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ABSTRACT

Although fuzzy set concepts have evolved, neutrosophic sets are attracting more attention due to the greater power
of the structure of neutrosophic sets. The ability to account for components that are true, false or neither true nor
false is useful in the resolution of real-life problems. However, simultaneous variations render neutrosophic sets
unsuitable in specific circumstances. To enable the management of these sorts of issues, we combine the principle
of multi-valued neutrosophic uncertain linguistic sets and complex fuzzy sets to develop the principle of multi-
valued complex neutrosophic uncertain linguistic sets. Multi-valued complex neutrosophic uncertain linguistic
sets can contain grades of truth, abstinence, and falsity, and uncertain linguistic terms, which are expressed as
complex numbers whose real and imaginary parts are limited to the unit interval. Some important Dombi laws
are elaborated along with Bonferroni mean operators, which offer a flexible general structure with modifiable
factors. Bonferroni means aggregation operators perform a significant role in conveying the magnitude level of
options and characteristics. To determine relationships among any number of attributes, we develop multi-valued
complex neutrosophic uncertain linguistic Dombi-normalized weighted Bonferroni mean operators and discuss
their important properties with some special cases. By using these laws, we can deploy the multi-attribute decision-
making (MADM) technique using the novel principle of multi-valued complex neutrosophic uncertain linguistic
sets. To determine the power and flexibility of the elaborated approach, we resolve some numerical examples based
on the proposed operator. Finally, the work is validated with the help of comparative analysis, a discussion of its
advantages, and geometric expressions of the elaborated theories.
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1 Introduction

MADM is widely applied to real-world problems, but due to the complicated and inconsistent
information acquired, the use of crisp sets in these contexts often has limitations. To resolve
the problems which occur in certain issues, Zadeh [1] elaborated the principle of the fuzzy set
(FS). FSs are more powerful and effective than crisp sets and can contain the truth grade (TG)
belonging to the unit interval. But in certain situations, the FS can fail. FSs do not work
effectively when an element can either belong or not belong to the set. To deal with these
situations, the intuitionistic FS (IFS) was elaborated by Atanassov [2]. IFS extends the FS to
include the falsity grade (FG). The main advantage of the IFS is that the sum of both values
belongs to the unit interval. IFS has modified FS to enable the management of inconsistent and
awkward information in real-world problems. The powerful structure of IFS has been utilized by
various scholars. Liu et al. [3] examined a viable weighted-based hybrid approach using interval-
valued IFSs; Garg et al. [4] presented a similarity measure using right-angled triangles based
on IFSs; Ejegwa et al. [9] initiated a statistical correlation algorithm using IFSs; Xue et al. [6]
elaborated measure-based belief functions using IFSs; Aydin et al. [7] explored interval-valued
intuitionistic parameterized interval-valued intuitionistic fuzzy soft sets; Szmidt et al. [8] proposed
certain measures based on IFSs, and Ghosh et al. [9] elaborated a fixed charge solid transportation
problem based on IFSs.

In several scenarios, the conception of IFS has been neglected if an intellectual faces data
in the form of yes, abstinence, or no, then the use of IFSs is not effective. To deal with
these situations, Smarandache elaborated the neutrosophic set (NS) [10] by extending the IFS
to include the abstinence grade (AG). The main advantage of the NS is that sum of triplet
values can belong to the unit interval [0,3]. NS has modified IFS to enable the handling of
inconsistent and incongruous information. The NS has been used by various scholars. Zavadskas
et al. [11] initiated the MULTIMOORA method by using interval-valued NSs; Tan [12] proposed
entropy measures using redefined single-valued NSs; Ye [13] investigated entropy measures by
using simplified NSs; Abdullah et al. [14] developed the DEMATEL method using single-valued
NSs; Tufail et al. [15] proposed the investigation of brain cancer using NSs on MRI scans;
Du et al. [16] explored aggregation operators using neutrosophic Z-numbers; Wang et al. [17]
proposed aggregation operators using single-valued NSs; Wei et al. [18] proposed the COPRAS
method using single-valued neutrosophic 2-tuple linguistic sets; Jana et al. [19] investigated Dombi
power aggregation operators using single-valued NSs, and Zhao et al. [20] elaborated the TODIM
method by using 2-tuple linguistic NSs.

FS has typically failed when applied to information in the form of two-dimensions in a single
set. To briefly explain two-dimensional information with the help of an example, let us assume
an individual who needs to buy a vehicle and the crucial factors are the model and year of
manufacture. Since the vehicle model changes with the year of manufacture, the decision-making
procedure frequently changes. These issues cannot be demonstrated precisely with conventional
speculations. Ramot et al. [21] elaborated the principle of complex FS (CFS) to resolve these
types of problems. CFS is powerful and more effective than FS and covers the TG whose real
and unreal parts belong to the unit interval. But in certain situations, the CFS can fail. CFS is
not effective when a decision-maker faces a choice in the form of yes or no. To deal with these
situations, Alkouri et al. [22] elaborated the principle of complex IFS (CIFS) by extending CFS
to include the FG. The main advantage of CIFS is that the sum of the real part (also for the
unreal part) of both values belongs to the unit interval. CIFS has enabled CFS to handle incon-
sistent and difficult information. Various scholars have utilized the powerful structure of CIFS.



CMES, 2022, vol.130, no.3 1589

Rani et al. [23] initiated distance measures using CIFSs; Kumar et al. [24] developed complex
intuitionistic soft sets; Garg et al. [25] elaborated information measures based on CIFSs; Ngan
et al. [26] proposed quaternion numbers using CIFSs; Garg et al. [27] elaborated a correlation
coefficient by using CIFSs; Rani et al. [28] explored power aggregation operators based on CIFSs;
Quek et al. [29] initiated the algebraic structure of complex intuitionistic fuzzy soft sets, and Garg
et al. [30] initiated Heronian mean operators using complex intuitionistic uncertain linguistic sets.

Yet, in certain situations, the principle of CIFS can fail. CIFS is not effective when responses
can take the form of yes, abstinence, and no. To deal with these situations, Ali et al. elaborated the
principle of complex NS (CNS) [31] by extending CIFS to include the AG. The main advantage
of the CNS is that some of the real part (also unreal part) of triplet values belong to the interval
unit [0,3]. CNS enables CIFS to manage inconsistent and difficult information. The CNS has
been utilized by various scholars. Broumi et al. [32] proposed bipolar complex NSs; Dat et al. [33
initiated linguistic approaches using interval complex NSs; Singh [34] proposed lattice-based CNSs;
Quek et al. [35] explored graph theory using CNSs; Manna et al. [36] developed the VIKOR
method based on CNSs; Li et al. [37] explored generalized hybrid weighted averaging operators
using interval-valued complex single-valued NSs, and Ali et al. [38] explored complex neutrosophic
generalized dice similarity measures and their applications.

