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ABSTRACT

During high-intensity focused ultrasound (HIFU) treatment, the accurate identification of denatured biological
tissue is an important practical problem. In this paper, a novel method based on the improved variational mode
decomposition (IVMD) and autoregressive (AR) model was proposed, which identified denatured biological tissue
according to the characteristics of ultrasonic scattered echo signals during HIFU treatment. Firstly, the IVMD
method was proposed to solve the problem that the VMD reconstruction signal still has noise due to the limited
number of intrinsic mode functions (IMF). The ultrasonic scattered echo signals were reconstructed by the IVMD
to achieve denoising. Then, the AR model was introduced to improve the recognition rate of denatured biological
tissues. The AR model order parameter was determined by the Akaike information criterion (AIC) and the
characteristics of the AR coefficients were extracted. Finally, the optimal characteristics of the AR coefficients were
selected according to the results of receiver operating characteristic (ROC). The experiments showed that the
signal-to-noise ratio (SNR) and root mean square error (RMSE) of the reconstructed signal obtained by IVMD
was better than those obtained by variational mode decomposition (VMD). The IVMD-AR method was applied
to the actual ultrasonic scattered echo signals during HIFU treatment, and the support vector machine (SVM) was
used to identify the denatured biological tissue. The results show that compared with sample entropy, information
entropy, and energy methods, the proposed IVMD-AR method can more effectively identify denatured biological
tissue. The recognition rate of denatured biological tissue was higher, up to 93.0%.
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1 Introduction

In modern medicine, high-intensity focused ultrasound (HIFU) has been widely used to treat
diseases such as cancer and tumors [1–3]. HIFU treatment can focus ultrasonic energy on the
treatment region of the body to kill cancer cells without damaging surrounding normal tissue
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and cells [4]. Therefore, it is important to identify whether biological tissue has been denatured
during HIFU treatment [5]. So far, HIFU researchers have generally used ultrasound to identify
denatured biological tissues due to its low cost, real-time performance, and good compatibility.

However, the ultrasonic echo signal contains a lot of noise, which affects the recognition
rate of denatured biological tissues during HIFU treatment. Meanwhile, ultrasound echo signals
exist frequency shifts when tissue has been denatured [6]. Therefore, it is difficult to filter out the
noise of the ultrasonic echo signal from the biological tissue by the bandpass filter. Variational
modal decomposition (VMD) can realize effective separation of intrinsic modal components
(IMF) and signal frequency domain division [7]. The effective decomposition components of the
signal are obtained and the optimal solution of the variational problem is finally calculated.
Thus, it can effectively reduce the nonstationarity of time series with high complexity and strong
nonlinearity [8]. VMD can decompose complex signals into a set of simple and residual signals,
which usually was employed to reconstruct denoised signals in many fields. In [9–13], VMD
was applied to analyze biological signals to identify diseases. In [14–17], VMD was applied to
simplify the characteristic information of commodity price change rules and find future price
changes. In [18–21], VMD was applied to analyze the mechanical equipment signals, and the
intrinsic mode functions (IMF) containing the fault information were found to identify the fault
type. Therefore, VMD was applied to denoise the ultrasonic scattered echo signals of HIFU
treatment [22]. However, the VMD reconstructed ultrasonic scattered echo signals still contain
noise due to the number of IMFs is limited. In order to solve the problem, the improved
variational mode decomposition (IVMD) is proposed to filter out the noise in the ultrasonic
scattered echo signal. IVMD filters the IMF component of noise according to the results of
the autocorrelation function, and then the denoised ultrasonic scattered echo signal is output
according to the spectrum energy of the reconstructed signal.

In addition, the ultrasonic echo signal is the nonlinear signal in the HIFU treatment. After
the biological tissue has been denatured, many properties of the ultrasonic echo signal will
change. With the development of nonlinear technology, many nonlinear computational methods
are proposed to analyze various systems [23–25]. Researchers in the field of ultrasound have
studied the characteristics of ultrasonic energy, sound speed, information entropy, and sample
entropy of ultrasonic echo signals, hoping to find characteristics that can accurately reflect the
characteristics of biological tissues [26–30]. In [26], the energy characteristics of ultrasonic signals
were used to recognize the denatured biological tissue during HIFU treatment. In [27], the sound
speed values were used to monitor the denatured biological tissue during HIFU treatment, and
the results showed that the sound speed of denatured biological tissues was higher than that
of normal tissues. In [28,29], the biological tissue state after HIFU irradiation was assessed by
the information entropy of the radio frequency ultrasound. In [30], the sample entropy of the
radio frequency ultrasonic signals was employed to distinguish the normal porcine tissues and
denatured porcine tissues. However, all the methods mentioned above have some disadvantages,
such as sound speed measurement of biological tissues is easily affected by environmental noise,
which leads to the inaccuracy of the recognition results of denatured biological tissue. The
existing recognition technology of denatured biological tissue has low recognition rate and weak
recognition ability. Therefore, it is urgent to find a characteristics analysis method to improve the
identification ability of denatured biological tissues.

