavelet with various AI forecasting models has been an
appropriate methodology [11]. According to forecasting time series models, the wavelet technique
is becoming an ever more effective and essential tool used in models. The primary reason for
WD has analysed the time series datasets in the time and frequency domain of the valuable
decomposition of the original time series by taking useful information in various frequency levels
using wavelet functions. The main advantage of using the WD is its robustness, as it does not
include any potentially erroneous assumption or parametric testing procedure. The following WD
mathematical structure is defined as a continuous time-series x(t), t ∈ [−∞, ∞]:

ψ(t, s)= 1√
s
ψ

(
t− τ
2

)
(1)

where defined t, τ and s ∈ [0, ∞] for time, for time step that iterates the window function and
wavelet scale respectively, whereas ψ(t) is known as mother wavelet, it can be defined as follows:

∞∫
−∞

ψ(t)dt= 0 (2)

Therefore, the continuous wavelet transform (CWT) can be defined as follows [12];

W(τ , s)= 1√
s

∞∫
−∞

x(t)ψ̄
(
t− τ
s

)
dt (3)

where, ψ̄(t) and W(τ , s) defined for complex conjugation of ψ(t) and presents the sum overall
time of the time series multiplied by scale and shifted version of wavelet function ψ(t), respec-
tively. The usage of WD for forecasting is not feasible since it is time-consuming to measure the
wavelet coefficient on any conceivable scale and produces many results. WD is preferred in most
forecasting problems because of its simplicity and ability to compute with less time. The WD
involves choosing scales and positions on powers of 2, so-called dyadic scales and translations;
then, the analysis is much more efficient as well as more accurate. The main advantage of
using the WD is its robustness, as it does not include any potentially erroneous assumption or
parametric testing procedure. The following mathematical structure is known as WD:

ψm,n

(
t− τ
s

)
= 1√

sm/20

ψ

(
t− nτ0sm0

sm0

)
(4)
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where m,n ∈Z that control the scale and length of the time-series datasets respectively, s0 is stated,
fixed dilation step greater than 1, τ0 is the location parameter, which must be greater than zero.
The parameters s0 = 2 and τ0 = 1 are the most common preference. For a discrete time-series x(t)
that occur at t discrete time, then WD formation is defined as follows:

Wm,n= 2−m/2
N−1∑
t=0

ψ(2−mt− n)x(t) (5)

where, Wm,n is the wavelet coefficient of the WD at defined scale s = 2m and τ = 2mn, x(t) is
discrete time-series (i.e., t= 1, 2, . . . ,N− 1) and N ∈ Z to the power of 2 (N = 2m); n is the time
translation parameter that changes in the ranges 0< n< 2M−m and 1<m<M, whereas M has
defined for the decomposition level. The analysed datasets have decomposed into several wavelet
input components that depend on the particular decomposition level. Decisive the advantage-
able decomposition level of the datasets in WD plays a mark-able role in conserved the figures
and reduces the curvature of the datasets. However, there is no prevailing theory to inform how
many decomposition levels have required for any time series dataset. By the following formula is
estimated the decomposition level:

M = log(n) (6)

Decomposition levels M = 2.6848 and M = 2.7403 estimated when n = 484 and n = 550
monthly streamflow datasets (Figs. 1–2) have been used for Indus and Chenab Rivers, respectively,
and approximately M = 3 round-off decomposition level has used for both said rivers in this
research work. By the hypothesis of Mallat’s, the original discrete time-series x(t) decomposed
into a series of linearity independent estimation and detail signals by the inverse WD and defined
as follows:

x(t)=T +
M∑
m=1

2M−m−1∑
t=0

Wm,n2−m/2ψ(2−mt− n) (7)

or inverse WD also in a simple format defined as follows:

x(t)=AM(t)+
M∑
m=1

Dm(t) (8)

where, AM(t) is known as the residual term at levels M and Dm(t) (m= 1, 2, . . . ,M) are the
detailed sub-series of information capable of catching specific functions of data interpretation
value. The following various forms of transfer functions (TF) have been emerged and vastly used
in the model [13]:

Polynomial Function y= z
Sigmoid Function y= 1

1+exp(−z)
Radial Basis Function y= exp(−z2)
Hyperbolic Tangent Function y= tanh(z)= 2