Nevertheless, in real-world problems, it is not unusual for decision-makers to express their
thoughts as quantifiable interpretations. When a consultant assesses a client’s opinion, he may
consider it suitable to employ linguistic phrases such as “very good”, “good”, or “medium”,
to express an estimation. To manage these problems, Zadeh [39,40] probed the principle of the
linguistic variable (LV) to illustrate the inclinations of decision-makers. Furthermore, the principle
of 2-tuple LV was created by Herrera et al. [41]. Xu [42] initiated aggregation operators for
uncertain linguistic sets (ULSs). Peng et al. [43] initiated power aggregation operators for multi-
valued neutrosophic sets (MVNSs); Liu et al. [44] developed the PROMERHEE method using
probability MVNSs; Peng et al. [45] explored MVNSs and their applications in decision-making
techniques; Liu et al. [46] proposed an extension of the ARAS method using probability MVNSs;
Ye et al. [47] initiated a correlation coefficient regarding MVNSs, and Yang et al. [48] developed
the Dombi normal weighted Bonferroni mean operator for MVNULSs.

From current accomplishments, we know that operators dependent on Dombi operations
have been proposed and applied to combine intuitionistic components, complex intuitionistic
components, single-valued neutrosophic components, interval neutrosophic components, and neu-
trosophic cubic components. They have not been applied to complex MVNSs and MVCNULS:s.
There has been no exploration of the use of Dombi normalized weighted Bonferroni mean
(DNWBM) operators on novel MVCNULNSs data. Collection administrators perform numerical
tasks like normal, total, count, max, min, and total, on the numeric property of the compo-
nents in a set. Archimedean Bonferroni mean administrators are the summed-up types of basic
collection administrators inferred to adapt to abnormal and convoluted data in genuine issues.
Accumulation administrators are numerical capacities that are utilized to consolidate data. That is,
they are utilized to consolidate N information (for instance, N mathematical qualities) in a solitary
datum. The math mean and the weighted mean are the most notable collection administrators. The
middle and the mode can likewise be collection administrators. The primary distinction between
the number-crunching means and the weighted mean is that the last option grants us to weight
vector various information as per their pertinence. There exist various conglomeration adminis-
trators that are applied relying upon the suppositions in the (information types) and the kind
of data that we can consolidate in the model. For instance, fluffy integrals license us to allocate
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pertinence to sets of data sources and not exclusively to individual sources just like the case for
the weighted mean. Math and mathematical accumulation administrators are extraordinary sorts
of Archimedean Bonferroni mean administrators.

It is important to expand DNWBM dependent on Dombi activities to MVCNULNSs. In gen-
eral, a DNWBM operator has the following qualities. Initially, it has greater flexibility with general
boundaries. Then, it can consider both the relationship and the weight of many contentions. Based
on the above analysis, the main advantages of the initiated MVCNULSs are discussed below:

(1) If we choose the value of TG, AG, and FG in the form of singleton sets in the initi-
ated MVCNULSs, then the MVCNULSs are changed for complex neutrosophic uncertain
linguistic sets.

(2) If we choose the value of TG, AG, and FG in the form of singleton sets and if the value
of an uncertain linguistic set is zero in the initiated MVCNULSs, then the MVCNULSs
are changed for complex neutrosophic sets.

(3) If we choose the value of the uncertain linguistic set is zero in the initiated MVCNULSs,
then the MVCNULSs are changed for multi-valued complex neutrosophic sets.

(4) If we choose the value of AG in the form of zero in the initiated MVCNULSSs, then the
MVCNULSs are changed for multi-valued complex intuitionistic uncertain linguistic sets.

(5) If the value of AG and FG is zero in the initiated MVCNULSs, then the MVCNULSs
are changed for multi-valued complex fuzzy uncertain linguistic sets.

The graphical expressions of the initiated works in this study are presented Fig. 1.

To explore the multi-valued neutrosophic uncertain lingwistic sets and their operational laws.

To explore the MVCNULDNWBM operator and discussed their important properties.

To utilize a Multi-Attnibute Decision Making technique based on MVCNULS.

To discuss the advantages, comparative analysis, and geometnical representations of the
presented works.

Figure 1: Expressions of the presented approaches

MVCNULSs are more suitable for dealing with quantitative or subjective data in addressing
MADM and MAGDM issues. Considering these benefits, the objectives of the paper are the
following:

(1) To develop the principle of MVCNULS and their important Dombi laws are also elabo-
rated.
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(2) To determine the relationship among any number of attributes, we develop the multi-valued
complex neutrosophic uncertain linguistic Dombi normalized weighted Bonferroni mean
(MVCNULDNWBM) operator and illustrate its important properties with some specific
cases.

(3) To utilize a MADM technique using the novel principle of MVCNULS. To determine the
power and flexibility of the elaborated approaches, we resolve some numerical examples
using the proposed operator.

(4) The priority of the elaborated work is to determine the advantages and geometric expres-
sion of the elaborated theories with the help of comparative analysis.

This study proceeds as follows: In Section 2, we briefly recall some prevailing ideas such
as MVNSs and their algebraic laws. The principle and laws of ULSs are also revised with
Dombi t-norm (DTN) and Dombi t-conorm (DTCN). The notion of the NWBM operator is
also discussed. In Section 3, we combine the principle of MVNULSs and CFSs to develop
the principle of MVCNULSs. In Section 4, some important Dombi laws are elaborated. We
present the multi-valued complex neutrosophic uncertain linguistic Dombi-normalized weighted
Bonferroni mean (MVCNULDNWBM) operator and discuss important properties using specific
cases. In Section 5, we utilize the MADM technique with the novel principle of MVCNULS.
To determine the strength and flexibility of the elaborated approach, we resolve some numerical
examples using the proposed operator. Finally, the work is validated with the help of comparative
analysis, advantages, and geometric expression of the elaborated theories. The conclusions drawn
are presented in Section 0.

