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ABSTRACT

The method of fundamental solutions (MFS) is a boundary-type and truly meshfree method, which is recognized
as an efficient numerical tool for solving boundary value problems. The geometrical shape, boundary conditions,
and applied loads can be easily modeled in the MFS. This capability makes the MFS particularly suitable for shape
optimization, moving load, and inverse problems. However, it is observed that the standard MFS lead to inaccurate
solutions for some elastostatic problems with stress concentration and/or highly anisotropic materials. In this work,
by a numerical study, the important parameters, which have significant influence on the accuracy of the MFS for
the analysis of two-dimensional anisotropic elastostatic problems, are investigated. The studied parameters are
the degree of anisotropy of the problem, the ratio of the number of collocation points to the number of source
points, and the distance between main and pseudo boundaries. It is observed that as the anisotropy of the material
increases, there will be more errors in the results. It is also observed that for simple problems, increasing the
distance between main and pseudo boundaries enhances the accuracy of the results; however, it is not the case for
complicated problems. Moreover, it is concluded that more collocation points than source points can significantly
improve the accuracy of the results.
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1 Introduction

The MFS is an integration-free meshfree method, which has found a wide application because
of its accuracy and simplicity. In the MFS, the solution is expressed in terms of known funda-
mental solutions, which exactly satisfy the governing equations of the problem. This semi-analytic
nature of the MFS makes it suitable for obtaining accurate solutions [1–3]. Meshfree methods
can be classified into two major categories [4]. The first category includes meshfree methods
based on strong forms of differential equations [5–7], while the meshfree methods based on weak
forms of governing equations [8,9] fall into the second category. The weak-form meshfree methods
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need suitable techniques for the computation of domain integrals [10–12]; however, the MFS is a
strong-form and truly meshfree method without any need for evaluating any domain or boundary
integral. These features make the MFS suitable for problems with moving/unknown boundary
[13–15], for problems with concentrated loads [16–18], and moving load problems [19]. The bound-
ary element method (BEM) is also a boundary-type method, which is based on the fundamental
solutions of the problem, as in the MFS, and results in accurate solutions. The BEM needs special
techniques for the evaluation of singular [20,21] and nearly singular [22,23] domain/boundary
integrals; however, the MFS is an integration-free method.

The literature review shows a few studies on the MFS for the analysis of elastostatic problems
in anisotropic media. Raamachandran et al. [24] made use of the charge simulation method, which
is the same as the MFS. They solved some anisotropic elastostatic problems and obtained satis-
factory results. Berger et al. [25] presented a domain decomposition MFS for deformation analysis
of bimaterial anisotropic bodies and showed that the MFS could result in accurate solutions.
Tsai [26] used the MFS for solving three-dimensional elastostatic problems in transversely isotropic
media. He proposed a rescaling method for improving the accuracy of the results of problems with
natural boundary conditions. Recently, Hematiyan et al. [27] presented the MFS for anisotropic
thermoelasticy in 2D media and showed that the MFS results in accurate solutions.

Other variants of the MFS have also been used for anisotropic elasticity. Liu et al. [28]
employed the non-singular MFS for the deformation analysis of 2D anisotropic media with one
or two materials. In the non-singular MFS, a fictitious source (force) distributed over a circle is
used instead of a concentrated singular source. Recently, Liu et al. [29] proposed the localized
MFS (LMFS) for solving 2D anisotropic elastostatic problems. Some boundary as well as interior
collocation points should be considered in the LMFS. The LMFS can be more efficient than the
MFS for large-scale problems [30].

Base on the above literature review, it can be seen that the MFS and its variants have
been employed for solving anisotropic elastostatic problems; however, the parameters, which have
significant influence on the accuray of the MFS for solving these problems, have not been studied
yet. In this work, influences of three important parameters, i.e., the degree of anisotropy of the
problem, the ratio of the number of collocation points to the number of source points, and
the distance between main and pseudo boundarires, on the accuracy of the MFS results are
numerically investigated. Determining a suitable configuration of source points is a major issue in
the MFS. There are many studies on the location of source points and collocation points in the
MFS. Among them, one can refere to the works on Laplace and Helmholtz equations [1,31–35],
biharmonic equation [36,37], torsion problem [38], transient heat conduction [39], and isotropic
elasticity [40–42]. Yet, no research has been carried out on the configuration of source points for
anisotopic elasticity.