The autoregressive (AR) model is a time sequence analysis method for mode recognition and
prediction. The autoregressive characteristics of the model contain important information of the
analyzed time sequence. It is very sensitive to the changes of sequence and can obtain the structure
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and complexity of dynamic data. In [31], the AR model was used to detect anomalous flight
segments. In [32], the AR model was used to monitor the complexity of heart murmur sound
signals. In [33], the effectiveness of the AR model for shaft crack diagnosis was verified. However,
it has not been reported that the AR model coefficients of ultrasonic echo signals are applied to
identify denatured tissue during HIFU treatment.

In this paper, a method based on IVMD-AR to identify denatured biological tissues is pro-
posed. The ultrasonic scattered echo signal can be effectively denoised by IVMD reconstruction,
the AR model is introduced to extract the characteristics of the denoised signal. The order of
the AR model is determined by the Akaike information criterion (AIC), the characteristics are
selected by receiver operating characteristic (ROC). The support vector machine (SVM) is used to
identify denatured tissue. The actual data shows that the IVMD-AR method can more effectively
identify denatured tissue.

The highlighted main contributions are described as follows:

(1) To solve the inherent disadvantages of VMD, we proposed the improved variational mode
decomposition (IVMD) method to obtain the high-quality reconstructed signals.

(2) We introduce the autoregressive (AR) model to identify denatured biological tissue during
HIFU treatment.

(3) We compare the proposed method with the existing methods, the investigation results
show that the IVMD-AR method has higher recognition rate, which can more effectively identify
denatured tissue.

2 Materials and Methods

2.1 Variational Mode Decomposition
VMD is applied to decompose the complex time series into a series of intrinsic mode

functions (IMF), and each IMF is an AM-FM signal. The time series {xt, t = 0, 1, 2, . . . , T} is
decomposed into k IMFs, which can be defined as:

uk (t)= Ak (t) cos (φk (t)) (1)

ω′
k (t)= duk (t)

dt
(2)

where Ak (t) is the instantaneous amplitude of IMF, φk (t) is the instantaneous phase and ω′
k (t)

is the instantaneous frequency.

Each IMF has a center frequency and the limited bandwidth. In the VMD algorithm, the
decomposition process is the constrained variational problem as follows:⎧⎪⎪⎨
⎪⎪⎩

min
{uk},{ωk}

{∑
k

∥∥∥∂t

[(
δ (t)+ j

π t

)
uk (t)

]
e−jωkt

∥∥∥2

2

}

s.t.
∑
k

uk = x (t)
(3)

where {μk} : = {μ1, · · ·,μk} represents the decomposed K finite bandwidth modal components, and
{ωk} : = {ω1, · · ·,ωk} represents the center frequency of each modal component. The augmented
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Lagrangian formula is applied to solve the constrained variational problem. The augmented
Lagrangian formula is as follows:

L ({uk} , {ωk} ,λ)= α
∑
k

∥∥∥∂t

[(
δ (t)+ j

π t

)
∗ uk (t)

]
e−jωkt

∥∥∥2

2

+
∥∥∥∥∥x (t)−∑

k
uk (t)

∥∥∥∥∥
2

2

+
〈
λ (t) , x (t)−∑

k
uk (t)

〉 (4)

where α is the quadratic penalty and λ((t) is the Lagrange multiplier. The saddle point of the
Eq. (4) is calculated by the alternating direction method of multipliers, and the three parameters
uk, ωk, and λ are updated at the same time. The specific steps of the calculation about VMD are
as follows:

1. Initialize u1
k, ω1

k, λ and n as 0.