2 Preliminaries

Certain extensions of the FS have been proposed and utilized in the context of aggregation
operators, measures, and methods to easily determine the reliability and consistency of the pre-
vailing ideas. The theory of the MVNS is an important and useful principle for the management
of awkward and inconclusive information. We will briefly recall some prevailing ideas such as
MVNSs and their algebraic laws. The principle of ULSs and their laws are also revised with
Dombi t-norm (DTN) and Dombi t-conorm (DTCN). The notion of the NWBM operator is also
discussed at the end of this section. In the overall study, the universal set is specified by X,,; with

TG, AG, and FG specified by QUi%mn, Ql]j\"-mn’ and ‘51134 »
Definition 1: [43] A MVNS M,,, is specified by:

Mo = {((an"Mm (Fet) Wpg,, et) M, (X))o ifok=1,2, 15,8 X € 36} (1)

where Wiy, (Xe) = [y Xe) Wiy, @e)so o Wiy, @ |s By, o = {2y, @),
Wy, Fet) s Wy, Ea| and Mo ) = [0y e Moy, Fa) o My, )] with
a restriction such that 0 < sup (Qﬁﬂwm) + sup (2(6\4”1"> + sup (‘ﬁ]/‘wm) < 3, where each

5\4’17n,2t5\4'nn,m/f\4nzn € [0,1]. Additionally, multi-valued neutrosophic numbers (MVNNSs) are



1592 CMES, 2022, vol.130, no.3

shown by M,;;,—; = <QUfA4mn7;’Ql-g\An1n77"mlj\4mnfj) .4=1,2,...,z. For any two MVNNs M,,;,, ; =

(mhm,l_;’mi\d,11n_,’mljc\/lmn_,) ,7=1,2, we specify some algebraic laws, such that

1 1 oyl 1
i flnj\’lmn—l + QU-’\Amn—Z QB-A/'»mn—lls:zn-’\/lmn—Z ’
mn—2 K an—;’ ’

an—l S an—Z = Q[l Qll ml m
Myn—1""Mpn—2> 7 M1~ "My

U ont 1
Qn-'l\/tmn—l > QUIM
1
Ql-i\/lmn—l ’ Q[an—Z € Q[an—j ’
1
manfl ’ manfZ € manfj

2
1 1
1 EZU-IA/tmnfl J\Almn 2° 1
an—l ® M’nn_z =Uu in 1 i 2l./\/tmnfl + Q,[an72 o Qlen71 Qlen72’
M1 My Myn—;° ml + ml 1 1
1 1 ! Moym—1 M2 Mym—1" "My
Mym-1° jl\/tmn72 anfy ?
1
Mpm—1° " "Mpm—2 € an,#
(3)
= — . 1 gsc lEsc 1E8sc
‘-‘SCan—l =V EZUI (S EZUZ ((1 - <1 - QUM,,,,,,]> ) > Qlen—l > manfl (4)
Myn-1 anfj ?

—-
=

Esc _ ) 1Esc 1Esc 1Esc
mn—1 " U Dasg) =)l (’ QUM,W,,] > <1 - (1 - Q(an_l) > > <1 - (1 - man—l) ))
-1/\4 n—1 'anfj ’
1
Ql/lvtmnfl € Ql/'\/tmnf;i ’
1
s)/t-’\/tmn—l € man—j

)

Moreover, by using any MVNN M, _; = (mi\/tmn_, , Q@Vtmn_; ,m’;wmn_j) ,4=1, we specify the

principle of score and accuracy function, such that

' 1 T _ 5 ) t
S‘W (an_l) = § Z §zn-l/\/tmnfl B Z Q/t{)\/lmn—l o Z m]j\'tmn—l (6)
i=1 j=1 k=1
1 t . 5 ) t
Hav (anil) = 5 Z §znf’Vtmn—l + Z QL]-A’tmnfl + Z m-lf\/tmn—l (7)
i=1 j=1 k=1

To determine relationships among any number of attributes, we define the ordered relations
which are stated below:

1. When &% (M—1) > S (Myp—2), then M1 > My 2;
2. When &% (My—1) < 8% (Mpyy—2), then My, < Myyy2;
3. When SSV (an_l) - SSV (an_z), thel’l
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1) When H (an—l) > HY (an—2)> then an—l > an—Z;

2) When H (an—l) <HY (an—2)> then an—l < an—Z;

3) When HY (M—1) = HY (Myu—2), then M1 = Mo,
Definition 2: [42] For a ULS £,,= [Sa(xd),ﬂﬂ(};d)], where £4x,), £8(x,) € 'éul ={£,: a € R}, the
upper and lower boundary is called LTS. For any two ULSs £,_1 = [£4,,£4,] and £, 5 =
[La,, £5,], then

Lui—1 ® Lu—2 = [SO‘I’SISI] ® [£a2’£52] = [20614-0(252/31-!-/32] ®)
Lui—1 @ Ly1-2 = [Sal,ﬂﬂl] ® [’gaz’sﬂz] = [’gal*O‘Z”Sﬁl*/gZ] )
EscLu—1 = Bsc [Lar. Lp ] = [Lagerar Lasesp ] (10)
Eslicl = [Sapgﬁl]gsc = |:£a135C>£ﬂIESC:| (1)

Numerous scholars have utilized different sorts of t-norm and t-conorm, but the DTN and
DTVN offer a flexible arrangement with modifiable factors. On the other hand, DTN and DTVN
also perform a significant role in conveying the magnitude level of options and characteristics.
Further, the DTN and DTVN are illustrated in the shape of (12) and (13), such that

Definition 3: [48] For any two-real numbers g and /& with ¢ >0, the DTN and DTVN are
specified by:

() ()
D' (g,h)y=1- - I
() ()

Definition 4: [18] Let Myy—j,7=1,2,...,7 be a set of positive numbers. Then, the normal-
ized weighted Bonferroni mean (NWBM) operator is specified by:

D(g,h)=

(12)

(13)

1
pP+a
z 0 ,
QWi QWh
NWBM (an—l 5 an—2> ceey an—z) = Z m <an—ijn—%,> (14)
#A=1
»#R

where Q"7 expresses the weight vector with a restriction such that Z;Zl Qi =1,Q" €]0, 1] with

p,q > 0. Furthermore, we present the novel idea of MVCNULSs and their algebraic and Dombi
laws.
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3 Multi-Valued Complex Neutrosophic Uncertain Linguistic Sets

The principle of FSs has been modified, but the principle of NSs has received more attention
due to its powerful structure that includes the TG, AG, and FG which fulfill a need in real-world
problems but fail in the face of variations at specific times. Consequently, to manage these issues,
we combine the principle of MVNULSs and CFSs to develop the MVCNULS. The MVCNULS
contains the TG, AG, FG, and uncertain linguistic terms in the form of complex numbers whose
real and unreal parts are limited to the unit interval.