2 The MFS Formulation for Two-Dimensional Anisotropic Elasticity

Consider a plane stress/strain problem in the anisotropic domain �, whose boundary is
denoted by ∂�. The variation of the stress components σxx, σyy, and τxy (σ11, σ22, and σ12) in
the domain can be expressed by the equilibrium equations as follows [43]:

∂σxx

∂x
+ ∂τxy

∂y
= 0, in �, (1)
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∂τxy

∂x
+ ∂σyy

∂y
= 0, in �. (2)

Representing the displacement components in the x and y (x1 and x2) directions by u and v
(u1 and u2), respectively, the strain components can be expressed as follows [43]:

εxx = ∂u
∂x

, εyy = ∂v
∂y

, 2εxy = ∂u
∂y

+ ∂v
∂x

. (3)

The relationship between strain and stress components can be written as follows:⎡
⎢⎢⎢⎣

εxx

εyy

2εxy

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

a11 a12 a16

a21 a22 a26

a61 a62 a66

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

σxx

σyy

τxy

⎤
⎥⎥⎥⎦ , (4)

where aij are the elastic compliance coefficients of a monoclinic material. In 2D anisotropic
elastostatic problems, the material possesses a plane of material symmetry, and the out-of-plane
and in-plane deformations are decoupled. This work deals with monoclinic materials; however,
because of the wide applications of orthotropic materials, the relationship between conventional
elastic constants of orthotropic materials and the corresponding compliance coefficients are also
described. An orthotropic material has three mutually perpendicular planes of symmetry. For an
orthotropic material with material directions in x and y directions, we can write [43]:

a11 = S11, a12 = a21 = S12 = S21, a16 = a61 = 0,

a22 = S22, a26 = a62 = 0, a66 = S66. (5)

for plane stress problems, and

a11 = S11 −
S2

13

S33
, a12 = a21 = S12 − S13S23

S33
, a16 = a61 = 0,

a22 = S22 −
S2

23

S33
, a26 = a62 = 0, a66 = S66. (6)

for plane strain problems. The constants Sij in Eqs. (5) and (6) are expressed as follows:

S11 = 1
E1

, S22 = 1
E2

, S33 = 1
E3

, S66 = 1
μ12

,

S12 =−ν21/E2 =−ν12/E1, S13 =−ν31/E3 =−ν13/E1, S23 =−ν32/E3 =−ν23/E2. (7)

Ei represents the Young’s modulus in the xi direction. μij and νij are respectively the shear
modulus and the Poisson’s ratio in the xixj plane. If the principal material directions of the
orthotropic material make an angle with x and y directions, the elastic constants aij can be found
by a transformation. The transformation is described in Appendix A.
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In plane stress/strain problems, two boundary conditions are considered for a boundary point
that can be expressed as follows:

L1(u, v,σxx,σyy, τxy)= f1, on ∂�, (8)

L2(u, v,σxx,σyy, τxy)= f2, on ∂�. (9)

where f1 and f2 are given values for each boundary point. L1 and L2 represent linear combinations
of u, v, σxx, σyy, and τxy, which express displacement (essential), traction (natural), and mixed
type boundary conditions.

The MFS formulation of the problem starts with considering N sources (fictitious concen-
trated forces) on a pseudo boundary outside the problem domain. The displacement solution of
the problem is approximated by a linear combination of displacement fundamental solutions as
follows:

ui(x)=
N∑

k=1

[αk1u∗i1(x, Sk)+αk2u∗i2(x, Sk)] i = 1, 2. (10)

where αk1 and αk2 represent the components of the kth source (concentrated force), which should
be found, x, i.e., (x, y), represents a point in the domain, and the point Sk, i.e., (ξk,ηk), is the
location of the kth source point. u∗ij(x, x0) represents the displacement fundamental solution of

2D anisotropic elastostatic problem, which is described in the next section.

The components of the strain tensor can be found as follows:

εij(x)=
N∑

k=1

[αk1ε
∗
ij1(x, Sk)+αk2ε

∗
ij2(x, Sk)], (11)

where

ε∗ijm(x, Sk)=
1
2

[u∗im,j(x, Sk)+ u∗jm,i(x, Sk)]. (12)

The components of the stress tensor are computed as follows:

σij(x)=
N∑

k=1

[αk1σ
∗
ij1(x, Sk)+αk2σ

∗
ij2(x, Sk)], (13)

where⎡
⎢⎢⎢⎣

σ ∗
11k

σ ∗
22k

σ ∗
12k

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

a11 a12 a16

a21 a22 a26

a61 a62 a66

⎤
⎥⎥⎥⎦
−1 ⎡

⎢⎢⎢⎣
ε∗11k

ε∗22k

2ε∗12k

⎤
⎥⎥⎥⎦ . (14)

There are 2 N unknowns, i.e., αk1 and αk2 with k = 1 to N. We consider M collocation points
C1, C1, . . . , CM over the main boundary ∂� and we assume that M ≥ N. By satisfying Eqs. (8)
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and (9) at all collocation points on the boundary, the following system of linear equations are
obtained:

[R]2M×2N{a}2N×1 = {b}2M×1. (15)

If the number of collocation points is greater than the number of source points, i.e., M > N,
an overdetermined system of equations is generated, that can be solved by a linear least squares
algorithm. As suggested by Cheng et al. [44], the MFS with M = N and M > N are called the
standard MFS and the least squares MFS, respectively.