2. Update uk, ωk, λ by the following equations:

un+1
k (ω)= x (ω)−∑i �=k ui (ω)+ λ(ω)

2

1+ 2α (ω−ωk)
(5)

ωn+1
k =

∫∞
0 ω |uk (ω)|2 dω∫∞

0 |uk (ω)|2 dω
(6)

λn+1 (ω)← λn (ω)+ τ

[
f (ω)−

∑
k

un+1
k (ω)

]
(7)

3. The precision ε is set, and output the result when Eq. (8) is true. Otherwise, repeat Step 2.

∑
k

∥∥∥un+1
k − un

k

∥∥∥2

2

/∥∥un
k

∥∥2
2 < ε (8)

2.2 Improved Variational Mode Decomposition
Due to the wide frequency distribution range of the noise in the ultrasonic signal and the

limited number of modes obtained by VMD decomposition and reconstruction, the VMD recon-
structed ultrasonic echo signals still contain noise. In order to solve the problem, the improved
variational mode decomposition is proposed. The specific steps are as follow:

1. The original signal is decomposed into K IMFs by VMD.
2. The autocorrelation functions of all IMFs at τ = τ1 and τ = 0 are calculated as follows:

R (τ )= lim
T→∞

1
T

∫ T

0
u (t)u (t+ τ)dt (9)

3. The R (0) /R (τ1) of all IMFs are calculated. The IMF with the largest value of R (0) /R (τ1)

is the IMF component of noise, which is filtered out. Then the remaining IMFs are applied
to reconstruct the signal.

4. Calculate the spectral energy of the reconstructed signal. Then the proportion between the
sum of the spectral energy of the former K-1 IMFs and the total spectral energy of the
reconstructed signal is calculated.
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5. Threshold of proportion is set. When the energy proportion calculated in Step 4 is less
than the threshold, the reconstructed signal is regarded as the original signal in Step 1,
and repeat Steps 1 to 4. When the proportion is larger than the threshold, the iteration
stops and the reconstructed signal is output as the denoised signal.

2.3 Autoregressive Model
The autoregressive model is a model that is developed based on the linear regression model.

The p-order autoregressive model can be defined as:

x (t1)= a1xt1−1 + a2xt1−2 + . . .+ apxt1−p + εt1 (10)

where a1, a2, . . . , ap is parameters of model and εt1 is residual.

Burg algorithm is applied to calculate the parameters of the autoregressive model. The average
power minimum criterion of forwarding and the backward prediction error is applied in the Burg
algorithm. Firstly, the reflection coefficient is estimated, and then the coefficients of the AR model
are solved by using Levinson recursion from low order to high order. The forward and backward
prediction errors are defined respectively as follows:

ζ
f
p (t)=

p∑
i=0

apx (t− i) (11)

ζ e
p (t)=

p∑
i=0

apx (t− p+ i) (12)

As shown in Eq. (13), the forward and backward prediction errors of each order are
calculated by the lattice filter, where ψp is the reflection coefficient of the lattice filter.(

ζ
f
p (t)

ζ e
p (t)

)
=
(

1
ψp

ψp
1

)(
ζ

f
p−1 (t)

ζ e
p−1 (t)

)
(13)

The average power of forwarding and backward prediction errors is:

Pp = 1
2

T−1∑
i=k

(
|ζ f

p (i) |2 + |ζ f
p (i) |2

)
(14)

Minimize Pp by ∂Pp/∂ψp = 0. The reflection coefficient is:

ψp =
−2
∑T

i=p+1

(
ζ

f
p (i) ζ e

p (i− 1)
)

∑T
i=p+1

(
|ζ f

p (i) |2 + |ζ e
p (i− 1) |2

) (15)

Finally, the parameter of the AR model is obtained by using the Levinson formula:{
ai = ap−1 +ψpap−1, 1 ≤ i ≤ p− 1
ap =ψp

(16)
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2.4 Intra-Class Distance and Inter-Class Distance
Intra-class distances and inter-class distances are often used to evaluate clustering and classi-

fication effects. The separability between different classes is expressed as the inter-class distance.
The compactness of features in the same class is expressed as the intra-class distance.

The intra-class distance for the c-class sample set
{
Si

m|i = 1, 2, . . . , n; ; m = 1, 2, . . . , c
}

is defined
as:

Dintra =

√√√√√1
n

c∑
m=1

⎡
⎣ 1

n− 1

n∑
i=1

n∑
j=1,j �=i

(
Si

m −Sj
m

)2

⎤
⎦ (17)

The inter-class distance between two classes can be expressed as:

Dinter =
√√√√ b∑

i=1

(
Sm1 (i)−Sm2 (i)

)2
(18)

where Sm1 (i), Sm2 (i) are mean vectors of the m1-th and m2-th features.