Definition 5: A MVCNULS M,,,,, is specified by:

M= { ([ ] (Wha,, Ee) Hpg,,, Ee) Ny, Cen)) ) ik =1,2,.., 5,6, Xor € %um}
(15)
where Wi, (Xa) = Wiy (X (Tatpten) _ {mﬂMRP (e 2 Trn®0) oz,
o (mﬁwp(xd))’ A (Ra) elZn(QH ot p et } W, (xa) = ¥, B T 7 (W, o) _ {9[}\4 N
@) eizn(mb\,tw(aee,))’26\/t @ eizn(mg\,tlp(xe,))"”’%iw @ eizn(mﬁwm(%g/))} and 9, (%) =

k
mMRP

2 (MF (%, 27 (! X, (92, (X))
(-’{el)el 77( M ])> - {m-l’\/lRp (xe‘l)el rr( M 1)),‘53.2,\4“) (%el)el n( Mip l)a~~"m§\4RP (Xer)

: t ) .
ey (mMIP(xE[)>} with a restriction such that 0 < sup (QIT’MW> + sup (QIJMW> + sup (‘)“(]jwmn>

IA

3, where each 207, . A, "y Mg, € 10.1] and [Lacx,). Loxap]s Where Loy Lok € Lu
{£4: @€ R} expresses the ULS Addltlonally, the MVCNULNSs are shown by M,,_; =

. i271<§mf/\4 ) ; l27‘[< ‘M ) i2n<mM > .
[Las> L ] | Winagp, € " Wpgp i€ ") W€ 1 F=12,....3

P—j RP—j

i J
QITMIP I) Q[j ezZﬂ(QlMIP I)

. i27t<
For any two MVCNULNs M, = | [£4;, £ ] QHZMRP,," Mer_s

X (4 (m’jw ) . .
N e P—¢ ,4=1,2, we can specify some algebraic laws, such that
Mprp_j 7 pecity
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an—l S an—Z

w-/l\’tRP l’mMRP ) € QUMRP i’
o QL-/\/lRP I’QlMRP € QlMRP -’
m/}/lRP l’mMRP , € m-’VlRP i’
QH-/l\’luﬂ—l’m]/\/luv 2 € QI]/\4113 i’
QlMIP I’Q[MIP ) € ng-/\’11P i’

mMIP l’mMIP , € mMuﬂ 7
an—l & an—Z

Qn~/\4RP l’mMRP ) € QII-’ViRP —j°

QL-/\/lRP 1’ QlMRP , € QLMRP 3’
m-’;’lRP l’mMRP 2 € mMRP i’
Qﬂ/\’lu) 1’91]M1P ) € Sm/\41P —;’
MIP I’QLMIP 2 € Ql-/\41}* i’

mMIP 1’ mMIP , € liP Y

EscMpyn—1= Qll

1595
[SOH +ay> 2/51 +ﬁ2]
1
mMRP Tt wMRP 2 QUMRP IQUMRP—2)
1
lzn (m]MIP 1+2UM1P 2 mMIP—IQBMIP—2>’
: 1
L L i2m (QIMIP— 1 QlMIP—Z)
QLMRP—I Mep 2 ° (16)

. 1 1
1 2 (mMIP—l m-MIP—z)
mMRP—l mMRP—Z ¢

[20610(2’ 2/31/32] > 1 1
a3l Mari 5\4RP72ei2n<mM1P—1mM1P—z)’ \

1
QlMRP 1+Q[MRP 2 QlMRP IQlMRP—2>

1 _
lzn(mMP l+mM1P—2 mM/PAQ‘Mutz),

1 1 1 (17)
(mMRP—l T Mg >~ mMRP—lmMRP—z)

; 1 1 _ml 1
elzjr(liP—l—i_mMIP—Z mMIP—ImMIP—Z) )

[’QEsc*ap ’QESC*ﬁl] ’ E

. . Esc
e
RP-1 ’

- ; 12g¢
1Esc elzn (Q‘MIP—1>
Mpp-i = >

N =SC

ml 8sc eiZn( M]P—l)

(18)
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|:£ usc’gﬂlasc] >
mi\iii 1 2 (Was )
g 2 <( 19! SC))
U ml i (1 — (1 — Q’[,I/\/IRP—l) SC) el " ( MIP_I)
;irfcl = {\ARP_I € mMRP 4’ | E5c
- ! =2 i (1=
Q[MRP . GQ[MRP ;i (1 _ (1 —‘ﬁi\,t )usc) el2n<<l <1 ‘)IMIP_I) )>
mMRP 1 € mMRP ;i Kol
m]-/\/lIP ) € mMIP i’
m/l\/tlp 1 € Q[MIP i’
i
mMIP 1 € mMIP —
19)
Moreover, by  using any MVCNULN Myn—; = ([20{7, 2/37] ( Map ;
2x (QH’ ) , 2 (Q{f > 27 <mk ) )
e Mir— Wy e Mip— ‘Jt/j\,t e Mip— .7 =1, we can specify score and

RP—j RP—j
accuracy function, such that

t i T i 5 J
S (M) = (O‘J +ﬂf) = 1 ( Zi:l wf?/iR}Ll + Zit=1 Qn;c\/tzpq Z QLJVlR}Ll ) (20)
5
0(£“1) 6\- Zj=1 Q[./\/11P_1 = D k=1 sn-'\’lRP 1 Zk 1 M1P 1

HY (an D= (

+ﬂ7) * Z; lmMRp 1 + Z; IQHMIP_l + Z]s‘:l Q(]./\/(Rp_l (21)
O(Eul)

5 J t k
+ ZJ 1 Ezl-/\’1113 T Zk 1 mMRP T 2 k=1 mMIP—l

where O (Euz) expresses the total number of linguistic sets in the sets concerned. To determine the
relationship among any number of attributes, we define the ordered relations stated below:

1. When &% (M,;;—1) > 8 (M,—2), then M1 > Myyp_2;
2. When 8% (M,-1) < 8 (Mu—2), then M1 < Myyp_2;
3. When SSV (anfl) = SSV (anfz), then

1) When HY (M 1) > HY (Mym—2), then M1 > Myp_2;
2) When HY (My—1) < HY (My—2), then My, 1 < Myyp_2;
3) When H (an—l) =HY (an—Z)a then an—l = an—Z-

4 Dombi Normalized Weighted Bonferroni Mean Operators Based on MVCNULSs

When aggregating any two MVCNULNSs, the BM operators are more flexible than other
operators. Different operators have been utilized in the environment of fuzzy sets and their
generalizations. The goal of this study is to elaborate some important Dombi laws. Additionally,
BM operators offer a flexible arrangement with modifiable factors because of Bonferroni’s general
structure. On the other hand, BM aggregation operators perform a significant role in conveying
the magnitude level of options and characteristics. To determine the relationship among any
number of attributes, we present the MVCNULDNWBM operator and discuss its important
properties in some special cases.
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Definition 6: For any two MVCNULNs M,,,_; =
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an—l ® an—Z
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Theorem I: For any two MVCNULNs Mi—; = | [£o;. L, | | Winy,,_, RV

i2n (m’ ) 2 (mk ) ,
e MIP?I s mlj\/‘.RPfje MIP?’ 57‘: 13 25 Wlth psc Z 0’ then

(1) an—l @ an—Z = an—Z @ an—l;

(2) an—l ® an—Z = an—Z ® an—l;

(3) Esc (an—l S an—Z) = ESC-/\/tmn—l S ESC-/\/tmn—2;

(4) Esc—1Mum—1 ® Esc—aMpn—1 = (Esc-1+ Esc—2) Mumn—1;

5) MESC-1 g AgEsC2 :M(ESC—1+5SC—2).

mn—1 mn—1 mn—1 ’

(6) MESC] ® = sc =Mun-1® an—Z)ESC
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Proof: Straightforward.

. . i2n( )
Definition 7: For any family of MVCNULNs M,,,_; = [Saj,ﬂ,gj] QﬁfMRPiie Mir—;

i 2w (Qk]M ) ) X 2 (‘ﬂ};\,t ) ) .
QlMRP—;‘e P4 ,‘IIMRP_f,e P=7 ,7=12,...,3, with psc >0, then the MVNULD-

NWBM operator is specified by:
MVCNULDNWBM (M}ﬂn_l 5 an_z, ey an—z)

B
QWi QWA
@ e 1T gr (M M) 26
HF R
where Q"7 expresses the weight vector with a restriction such that Z;zl QY =1,Q" €]0, 1] with
P,q=0.

. 2
Theorem 2: For any family of MVCNULNs M,,,,_; = [Sa,, gﬂj] i ;el ”( Muu-;)

. 27 (m’ ) 27 (mk ) , )
QleRpfie Mip=j ,‘ﬂlj\,lRPﬁe Mir— .7 = 1,2,...,3, with pgc > 0, then by using

Eq. (26), we obtain the following result, such that

MVCNULDNWBM (M -1, Mpn—2,..., Mpn—z)

1
p+q

QWi QWA
= @;’/‘,/: 11 _-Qv (an—j ® an—lz,)
hHFER

= (liguistic terms, truthgrade, abstinence grade, falsity grade) 27
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where linguistic terms = | £ L LL 1|, where
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imaginary part of truth grade
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imaginary part of abstinence
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imaginary part of falsity grade
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Proof: See the Appendix section.

11 1

By choosing the value of weight vectors Q" = <;,;,...,5), then the principle of the

MVCNULDNWBM operator is converted for the multi-valued complex neutrosophic uncertain
linguistic Dombi BM operator, which is discussed below:

MVCNULDNWBM (M1, Muyn—2,..., Mpun—z)
_1 1
P+4q pP+q
QWi QWA %%
= EB;,&= 11-Q" (an—j ® an—k) @;,/&= 1—1 d_kl <an—j X an_%)
h7h A
1 e
p+a e
z ziz 1 2
B EBj f=11_1 (an—j ® an—/&) = -1 ®j,k= 1 (an_i- ®an_&>
prk G

= MVCNULDBM (M, ;;,—1, Myn—2, ..

° MI“)’[I’I-Z)
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. . 2 (QHD\A )
Property 1: For any family of MVCNULNs M,,;,,_; = [SW,S@,] QB-I/WRP—/e P=i)

i i2m (Qlj.l/\/l]p ) X i2m (‘ﬁ]j\dm ) . . .
QLMRP_je — ,‘J‘(MRP_I,e 7 F=12,...,3, with pgc >0, if M,;,_; = My,

then
MVCNULDNWBM (M1, Muym—2, ..., an—z) = My (28)

Proof: See the Appendix section.

‘ 27 (20 )
Property 2: For any family of MVCNULNs M,,;;,_; = [ Lo, Eﬂ;] o, " el n< Mip_j ’

; <QL’M ) i i2 (m’;w ) ‘ ,
QlMRp,,e P=7 mMRp,;,-e P—7 .7=12,...,3, with psc >0, then

H}in {anfy'} < MVCNULDNWBM (M1, Mym—2,..., Mpn—z) < m;lx {an,}} (29)

Proof: See the Appendix section.

Based on the ideas proposed above, we will develop the multi-attribute decision-making
technique to determine the reliability and consistency of the elaborated operators.

5 MADM Method Based on Proposed MYCNULSs

Aggregation operators, measures, and methods have been used in the environments of IFSs,
PFESs, IVIFSs, IVPFSs, CIFSs, CIVIFSs, NSs, CNSs, and applied in the MADM technique to
determine the consistency and strength of current works. But to date, no one has proposed
the application of any kind of operator to MVCNULSs in a MADM-based model. The goal
of this manuscript is to utilize DNWBM operators based on MVCNULSs to determine the
strength of the elaborated work. For this, we chose a group of alternatives F 71, F4/—2,.--»Fal—n

and their attributes F,_1, Far_2,..., Fam concerning weight vector Q = {Q1,9,....2 ,} with
a rule that is Zj ;= 1. To evaluate the above issues, we constructed a decision matrix
whose items are in the form of complex interval-valued Pythagorean fuzzy numbers such that

. 2 (Qﬁ’ ) . 2w (Qk] ) 2 (‘ﬁ}" )
R i Mip_ J Mip_j k Mip_j
7cp—y = [Saj,gﬁ/], QUMRP—je —7 QlMR e 4 ’mMR e 7

P—j P—j

7=1,2,...,z with certain rules that are 0 < sup (‘mlM ) + sup (9[6\4”1 ) + sup (‘J‘(k ) < 3,

where each QHM Qt{M ‘ﬁk €[0,1] and [Lux,). Lax,p]. and where Lox,). Lp(x,) € L=
{Lo: @€ R} expresses the ULS Then by using the above family of n alternatives and m attributes,
we developed an algorithm whose steps are as follows:

Step 1: Develop the decision matrix, whose every item is in the form of MVCNULN:S.
Step 2: Use the MYVCNULDNWBM operator to aggregate the entries of the decision matrix.
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Step 3: By using the score function, we find the Score values of the aggregated values of
Step 2.