1+exp(−2z) − 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)
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3.2 Wavelet Artificial Neural Networks (WANN)
The human brain’s functioning principle influenced an artificial neural network (ANN) as a

forecasting model. Several architectures in the literature are available to forecast the streamflow
and many other applications, one of which is the ANN algorithm mostly used. It is comprised
of a network system with many interconnected nodes called neurons. The number of layers of an
ANN is used to classify it, and layer(s) exists between an input and an output layer. Therefore,
a single-layer feed-forward (SLFF) neural network is an architecture with just one layer for
establishing connection among the nodes of the input, middle, and output layers. This type of
system is characterised as a multi-layer feed-forward (MLFF) neural network built by more than
one middle layer [14]. ANN has the merits of fault-tolerance, an efficient nonlinear developing
capability that provides a well-organised model for streamflow forecasting. Though the model has
some drawbacks, such as slow optimization processing, model complexities, and the approximation
of the applications could not be overlooked. Therefore, this forecasting architectural model needed
to be improved. The WD has been compounded to the ANN model for this purpose. The WANN
model has been combined with the strengths of the WD and ANN applications and to achieve
nonlinear strong approximation capability. WANN model architectural design has based on multi-
layer perceptron (MLP). WANN is quite corresponding to that of (1+ 1/2) layer neural network
and has contained the following three layers [15]:

Layer-i. input layer, which is introduced to the network and takes one or more than one
inputs.

Layer-ii. the hidden layer, where data is manipulating procedure with a feed-forward neural
network accompanied with orthonormal WD basis by activation functions developed.

Layer-iii. output layer, which contains one or more linear combiners and the corresponding
estimations are consistent with the given inputs.

The training process has acquired the weights of the network connections. The WANN model
can have various TF of different nodes in identical or different layers. The TF such as sigmoid,
hyperbolic tangent functions are used for hidden layers, and there is no appropriation for the
output layer. The WANN model has been successfully used for forecasting estimations. Two key
approaches to developing the WANN model technique are described as following:

• The WD technique and the ANN model processing are used separately. Firstly decomposed,
the input signal employs various WD basis functions (Eq. (1)) with neurons in the hidden
layer. Then, the wavelet coefficients have one or more output activities in their input weights
have adjusted according to the certain learning algorithm.

• In this case, two structures, WD mathematical and ANN artificial intelligence algorithms
have been combined and performed. The transferal and dilation of the WD accomplished
weights that have been adjusted according to a certain learning algorithm.

Only dyadic dilations and translations of the WD have developed the wavelet basis function
whenever the first approach occurs. Therefore, this objective approach of WANN has often been
known as a wavenet.
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3.3 Wavelet Least-Squares Support Vector Machine (WLSSVM)
The following reprocessed support vector machine (SVM) classifier governs the application of

minimisation [16]

Min J(ω, b, e)= μ

2
ωTω+ ζ

2

N∑
i=1

e2i (10)

Under the following equality condition

yi[ωTφ(xi)+ b]= 1− ei (i= 1, 2, . . . , N) (11)

The usage of the LSSVM classifier is implicitly compatible with the definition of regression
using binary conditions yi =±1 ⇒ y2i = 1 and obtained

N∑
i=1

e2i =
N∑
i=1

(yiei)2 =
N∑
i=1

[yi− (ωTφ(xi)+ b)]
2

(12)

Therefore, developing a sense for least square (LS) data fitting is equivalent to LSSVM
classifier development

J(ω, b, e)=μEw+ ζED⎛
⎝∵ Ew = 1

2
ωTω and ED = 1

2

N∑
i=1

[yi− (ωTφ(xi)+ b)]

2⎞⎠
〉

(13)

where, μ and ζ are known to be hyper-parameters to modify the regularisation number vs. the
sum square error. The original formulation ratio γ = ζ/μ has provided the solution as a tuning
parameter. Apply parameters μ and ζ to LSSVM using a Bayesian description. The solution of
the LSSVM model has been obtained after the development of the following Lagrangian function:

{L(ω, b, e, α)= J(ω, e)−
N∑
i=1

αi

[{
ωTφ(xi)+ b

}
+ ei− yi

]
= ωTω

2
+ γ

2

N∑
i=1

e2i

−
N∑
i=1

αi

[{
ωTφ(xi)+ b

}
+ ei− yi

] (14)

Since αi are Lagrange multipliers ∀αi ∈R. For the LSSVM model, the following structures are
appropriate:

(15)
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After eliminating ω and e, in place of quadratic programming (QP) problem, following linear
system obtained:[
0 1TN
1N 	+ γ−1IN

][
b
a

]
=

[
o
Y

]
(16)

Since 1N = [1, . . . , 1]T . IN is Nth order identity matrix; 	 ∈R
N×N is kernel matrix and defined

as 	ij =K(xi, xj)= φ(xi)Tφ(xj); and Y = [y1, . . . , yN ].