2.5 AIC and ROC
Based on the concept of entropy, AIC provides a standard to weigh the complexity of the

model and the fitting performance of the statistical model. Meanwhile, AIC is calculated as
follows:

AIC = 2q− 2log (Fl) (19)

where q is the number of parameters and Fl is the maximum likelihood of the estimation
model [34].

ROC is a dichotomy-based graphical representation that is commonly used to assess medical
diagnosis. The ROC curve reflects the relationship between true positive rates (TPR) and false
positive rates (FPR) of different thresholds in the whole classifier. TPR and FPR are calculated
by the Eqs. (20) and (21). The definitions of TP, TN, FP and FN in the formulas are shown
in Table 1. Taking TPR and FPR with the same threshold as ordinate and abscissa respectively.
The test results of all data are marked in the two-dimensional coordinate system, and the ROC
curve consists of all points. The area under curve (AUC) of ROC is the area enclosed by the
ROC curve, abscissa and FPR= 1. AUC is often used to evaluate the overall accuracy of ROC
diagnostic tests [35]. The higher the AUC, the better the classification effect, and the more accurate
the identification of the denatured biological tissue.

TPR = TP
TP+FN

(20)

FPR = FP
FP+TN

(21)
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Table 1: Definition of TP, TN, FP and FN

ROC Normal tissue Denatured tissue

Normal tissue TP FP
Denatured tissue FN TN

3 Results

3.1 Experimental System
Before the experiment, povidone was mixed with 95% alcohol in a ratio of 1:4, and then

mixed with water in a volume ratio of 1:20. After waiting for 1 h, the gas in the water was
removed. The experimental system is shown in Fig. 1. The HIFU transducer (PRO2008, Shenzhen,
China) with a center frequency of 1.39 MHz was used to irradiate the fresh porcine muscle to
change its biological tissue properties. The irradiation power of the HIFU transducer was 210–
300 W, and the HIFU transducer was turned off after HIFU irradiation. The temperature of
the porcine muscle at the focal region was measured by the thermometer. The type-B ultrasound
scanner was used to monitor the treatment process. The fiber optic hydrophone (FOPH2000,
Germany) was used to obtain ultrasonic echo signals and then saved by a digital oscilloscope
(MDO3032, Tektronix, USA). In this experiment, 400 experimental data from 15 groups of
samples were collected, including 200 signals of denatured tissue and 200 signals of normal tissues.
The experimental porcine muscle tissue samples were sliced to distinguish whether the tissue had
been denatured. Fig. 2 shows the status of sliced normal and denatured porcine tissue.

Figure 1: Experimental system

Figure 2: The status of sliced normal and denatured porcine tissue (a) Normal tissue; (b) Dena-
tured tissue
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3.2 Interception of Ultrasonic Scattered Echo Signal
The collected ultrasonic echo signals as shown in Fig. 3, and the sampling frequency is 20

MHz. Line 1 is the boundary point of the ultrasound through water and porcine muscle tissue.
Line 2 is the starting point of the ultrasonic scattered echo signal from the treatment region and
Line 3 is the end-point. Therefore, the length of the scattered echo signal reflected by the treatment
area between Line 2 and Line 3 is 500 points. The default sound speed is 1550 m/s. The theoretical
depth of the treatment region can be calculated as 19.3 mm. Meanwhile, the actual depth of the
treatment region is 17 mm–20 mm. Therefore, the intercepted signals are reasonable for identifying
denatured tissue.

Figure 3: The waveform of ultrasonic echo signal

3.3 Comparison of IVMD and VMD
To analyze the simulation signal with noise by VMD and IVMD, respectively. The simulation

signal is x (t) = 3 ∗ sin (40π t)+ 2 ∗ sin (200π t). The simulation signal with noise is f (t) = x (t)+ η.
η is white noise with 2.5 dB. VMD is applied to analyze f (t) and three IMFs can be obtained
as shown in Fig. 4a. It is the expectation in the simulation to obtain a consequence that the
IMF1 and IMF2 are sinusoidal signals of 20 Hz and 100 Hz, respectively, and the IMF3 contains
all of the noise. In fact, IMF1 and IMF2 obviously contain a small amount of noise. Fig. 4b
is the autocorrelation function of three IMFs. The IVMD latency is set to 50. It can be found
that compare with IMF1 and IMF2, the R (0) /R (50) value of IMF3 is the largest and is much
larger than IMF1 and IMF2. The performance of IMF3 is similar to the autocorrelation function
of noise, so it can be considered as a noise signal, and IMF1 and IMF2 are selected for
reconstruction.