Step 4: Rank all alternatives and examine the best one.

As shown above, we illustrate certain numerical examples to determine the consistency and
validity of the elaborated operators.

Example 1: With the rapid advance of financial globalization, and the developing climate of
competition, the rivalry between ventures has become a contest between supply chains. The variety
of items entering the market is expanding, and the life cycles of new items are becoming shorter.
The instability of the market and other elements drives the search for viable inventory networks,
and partnerships with different ventures are essential to improve focus and resist external risks.
The critical measure to accomplish this objective is provider choice. Hence, the provider choice
issue has acquired a great deal of importance, whether in respect of inventory network or the
executive’s decision. To delineate our proposed technique in this article, we use MVCNULNs
to give a mathematical guide to choosing green providers in a green inventory network. For
this, we choose a family of five possible green suppliers in green supplier chain management
Fai-1>Fai—, Fai—3, Fai—4,F 4—5 and their attributes are in the form of selection factors whose
expressions are as follows:

Fa—1: Expresses the product quality factor.
F4—2: Expresses the environmental factor.
F4:—3: Expresses the delivery factor.

F4—4: Expresses the price factor.

To resolve the above problem, we choose a family of four weight vectors, 0.3,0.2,0.3,0.2.
Then, by using the above family of » alternatives and m attributes, we develop an algorithm whose
steps are as follows:

Step 1: We develop the decision matrix, whose every item is expressed in the form of
MVCNULNS in Table 1.

Step 2: The MVCNULDNWBM operators used to aggregate the entries of the decision
matrix are discussed below:

Fui-1 = MVCNULDNWBM (Far-1, F a1—2, Fa1-3> F 41-4)

[£0.8, £1.6]5
{0.5726i2n(0.332)’ 0.652¢127(0.412) } ,

{0.41261'271(0.332), 0.252¢127(0.732) } ,
{0_41231'271 (0.252) () 492i27(0:332) () 5720127 (0412) }

Fui—2=MVCNULDNWBM (Far-1, F a1—2, Fa1-3> F 41-4)

[£1.6, £2.4],
{0.4928i27r (0.252)’ 0.5726i2ﬂ (0.332) } ,

[0.332¢27(0:252) (). 172¢27(0:652)} |
{0-332€i2ﬂ(0‘172), 0‘41261'271(0.252)’ 0.492¢!27(0.332) }
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Table 1: The original decision matrix that covers the complex interval-valued Pythagorean fuzzy
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numbers
Far-1 Fat—2
[£1,£0], [£1,£2],
0‘767'27[(0'4),0.86127[(05) , 0.71(’i27—[(0'41),0.81€i2ﬂ(0'51) ,
fAl—l 0.5€i2n(0‘4),0.36[27[(0‘9) , 0.516i2n(0‘41),0.3l€i2ﬂ(0‘91) ,
{0_542;1(0.3),0.661'27:(0‘4)’ 0.7¢127(0.5) } {0_5161‘27:(0,31),0_6161‘2”(0.41),0_71gf2n(0.51) }
[£2, 3], [£2,£5],
O.6€i2ﬂ(0'3), 0.78i2ﬂ(0'4) , 0.618i27—[(0'31), 0.7]6‘127[(0'41) ,
Fal-2 0.4€i2n(0‘3),0.26127[(08) , 0.418[277(0‘31),0.216[27[(0‘81) ,
{0_481‘2;1(0.2),0.5652:1(0‘3)’ 0.6¢127(0.4) } {0_4161‘27:(0.21),0_5161‘2”(0.31),0_61€i2n(0.41> }
[£1,£3], [£1,£3],
0.8€i2ﬂ(0'5), 0.9ei2n(0'6) , 0.816i2n(0'51), 0.9]6127[(0'61) ,
Fa1-3 0‘661-2]1(0'5),0.4€i2ﬂ(0'8) , 0.61(’i2ﬂ(0'51),0.41(’i2ﬂ(0'81) ,
{0_661‘2:1(0‘4)’0.76[2:1(045)’OlgeiZn(O.é)} {0_6lei2n(o.41)’0_7181‘2”(0.51)’081652:1(061)}
[£1,£2], [£1,£2],
0.6€i2n(0'3),0.7ei2ﬂ(0'4) , 0.61€i2n(0'31),0.71€i2n(0'4l) ,
FAl-4 0‘5(?7'277(0'4),0.3€i2n(0'9) , 0.51(’i2ﬂ(0'41),0.316i27—[(0'91) ,
{0'661‘271(0‘4)’0.761'2:1(0.5)’OlgeiZn(O.é)} {0'61€i2n(0.41),0'7161‘271(0‘51)’0'8161‘271(0‘61)}
[£1,£4], [£1,%4],
0‘56i2n(0.4)’0.7ei27t(045) , 0.5161‘271(0.41),0.7lei27'[(0.51) ,
-FAI—S O.6€i2ﬂ(0'7),0.381271(09) , 0.6lei2n(0'71),0.316127[(0'91) ,
{0'7ei2n(0.3)70.861'2:1(0.4)’O.7ei2n(0.5)} {0'71€i2n(031)’0'8161'211(0.41)70.7181'271(0.51)}
Far-3 FAt-4
[£1,£0], [£1,£2],
0.72€i2n(0'42),0.82€i2ﬂ(0'52) , 0.73€i2ﬂ(0'43),0.83(’i2ﬂ(0'53) ,
fAl—l 0.52€i2ﬂ(0'42),0.328i2ﬂ(0‘92) , 0.53Ei2ﬂ(0A43)’0_33ei2ﬂ(0.93) ,
{0_526i2n(0,32),0_626,1‘271(0,42)’0_7261‘27[(0.52) } {0_5361‘2”(0,33),0_6361‘2”(0.43),0_73gi2n(0.53) }
[£2,£3], [£2,£35],
0.62€i2n(0'32),0.72(’i2ﬂ(0'42) , 0.63(’i2ﬂ(0'33),0.73€i2ﬂ(0'43) ,
-7'-Al—2 0.42€i2n(0‘32),0.22607[(0‘82) , 0.43€i27[(0‘33),0.236[27[(0‘83) ,
{0_4261’271(0,22) 10.52¢127(032) () 62,127 (0.42) } {0_4361‘27:(0.23) 10.53¢127(0.33) () 63,27(0.43) }
[£1,£3], [£1,£3],
0.82€i2”(0'52),0.92€i2ﬂ(0'62) , 0.83ei2ﬂ(0'53),0.936127[(0'63) ,
Fa1-3 0.62€i2n(0'52),0.42€i2ﬂ(0'82) , 0.63€i2ﬂ(0'53),0.43(’1.27[(0'83) ,
{0_626i2n(0,42) 10.726127(0.52) () 8,127 (0.62) } {0_63ei2n(0.43) .0.73¢i27(0.53) () 83,27 (0.63) }
[£1,£2], [£1,£2],
0.62(’i2n(0'32),072614277(0'42) , 0.63€i2n(0'33),0.736127[(0'43) ,
Fal-4 0.52€i2n(0'42),0.32€i2ﬂ(0'92) , 0.53(,1'271(0.43)’033827‘[(0.93) ,
{0_62 127 (0.42) () 72,27(0.52) () §2i27(0.62) } {0.63 i270(0.43) () 73012m(0.53) () 83,127 (0.63) }
[£1,L4], [£1,%4],
0.52€i2n(0'42),0‘7261‘2”(0'52) , 0A53ei2n(0.43)>0.73ei27'[(0.53) ,
FAi-5