Here, pick K(xi, xj)= e
−||x−xi||2

σ2 as a kernel function, σ ∈R+ is a scale parameter, and evaluate
the inputs scaling in the RBF kernel [17,18].

The wavelet least-squares support vector machine (WLSSVM) model has been developed
with the potential worth of the WD algorithm and LSSVM processing and obtained optimum
nonlinear approximation ability. WLSSVM model has been consists of an input layer, hidden layer,
and output layer and the model successfully has been used for forecasting approximations [16].

3.4 Multivariate Adaptive Regression Splines (MARS)
The MARS model schemes discoveries to forecasting continuous numeric outcomes. Appropri-

ate, the MARS model scheme has been implemented in two stages containing forward-backward
stepwise techniques. The stepwise forward technique has observed a large set of input variables
(basis function) with a different knot; though, this stepwise technique might be developing com-
plexity and a multi-layered model [19]. Determination of such type of model has weak forecasting
presentation. For increasing forecast accuracy, the backward stepwise technique eradicates the
pointless variables amongst the before chosen set, which may have fewer effects on the approx-
imation procedure pruned by the MARS. For the projection of x the input variable to a novel
y output variable based on appropriation, named basis functions that defines point of inflection
along with the input range [20]:

y=
{
max(0,x− c)
max(0, c−x)

(17)

In these y functions, x treat as input and c chosen is a threshold value is said to be a knot.
The function is useful in forward-backward stepwise techniques for each input unknown to classify
the position of knots, where the value of the function changes. These y basis functions are called
Spline functions, which is a c−knot reflected pair. The following description is the standard form
of the MARS model [21].

y= f (x)= c0+
M∑
i=1

ciBi(x) (18)

where the output variable y estimated by the MARS model, c0 is constant, ci is the ith basis
function coefficient determined by minimising the Root Mean Squared Errors (RMSE), and Bi(x)



CMES, 2022, vol.130, no.3 1525

is the ith basis function. The optimal MARS model scheme is designated based on the smallest
value of the Generalised Cross-Validation (GCV) principle. The GCV is defined as follows [17]:

GCV(M)=

n∑
i=1

[yi− f (xi)]
2

n
(
1− C(M)

n

)2 (19)

where, yi is the objective of output, f (xi) is the projected output, n is the number of inputs, and
C(M) is a penalty, expressed as follows:

C(M)= d×M +M + 1 (20)

where d is the penalty for each basis function consisted in the model, M is the number of basis
functions. Wavelet Multivariate Adaptive Regression Splines (WMARS) model has combined the
prospective techniques of WD and MARS for achieving robust nonlinear estimation potentiality.
WMARS model binding designed is found on a multi-layer perception (MLP). The WMARS
model is used for forecast estimations and has been dependent on an input layer, hidden layer,
and output layer [22].

3.5 Statistical Parameters Assessment
The statistical parameters are used to demonstrate the effectiveness in terms of forecastability

of the models assessed by comparing the actual and forecasted values. Usually, the Mean Absolute
Error (MAE), the Root Mean Square Error (RMSE), and the correlation coefficients (CC), are
used to determine the efficiency of the models and outcomes fitted to the best fit line [23,24]

MAE = 1
m

m∑
t=1

|yt− ŷt| (21)

RMSE =
√√√√ 1
m

m∑
t=1

(yt− ŷt)
2 (22)

CC =
1
m

∑m
t=1 (yt− ȳt)(ŷt− ˆ̄yt)√

1
m

∑m
t=1 (yt− ȳt)

2
√

1
m

∑m
t=1 (ŷt− ˆ̄yt)2

(23)

where yt, ŷt, ȳt and ˆ̄yt are the actual (streamflow observed), forecasted, average streamflow, and
average forecast values at a time t, respectively, whereas m is the total number of observations.

The statistical parameters (21)–(23) have been used to assess the impact of discussed different
models. MAE statistics provide an appropriate picture of the actual position in terms of the
projected value error, whereas the RMSE statistics are the deviation of the models between
the observed and projected values, the least values of these statistics are evaluation criteria for the
best model. Similarly, the degree of the linear correlation coefficient is measured by the CC and
observed the best flow effect with its high value [25].
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4 Results and Discussion

This article examines the wavelet impact on traditional forecasting models by fitting input
hydrological time-series datasets collected from Indus and Chenab Rivers. The computational code
of the conversed forecasting models has been written in the MATLAB application, including the
wavelet toolbox.