The threshold of proportion is set as 0.98. When the proportion is larger than the threshold,
the iteration stops and the reconstructed signal is output as the denoised signal. The reconstructed
signal is obtained by IVMD and the frequency spectrum of the reconstructed signal is calculated.
Compared with the frequency spectrum of simulated signal with noise and reconstructed signal
by VMD, as shown in Fig. 5. It can be found that VMD decomposition can filter medium and
high-frequency noise, but cannot filter noise around 20 Hz and 100 Hz. While IVMD can filter
out not only medium and high-frequency noise but also noise between 20 Hz and 100 Hz. From
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the frequency spectrum analysis, IVMD can realize signal denoising more effectively compared
with VMD.

(a) (b)

Figure 4: IMFs and its autocorrelation function (a) IMFs of the simulation signal obtained by
VMD analysis; (b) Autocorrelation function of IMFs

(a) (b)

Figure 5: (Continued)
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(c) (d)

Figure 5: Comparison of denoising effects between VMD method and IVMD method (a) Wave-
form of f(t); (b) Frequency spectrum of f(t); (c) Frequency spectrum of VMD reconstructed
signal; (d) Frequency spectrum of IVMD reconstructed signal

In order to prove the advantage of IVMD in low SNR signals, VMD and IVMD are applied
to reconstruct the simulation signals with different SNR. The reconstructed signals of SNR and
RMSE are calculated. From Fig. 6, it can be seen that SNR and RMSE of IVMD fluctuate
within a certain range due to the analysis of the energy composition of the reconstructed signals.
The SNR of the VMD reconstructed signal increases with the increase of the SNR of the input
signal, and the RMSE decreases with the increase of the SNR ratio of the input signal. The SNR
and RMSE of IVMD are stable. Furthermore, The SNR of the IVMD reconstructed signal is
higher than that of the VMD reconstructed signal, and the RMSE of the IVMD reconstructed
signal is lower than that of the VMD reconstructed signal. This means that the IVMD method
has better denoising effect and stability than the VMD method.

Considering the advantages of IVMD in signal denoising, the IVMD method is used to
denoise the ultrasonic scattered echo signal. Fig. 7a is an ultrasonic scattered echo signal of
biological tissue extracted from the original signal. The signal in Fig. 7b is obtained by IVMD
denoising. It can be observed that the signal obtained by IVMD has a distinct pulse waveform
and the waveform oscillation is attenuated.
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(a) (b)

Figure 6: Comparison the denoising effect of two methods under different SNR (a) SNR;
(b) RMSE

(a) (b)

Figure 7: The time-domain waveform of the ultrasonic signal (a) Original signal; (b) Signal
reconstructed by IVMD
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3.4 Coefficient Selection of AR Model
In AR model analysis, it is very important to determine the order of the AR model. If the

order is too low, the resolution of the AR model is not high enough and the parameters of
the model are inconsistent with the actual signals. If the order is too large, the model contains
false details and the variance of the model will increase [36]. The order of the AR model of the
denoised ultrasonic scattered echo signals is determined by AIC, as shown in Fig. 8a. It can be
seen that when the order is larger than 20, the AIC value is almost certain, so the 20 order is
selected as the optimal order. The 20 order AR coefficients characteristics of the 400 cases of
denoised ultrasonic scattered echo signals (including the signals of 200 cases of denatured tissues
and 200 cases of normal tissues) are extracted. Then the ROC curves are employed to select the
optimal characteristics of the AR coefficient, as shown in Fig. 8b.

(a) (b)

Figure 8: AIC and ROC graph (a) AIC of AR model under different orders; (b) The ROC curve
of the different coefficients under the 20 order

Fig. 9 shows that the AUC values and standard errors of the various coefficients characteris-
tics of the 20 order AR coefficients are calculated according to the ROC curve diagrams. It can
be observed that the AUC of the a11 is the largest and its standard errors are the smallest, with
values of 0.9391 and 0.0145, respectively. This means that the a11 coefficients characteristics have
better separability and stability in the 20 order AR coefficient. Therefore, the a11 in the 20 order
AR coefficients are selected as the characteristics of ultrasonic scattered echo signals.
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(a) (b)

Figure 9: Comparison between the different order coefficients of 20 order AR model (a) AUC;
(b) Standard errors