0.626127[ (0.72) 0.3261'271 0.92)

{0'726i2n(0.32) 10826127 (042) () 72,127 (0.52) }

0.63(’i27—[ (0.73) 0.336127[ (0.93)

{0'736i2n(033) 10.83¢127(043) () 73,27 (0.53) }
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Fui—3=MVCNULDNWBM (Far-1, F a1—2, Fa1-3> F 41-4)

[£0.8, £2.4],
{0.652ei2”(0'412), 0.732¢127(0.492) } ,

{0.4926127[(0'412), 0.332127(0.652) } ,
{0.492¢127(0:33) () 57061270412 () 652127 (0412))

Fui—4=MVCNULDNWBM (Far-1, F a41—2, Fa1-3> F 41-4)

[€0.8, £1.6],
{0.49261'271(0.252), 0.572¢127(0.332) } ,
{0.41261'271(0.332)’ 0.252¢i27(0.732) } ,
{0.4926’277 (0.332), 0‘5726i2n (0.412)’ 0.6526127[ (0.492) }

Fui—5=MVCNULDNWBM (Far—1, F a1—2, Fa1-3, F 41-4)

[£0.8, £32],
{0.41261'271(0.332), 0.572¢127(0.412) } ,
{0.4926’277 (0.572) , 0.252¢i27(0.732) } ,
{0'57261'271(0.252)’ 0.652€i2ﬂ(0'332), 0‘5726i27r(0.412) }

Step 3: By using the score function, we find the Score values of the aggregated values of Step
2, which are shown below:

8" (Fai_1) = —0.0563, &% (Fy_2)=—0.0725, 8 (Fu_3)=—0.0808,
8" (Fui_g) =—0.0819, &% (Fy_s)=—0.1454

Step 4: By using the above Score values, we rank all alternatives and examine the best one
such that

SV (Fui1) = 8V (Fai—z) = 8" (Fui—3) = 8" (Fui—a) = 8 (Fai—s)
or,

Fai-1Z2Fa—2=Fau-3=Fui—4>Fq-5

Therefore, from the above analysis, F4;_; is the best option. Moreover, we show the consis-
tency of the parameters p and g by using different values. By using the information in Table 1,
the influences of the parameters p and g are shown in Table 2, for pgc =2.

As shown above, by using different values of the parameters p and q, the ranking value is
still the same, and the best option is still F;_;. Furthermore, we will determine the consistency
of the different values of the parameter pgc. The influence of pgc is shown in Table 3, using the
information from Table 1.

The graphical expression of the information in Table 2 is presented in Fig. 2.
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Table 2: The influences of the parameters p,q for pgc =2
Parameter Score value Ranking value
p=1qg=1 S (Fui—1) = —0.0563, 8% (F41—») = —0.0725, Far-1=2Fa—2=Fq-3
S -7'-Al—3) = —0.0808, S*" (TA1_4) =—0.0819, >Fgi—a>Fq—5
S (Fu—s) =—0.1454
p=1q=2 S (Fai—1) = —0.0452, 8% (F 4y—») = —0.0614, Fai-1=Fai—2>Fur-3
S (Fui—3) = —0.0707, 8 (F 41—4) = —0.0708, >Fg1-a>Fq—5
S (Fi—s5) = —0.1343
pP=2,0=3 SV (Fai—1) = —0.0674, 8 (F 4;—») = —0.0836, Faic1=2Fa—2=Fu-3
S (Fi—3) = —0.0919, 8 (F 4;—_4) = —0.0921, >Fa1-4=Fu-s
S (Fi—s) = —0.1565
p=4,q=5 S (Fi—1) = —0.0796, 8 (F 41—») = —0.1058, Faic12Fa—2>Fu-3
S (.FAl_g) =-0.1141,8¥ (.7:,41_4) —0.1152, >Fqi—a>Fq_s
S (Fu—s) =—0.1787
p=7q=38 S (F—1) = —0.0897,8% (F 4—2) = —0.1169, Fai-12Fa—2>Fua-3
S -7'-Al—3) =—-0.1252, S” TA[ 4) =—0.1263, >Fgi—a>Fqi—5
S (Fi—s5) = —0.1898
p=9.q=10 S (Fai-1) = —0.1008, 8" (F4;—2) = —0.1280, Fai-1 = Fai-2= Fa-3
S (Fui—3) = —0.1363, 8% (F 4y_4) = —0.1374, >Fg1-a>Fq—_5
S (Fi—s5) = —0.1909
Table 3: The influence of the parameter pgo for p=q=2
Parameter Score value Ranking value
Psc =2 S (Fai—1) = —0.0563, 8 (F 41—») = —0.0725, Fai-1=2Fai2>Fuar-3
S (F4i—3) = —0.0808, S (F 4;_4) = —0.0819, >Fai-4=Fui-s
S (F—s) = —0.1454
Psc=3 S (.'FA[ 1) =—-0.0342, 8% (-'FAl—z) = —0.0504, Fai-1=Fa-2>Fa-3
S (.'FAl_g) =—0.0607, 8% (fAl—4) = —0.0608, >Fqi—a>Fq—s
S (F—s) = —0.1233
psc =4 S (Fai—1) = —0.0564, 8" (F4—2) = —0.0726, Fau1z2Fu2>Fu-s
S (Fi—3) = —0.0809, 8 (F 4;_4) = —0.0811, >Fp1-4>Fu_s
S (Fyi—s) = —0.1455
psc="5 S (Fa1-1) = —0.0686, S (F 4;—2) = —0.1033, Fuai-1 = Fai-2=Fai-3
S (Fa1—3) = —0.1031, 8% (F 4;—4) = —0.1032, >Fg1-a>Fq—s
S (Fai—s) =—0.1677