A point worth emphasizing here is that equations corresponding to the boundary conditions,
i.e., Eqs. (8) and (9), should be constructed in a dimensionless form, because in real problems,
displacement data and stress data on the boundary of the problem are of different order of mag-
nitude. For constructing dimensionless equations, one can divide displacement and stress equations
by u0 and σ0, respectively, where u0 and σ0 represent a characteristic value for displacement and
stress in the problem.

3 Fundamental Solutions of Two-Dimensional Anisotropic Elasticity

We represent the displacement fundamental solution with u∗ij(x, x0), where x0 with coordinates

(x0, y0) and x with coordinates (x, y) are source and field points, respectively. The displacement
fundamental solution of 2D anisotropic elasticity can be expressed as follows [45,46]:

u∗ij(x, x0)= 2Re[Pi1Aj1 ln(z1 − z01)+Pi2Aj2 ln(z2 − z02)], (16)

which is common in the BEM [47–49]. The variables z01, z02, z1, and z2 in Eq. (16) are computed
as follows:

z01 = x0 +μ1y0, z02 = x0 +μ2y0, (17)

z1 = x+μ1y, z2 = x+μ2y. (18)

where μ1 and μ2 are complex numbers, which can be found by finding the roots of the following
fourth order polynomial:

a11μ
4 − 2a16μ

3 + (2a12 + a66)μ
2 − 2a26μ+ a22 = 0. (19)

Two complex roots of Eq. (19) contain positive imaginary part and the other two roots have
negative imaginary part. The complex roots with positive imaginary part are denoted by μ1 and
μ2, which are used in Eqs. (17) and (18). Pik in Eq. (16) are computed as follows:[

P1k

P2k

]
=

⎡
⎣a11μ

2
k + a12 − a16μk

a12μk + a22/μk − a26

⎤
⎦ k = 1, 2. (20)
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The real and imaginary parts of Aji can be found by solving the following system of
equations:⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1

Im(μ1) Re(μ1) Im(μ2) Re(μ2)

Im(P11) Re(P11) Im(P12) Re(P12)

Im(P21) Re(P21) Im(P22) Re(P22)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Re(Ai1)

Im(Ai1)

Re(Ai2)

Im(Ai2)

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−δi2/4π

δi1/4π

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2. (21)

where δij represents the Kronecker delta. Re( ) and Im( ) represent the real and imaginary parts,
respectively. To compute the derivatives of u∗ij in Eq. (12), the following relation can be used:

u∗ij,k = 2Re
[

Pi1Aj1Tk1

(z1 − z01)
+ Pi2Aj2Tk2

(z2 − z02)

]
, (22)

where T11 = T12 = 1, T21 =μ1, and T22 =μ2.

4 Numerical Study

In this section, by presenting several numerical examples, the important parameters, which
have significant influence on the accuracy of the MFS results for 2D anisotropic elastostatic
problems, are investigated. These parameters are:

1-The degree of the anisotropy of materials

2-The ratio of the number of collocation points to the number of source points, i.e., M/N

3-The distance between main and pseudo boundaries, as denoted by δ.

Anisotropic materials show various degrees of anisotropy. The largeness of the ratios E1/E2
and E1/μ12 represents the degree of anisotropy of a material [50]. Degrees of the anisotropy
of some materials are given in Table 1. This table includes materials with extremely low and
extremely high degrees of anisotropy. The first material in Table 1 has a low degree of anisotropy,
while the last one, i.e., the unidirectional Carbon/epoxy composite material, has an extremely high
degree of anisotropy.

Table 1: Degrees of anisotropy of some materials

E1/E2 E1/μ12

Silicon carbide/ceramic [50] 1.09 2.75
Oseton (bone) [51] 1.88 1.96
E-glass/epoxy [50] 4.0 9.5
Pine (Wood) [52] 12.82 12.34
Carbon/epoxy [50] 14.2 21.3

To investigate the effect of the distance between main and pseudo boundaries, i.e., δ, on the
results, the number of source points and the magnitude of δ should be considered simultaneously.
For a fixed value of δ, by a larger number of source pionts, there will be a rise in the condition
number of the main matrix in the MFS. On the other hand, for a fixed number of source points,
increasing the value of δ has the same effect and increases the condition number. Therefore, a
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parameter which describes the distance between main and pseudo boundaries relative to the num-
ber of soure points should be considered in the next numerical studies. Hematiyan et al. [34,40]
defined the source point location parameter for this purpose. The source point location parameter
can be defined using Fig. 1. The boundary points nearest to the source points Si and Si+1 are
considered as the base points of these source points and are denoted by Bi and Bi+1, respectively.
The base points do not necessarily coincide with collocation points. The location parameter of
the source point Si is represented by K and is defined as follows:

K = δ

δ′
, (23)

where δ and δ′ are the distance from Si to Bi and Bi+1, respectively (Fig. 1). For a fixed number
of source points, narrowing the distance between the pseudo and main boundaries reduces the
value of the location parameter and for a fixed distance between the pseudo and main boundaries,
increasing the number of source points enlarges the value of the location parameter.