The six (M1–M6) appropriate input data specimens have been prepared and used in the
training and testing phases for traditional and combination of WD forecast models as shown in
Table 1. M1–M6 and WM1–WM6 input combinations signify the number of variables based on
earlier analysis for monthly river streamflow rates in Figs. 1–2.

Table 1: Model structure with different input combinations for forecasting streamflow

Model Original datasets Model WD datasets

M1 yt−1 WM1 WDt−1
M2 yt−1, yt−2 WM2 WDt−1,WDt−2
M3 yt−1, yt−2, yt−3 WM3 WDt−1,WDt−2,WDt−3
M4 yt−1, yt−2, yt−3, yt−4 WM4 WDt−1,WDt−2,WDt−3, WDt−4
M5 yt−1, yt−2, yt−3, yt−4, yt−5 WM5 WDt−1,WDt−2,WDt−3, WDt−4,WDt−5
M6 yt−1, yt−2, yt−3, yt−4, yt−5, yt−6 WM6 WDt−1,WDt−2,WDt−3, WDt−4,WDt−5,WDt−6

The training dataset of the models is described for approximated parameters and the testing
dataset has characterised by choosing the best combination model amongst every number of
hidden layers considered. A trial-and-error technique has estimated the optimum complexity of
conversed models. The statistical approaches, such as the Correlation Coefficient (CC), the Mean
Absolute Error (MAE) and the Root Mean Square Error (RMSE), respectively, have estimated
the outcomes. The estimates of both streamflow datasets are described in Tables 2–7 regarding
accuracy and errors of the forecasting time-series models, such as LSSVM, WLSSVM, ANN,
WANN, MARS and WMARS, respectively.

In Table 2, the testing phase outcomes of the LSSVM model are observed that the M6 input
combination performed well for Indus and Chenab Rivers. Likewise, Table 3 examines that WM2
and WM6 input combinations of the WLSSVM model have been estimated good results for both
Indus and Chenab Rivers, respectively. After observing both tables, Table 3 yielded more inspired
outcomes using the wavelet transform combined model compared to Table 2.

Table 2: Forecast outcomes of LSSVM model

INDUS RIVER CHENAB RIVER

Training phase Testing phase Training phase Testing phase

CC MAE RMSE CC MAE RMSE CC MAE RMSE CC MAE RMSE

M1 0.9026 0.0086 0.00025 0.868 0.0318 0.0109 0.9172 0.0421 0.0027 0.9041 0.0437 0.0042
M2 0.9032 0.0086 0.00026 0.7357 0.0279 0.0097 0.9266 0.0401 0.004 0.9126 0.0445 0.004
M3 0.9049 0.0086 0.00025 0.9161 0.0313 0.0109 0.9323 0.0393 0.0039 0.9196 0.043 0.0036
M4 0.907 0.0084 0.00027 0.893 0.0323 0.0115 0.9342 0.036 0.0036 0.9296 0.0414 0.0034
M5 0.9057 0.0085 0.00024 0.9217 0.0336 0.0102 0.9432 0.0345 0.0031 0.9408 0.0382 0.0027
M6 0.9145 0.0078 0.00019 0.9335 0.0247 0.0019 0.9418 0.036 0.0032 0.9467 0.0327 0.0021
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Table 3: Forecast outcomes of WLSSVM model

INDUS RIVER CHENAB RIVER

Training phase Testing phase Training phase Testing phase

CC MAE RMSE CC MAE RMSE CC MAE RMSE CC MAE RMSE

WM1 0.8994 0.0098 0.0014 0.9137 0.0188 0.0026 0.8689 0.015 0.0019 0.9071 0.0279 0.0203
WM2 0.9224 0.0065 0.0012 0.9398 0.0178 0.002 0.8728 0.0159 0.0015 0.9183 0.0255 0.0019
WM3 0.9063 0.0055 0.0003 0.905 0.023 0.0053 0.9006 0.0157 0.0013 0.9299 0.0258 0.0018
WM4 0.816 0.0041 0.0015 0.7872 0.0251 0.0068 0.927 0.015 0.001 0.9467 0.0247 0.0017
WM5 0.8836 0.0047 0.0021 0.832 0.0246 0.0076 0.9245 0.0141 0.0007 0.9502 0.0239 0.0012
WM6 0.8926 0.0032 0.0023 0.8052 0.0227 0.0067 0.943 0.0135 0.0005 0.9511 0.0233 0.0016

Additionally, in Table 4 is noticed that M2, M5 and M1, M3 input combinations of the
ANN model are better for Indus and Chenab Rivers. Similarly, WM5 and WM1 input combi-
nations of the WANN model have given improved outcomes in the analysis of Table 5 for both
Indus and Chenab Rivers. Afterward, perceiving both tables, the estimations of Table 5 are more
attractive outcomes using the combined model paralleled to Table 4.