(Continued)
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Table 3: (Continued)

Parameter Score value Ranking value
psc=1 8 (Fa—1) = —0.0785,8 (-’FAl—z; =—0.1158, Far-12Fau—2=Fa-3
S (.’FAl_g) =-0.1159, 8% (fAl—4 =—-0.1274, >F 4> Fq—s
S (Fa_s) = —0.1687
pSC=10 S 7All§ =-—0.1118,8% E.'FA[_Z; =—0.1390, Fau1=Fg2=>Fq_3
S Fa_3) = —0.1473,8% (F 4;—4) = —0.1484, >Fpi—a=>Fq—s
S (Fa_5) = —0.1979
0 - - -
002 =1 =2 =3 =5 10
-0.04
. e W Series1
% -0.08 m Series2
E S W Series3
§ A% L] Seriesd
018 - 1 Seriess
-0.16 -
-0.18
-0.2 = -

Alternatives

Figure 2: Geometrical expressions of the information in Table 2

Similarly, as shown above, by using the same value of parameters p =2 and g =2 and
changing the value of the parameter psc, the ranking value is still the same, and the best
option remains F4;_;. The strength and consistency of the new MVCNULDNWBM operators
are discussed in the next study with the help of comparative analysis.

5.1 Comparative Analysis
By using the prevailing works in [43,48,49], the sensitive works are diagnosed below:

(1) Power AOs for MVNS was invented by Peng et al. [43], which includes the mixture of
power AOs with MVNSs. But a lot of deficiencies exists in [43] under MVNS, because the
work in [43] is the particular part of invented works under MVCNULSs. For proposed
work is not difficult to handle the data in Peng et al. [43], but the converse is very
problematic.

(2) DNWBM for MVNULS was invented by Yang et al. [48], which includes the mixture of
BM operators with MVNULS s. But a lot of deficiencies exists in [48] under MVNULS,
because the work in [48] is the particular part of invented works under MVCNULSs. For
proposed work is not difficult to handle the data in Yang et al. [48], but the converse is
very problematic.
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(3) Liu et al. [49] stated the BM operators for MVNSs, which discuss the MVNSs and BM
works. But a lot of deficiencies exists in [49] under MVNS, because the work in [49] is the
particular part of invented works under MVNLSs. For proposed work is not difficult to
handle the data in Liu et al. [49], but the converse is very problematic.

A graphical expression of the information in Table 3 is presented in Fig. 3.

0
-0.02
008\
- e W Seriesl
% -0.08 m Series2
; L m Series3
E -0.12 m Seriesd
-0.34 m SeriesS

-0.16
-0.18

-0.2

Alternatives

Figure 3: Graphical expressions of the information in Table 3

Hence, our considerations works are beneficial for utilizing in the region of medical areas and
decision analysis.

6 Conclusion

In this study, we developed the principle of multi-valued neutrosophic uncertain linguistic
sets and their important Dombi laws were also elaborated by using the investigated multi-valued
neutrosophic uncertain linguistic sets. Further, we developed a multi-valued complex neutro-
sophic uncertain linguistic Dombi-normalized weighted Bonferroni mean operator and discussed
important properties of the operator with some specific cases. By using these laws, we deployed
the multiple attribute decision making technique under the novel principle of multi-valued neu-
trosophic uncertain linguistic sets. To determine the strength and flexibility of the elaborated
approaches, we resolved some numerical examples based on the proposed operator. Finally, the
elaborated work was validated with the help of comparative analysis, a demonstration of its
advantages, and geometric expressions.

In the future, we will try to modify the prevailing principle of complex g-rung orthopair fuzzy
sets [50], Complex spherical fuzzy sets [51], T-spherical fuzzy sets [52], bipolar soft sets [53], and
others [54-57], to generalize and expand the value of this work.
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Appendix

Proof of Theorem 2: We proved that the Eq. (27), such that if, M,,,, @M, _,, then

linguistic terms = [s(af"*aﬁ)vﬁ(ﬁ})"*ﬁ}})]’ where
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The result is proved.
Proof of Property 1: By using the idea of the MVCNULDNWBM operator, we have

MVCNULDNWBM (an_l 5 an_z, ey an—z)

p+a 5re
Q7 QA QWi QW
— ED;’&= 1—1 —avi (Mﬁm—i‘ ® M?ﬂn—k) = @;,/&= lm (Mﬁm (4] Mﬁm)
7R ey
1
p+a
QY QWk 1
_ 3z - - [p-l-ﬂ:l — [D+Q p+q _
=@ g (M) ((M5)) 7 = My,
»FER

Proof of Property 2: Based on Eq. (28), we have
MVCNULDNWBM (m;n { M-z} ,min {Mun—s}.... ,min {an_;}) = min { M-z}
and
MVCNULDNWBM (m;lx { Moz} ,max { Mz}, ... ,max {Mon—j }) = max { Mo}

and it is clear that
I’I’}in {an—j} = an—;’ = mf-x {an—;'}

Then, we obtained the result, such that

n’;,in {an—;'} <MVCNULDNWBM (an—la an—Za cees an—z) = m}ax {an—j} .