3.5 Comparison of Different Characteristics
The proposed method is applied to the ultrasonic scattered echo signals during HIFU treat-

ment, and support vector machine (SVM) is used for recognition (100 cases of denatured tissues
and 100 cases of normal tissue are training, and the rest 200 cases are testing). The radial basis
function (RBF) is chosen as the kernel function. According to the results of cross-validation,
the kernel parameter is set as 15.26 and the penalty factor is set as 17.24. Fig. 10 shows the
recognition results of the IVMD-AR method. Abscissa 1 to 100 are denatured tissue samples,
and abscissa 101 to 200 are normal tissue samples. The ordinate Type 1 represents the denatured
tissue status, Type 2 represents the normal tissue status. It can be seen that the misidentification
samples of denatured tissues are 12, and that of normal tissues are 2. The total recognition rate
of denatured biological tissue was 93%.

Figure 10: The recognition results of IVMD-AR method
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In order to further prove the advantages of the proposed method, the proposed method
is compared with the existing methods. The sample entropy, information entropy, and energy
characteristics of the denoised ultrasonic scattered echo signals are extracted, respectively. Then
SVM is applied to calculate the recognition rate of the various methods. The various methods
are compared according to the results of inter-class distance, intra-class distance, and recognition
rate indicators, as shown in Table 2. It can be seen that the inter-class distance based on AR
characteristics (the a11 in the 20 order AR coefficients) is higher and the intra-class distance is
smaller than the existing methods. In addition, the SVM recognition rate based on AR charac-
teristics is the highest in the comparison of various methods. The results show that compared
with sample entropy, information entropy and energy characteristics identification methods, the
proposed IVMD-AR method can more effectively identify denatured biological tissue.

Table 2: Comparison of the various methods

AR characteristics Sample entropy Information entropy Energy

Inter-class distance 0.7134 0.5347 0.5102 0.4915
Intra-class distance 0.2593 0.2982 0.3123 0.3647
Recognition rate 93% 85.5% 83.5% 72.5%

4 Discussion

In this paper, a new method based on the IVMD and AR model to identify denatured biologi-
cal tissues is proposed. To solve the inherent disadvantages of VMD, a novel mode decomposition
technique, IVMD is proposed to denoise ultrasonic scattered echo signals. The experiments show
that compared with the VMD method, the IVMD method has the better denoising effect (Figs. 5
and 6). In addition, The AR model coefficients of two kinds of ultrasound scattered echo
signals are calculated, the order and the optimal coefficients characteristics of the AR model are
determined by AIC and ROC (Fig. 8). Then, The AUC values and standard errors of the various
coefficients of the 20 order AR coefficients are calculated according to the ROC curve. The a11
in the 20 order AR coefficients are selected as the characteristics of ultrasonic scattered echo
signals according to the results of AUC values and standard errors (Fig. 9). Finally, the various
identification methods including AR coefficients, sample entropy, information entropy and energy
are used to extract the characteristics of ultrasonic scattered echo signals, respectively. Meanwhile,
SVM is applied to calculate the recognition rate of the various methods (Fig. 10). The various
methods are compared according to the results of inter-class distance, intra-class distance, and
recognition rate indicators. The results show that the inter-class distance of AR coefficients is the
largest, and the intra-class distance of AR coefficients is the smallest, and the recognition rate
of SVM classification of AR coefficients is the highest, up to 93% (Table 2). The above results
support the hypothesis that the proposed IVMD-AR method can obtain a better denoising effect
and identification effect in HIFU treatment. However, some parameters in the proposed method
need to be set according to manual experience. We consider using the artificial intelligence method
to optimize the algorithm parameters in future work.

5 Conclusions

This paper realizes the identification of denatured tissues based on IVMD and AR models
during HIFU treatment. To solve the inherent disadvantages of VMD, the IVMD method is
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proposed based on VMD. The simulation results show that SNR of IVMD denoised signal is
higher than VMD method and RMSE of IVMD denoised signal is lower than VMD method,
which means that the IVMD method has a better denoising effect than the VMD method. AR
model is used to extract the characteristics of ultrasonic scattered echo signals of biological tissues.
The order of the AR model is determined to be 20 according to AIC and the 11th AR model
coefficients are selected as the AR characteristics according to ROC curves. The support vector
machine (SVM) is used to identify the denatured biological tissue. The results show that compared
with sample entropy, information entropy, and energy methods, the proposed method has a better
separability to identify whether biological tissues have been denatured and the recognition rate of
denatured biological tissues was higher, up to 93.0%.
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