Table 4: Forecast outcomes of ANN model

INDUS RIVER CHENAB RIVER

Training phase Testing phase Training phase Testing phase

CC MAE RMSE CC MAE RMSE CC MAE RMSE CC MAE RMSE

M1 0.8678 0.0114 0.022 0.8193 0.0301 0.1035 0.9147 0.0173 0.0367 0.8144 0.0783 0.1008
M2 0.8769 0.0124 0.0213 0.9125 0.0288 0.0922 0.9278 0.0219 0.0301 0.7956 0.0889 0.2934
M3 0.8536 0.0125 0.0231 0.7094 0.0487 0.165 0.9026 0.0261 0.0346 0.7842 0.0298 0.372
M4 0.7428 0.019 0.0297 0.6683 0.04 0.1059 0.8713 0.0271 0.0374 0.6945 0.2685 0.5161
M5 0.7216 0.0207 0.0307 0.8643 0.0318 0.0824 0.8102 0.0199 0.0307 0.6141 0.1515 0.1973
M6 0.8454 0.014 0.0237 0.8572 0.0306 0.0892 0.7009 0.0263 0.0332 0.5314 0.1259 0.2392

Table 5: Forecast outcomes of WANN model

INDUS RIVER CHENAB RIVER

Training phase Testing phase Training phase Phase

CC MAE RMSE CC MAE RMSE CC MAE RMSE CC MAE RMSE

WM1 0.855 0.0357 0.0027 0.8293 0.0419 0.0029 0.8649 0.0132 0.0275 0.9286 0.0271 0.0539
WM2 0.8678 0.029 0.0019 0.8995 0.036 0.0025 0.8287 0.0155 0.0254 0.8763 0.0719 0.2728
WM3 0.8732 0.0263 0.0016 0.9015 0.0335 0.002 0.8007 0.0231 0.0353 0.8124 0.0991 0.3215
WM4 0.8796 0.0223 0.0012 0.9398 0.0317 0.0019 0.7732 0.0195 0.0295 0.8013 0.1978 0.5081
WM5 0.8871 0.0182 0.0007 0.9597 0.029 0.0016 0.7411 0.0176 0.0263 0.7646 0.207 0.1908
WM6 0.8799 0.0253 0.0015 0.9475 0.0324 0.0017 0.729 0.0154 0.0259 0.7116 0.1079 0.2271



1528 CMES, 2022, vol.130, no.3

Furthermore, in Table 6 is analysed that M3 and M6 input combinations of the MARS
model are obtained appropriate results for Indus and Chenab Rivers. As well in Table 7 is
observed that WM4 and WM5 input combinations for the WMARS model have been found
improved estimations for both Indus and Chenab Rivers. Therefore, Table 7 valuations are
improved due to the usage of the combined model than in Table 6.

Table 6: Forecast outcomes of MARS model

INDUS RIVER CHENAB RIVER

Training phase Testing phase Training phase Testing phase

CC MAE RMSE CC MAE RMSE CC MAE RMSE CC MAE RMSE

M1 0.8715 0.0112 0.0006 0.7991 0.025 0.008 0.884 0.0863 0.0129 0.7869 0.118 0.0271
M2 0.9061 0.0094 0.0003 0.8561 0.0266 0.0087 0.8976 0.0354 0.0029 0.8174 0.1152 0.0297
M3 0.9034 0.0097 0.0003 0.8968 0.0267 0.0085 0.9069 0.0313 0.0025 0.7869 0.1213 0.0352
M4 0.9054 0.0096 0.0003 0.8958 0.0265 0.0083 0.8895 0.03 0.0023 0.7684 0.1243 0.0396
M5 0.9042 0.0098 0.0003 0.8825 0.0275 0.0089 0.9004 0.0281 0.0021 0.7336 0.1352 0.0458
M6 0.9056 0.0096 0.0003 0.8774 0.0274 0.0089 0.9397 0.0344 0.0031 0.8471 0.1112 0.0278

Table 7: Forecast outcomes of WMARS model

INDUS RIVER CHENAB RIVER

Training phase Testing phase Training phase Testing phase

CC MAE RMSE CC MAE RMSE CC MAE RMSE CC MAE RMSE

WM1 0.9001 0.0112 0.0006 0.8089 0.0315 0.0079 0.8899 0.0693 0.0049 0.8169 0.1075 0.0279
WM2 0.9018 0.0094 0.0003 0.8479 0.0271 0.0081 0.8808 0.0545 0.0037 0.8074 0.1059 0.0265
WM3 0.9048 0.0097 0.0003 0.8491 0.0268 0.0078 0.8809 0.0419 0.0032 0.8091 0.1108 0.0271
WM4 0.9067 0.0095 0.0003 0.9012 0.0259 0.0077 0.8895 0.0379 0.0028 0.8561 0.1047 0.0277
WM5 0.9059 0.0098 0.0003 0.8355 0.0278 0.0084 0.9014 0.0301 0.0027 0.8599 0.0993 0.026
WM6 0.9064 0.0096 0.0003 0.8532 0.0269 0.0082 0.9009 0.0316 0.0031 0.8591 0.1019 0.0269

Figs. 3–4 are described the predicted linear trend line scatter displaying the LSSVM,
WLSSVM, ANN, WANN, MARS and WMARS models employing the testing phase and show
the performance as relatively to observed data on Indus and Chenab banks. The scatter lines are
described in the equation of regression line (y= a+ bx) by MATLAB software for each model.

Clearly, Fig. 3 shows that the forecasting model with wavelet transforms performs remarkably
because scatter graphs are more appropriate than traditional models.
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Figure 3: Linear trend line scatter graphs of predicted and observed for Indus streamflow through
testing phase

Similarly, Fig. 4 shows that forecasting models with wavelet transform have better forecasting
scatter graphs than traditional models.

The approximations of each model are shown in Table 8, scrutinised by various statistical
parameters with small errors and large coefficient values with the evidence that models with
wavelet decomposition are more efficient than the traditional models.

The CC-values of WD combined models are close to 100% for Indus and Chenab datasets
compared to traditional models. Therefore, the WD algorithm combined with traditional models
has made a tremendous impact and performs the role of a gadget to deliver improved estima-
tions of both streamflow rivers. Consequently, the combined WLSSVM, WANN, and WMARS
forecasting methodologies have been used as the second type models and provide excellent results
instead of the first type traditional models LSSVM, ANN and MARS.
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Figure 4: Linear trend line scatter graphs of predicted and observed for Chenab streamflow
through the testing phase

Table 8: Comparison of forecasting results

Dataset Model CC MAE RMSE

Indus River LSSVM 0.9335 0.0247 0.0019
WLSSVM 0.9398 0.0178 0.002
ANN 0.9125 0.0288 0.0824
WANN 0.9597 0.029 0.0016
MARS 0.8968 0.0267 0.0085
WMARS 0.9012 0.0259 0.0077

Chenab River LSSVM 0.9467 0.0327 0.0021
WLSSVM 0.9511 0.0233 0.0016
ANN 0.8144 0.0298 0.1008
WANN 0.9286 0.0271 0.0539
MARS 0.8471 0.1112 0.0278
WMARS 0.8599 0.0993 0.026
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5 Conclusions

It is concluded that the use of wavelet application with the addressed forecast time-series
models has improved the efficiency and yielded tremendous results. The traditional forecasting
time-series models have been prescribed by utilising the impact of the wavelet algorithm. The
significance of wavelet information is to improve the efficiency of the models that determines the
appropriate outcomes for time-series models. The performance of the wavelet combined models
mapping with their associated resampling outcomes. Filtrations of the streamflow time-series
datasets have been interpreted from the WD application and these features have not been observed
in traditional models. The nonlinear input combination models have been constructed with the
WD application and used as input estimators with traditional models that improve the forecast
efficiency of the combined models. Therefore, the WD application has become an efficient and
interesting valuable tool to analysed simulations of time-series datasets models in various domains.

Thus researchers have a good argument in the future for the extensive usage of the wavelet
algorithm to build up the novelty in the model or improve the existing models by suitable trans-
form other than wavelet. The WD algorithm provides the optimum ability to pick the appropriate
input and logically improves the output of the traditional forecasting models.
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