Figure 1: Configuration of source points on the pseudo boundary

Two types of anisotropic elastostatic problems can be analyzed by the MFS. In the first type,
the boundary condition is of Dirichlet type and is prescribed by a function which satisfies the
governing equation of the problem. In the second type, which is more practical, the boundary
conditions are of mixed type and are prescribed by functions which do not satisfy the governing
equations. As mentioned in reference [44], most examples studied in the previous works are of the
first type. In this work, we take into account both types of problems; however, the main focus is
maintained on the second type, which is more important.

4.1 A Circular Domain
A circular domain (disk) of unit radius centered at the origin of the coordinate system under

the plane stress conditions is considered. The geometry of the disk is suitable for the MFS because
it is simple and smooth. Simple boundary conditions of Dirichlet type are also considered for
the problem. It is assumed that the radial and circumferential displacements of the boundary
are ur = 1.0 and uθ = 0, respectively. The boundary conditions of the problem in the Cartesian
coordinate system can be expressed as follows:

u = x, v = y. (24)
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The disk is assumed to be made of the unidirectional S-glass/epoxy composite material.
The material is orthotropic and its elastic constants in its principal material directions are E1 =
45 GPa, E2 = 11 GPa, μ12 = 4.5 GPa, and ν12 = 0.29 [50]. It is assumed that the material direction
makes an angle of π/6 with the x-direction. The exact displacement solution of the problem is
the same as Eq. (24). The exact strain solution can be found using Eq. (3), which yields uniform
strains and stresses in the domain.

We use the standard MFS with M = N = 16 to solve this problem. The collocation points
are uniformly distributed on the circle. We examine four cases with different values for the
source point location parameter (K). The values selected for K are 0.9, 0.95, 0.97, and 0.99.
The corresponding values of δ in these four cases are 1.193, 2.085, 3.185, and 8.392, respectively.
The results for radial displacement and Cartesian components of stress in comparison with exact
solutions are shown in Figs. 2–5. The exact solution for radial displacement and stresses are
uniform over the boundary of the disk; however, the solutions obtained by the MFS have some
oscillations over the boundary in the cases with smaller values of K.

Figure 2: Radial displacement over the boundary of the disk

Figure 3: Normal stress in the x-direction over the boundary of the disk
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Figure 4: Normal stress in the y-direction over the boundary of the disk

Figure 5: Shearing stress over the boundary of the disk

It is observed that by increasing the value of K, the accuracy of the solutions is enhanced.
The MFS results for isotropic elastostatic problems [40] show that K = 0.85 yields sufficiently
accurate results; however, as it is seen in Fig. 5, the MFS results with K = 0.9 for the present
example, which has a moderate degree of anisotropy, are not sufficiently accurate. For better
clarification, we solve the problem with three materials with different degrees of anisotropy. The
elastic properties of the three materials are given in Table 2. E1 and ν12 are the same for the
three materials. Material 1 has a low degree of anisotropy (same as the first material in Table 1)
and Material 3 has a high degree of anisotropy (same as the last material in Table 1). Similar
to the previous case, it is assumed that the material direction makes an angle of π/6 with the
x-direction.
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Table 2: Three materials with E1 = 10 GPa and ν12 = 0.3, and different degrees of anisotropy

E1/E2 E1/μ12

Material 1 1.09 2.75
Material 2 4.0 9.5
Material 3 14.2 21.3

For each material, the problem is solved using the standard MFS (M = N = 16) with K = 0.95
and K = 0.98. The stress components at 160 test points on the boundary are obtained by the
MFS and the relative error of each stress component is computed using the following equation:

Er(σij)=

√√√√√ 1
160

160∑
k=1

[
(σMFS

ij )
k
− (σExact

ij )
k

σRef

]2

, (25)

where (σMFS
ij )k and (σExact

ij )k represent stress components at the kth test point obtained by the

MFS and the exact solution, respectively, and σRef = max(σxx,σyy, τxy). The errors of the MFS
results are reported in Table 3. As can be seen, the error significantly increases as the degree of
anisotropy is higher. It is also observed that as the value of the location parameter increases, the
error of the obtained solution is reduced.

Table 3: Error of the MFS results for the three materials with different degrees of anisotropy

K = 0.95 K = 0.98

Er(σxx) Er(σyy) Er(τxy) Er(σxx) Er(σyy) Er(τxy)

Material 1 1.20×10−5 1.15×10−5 9.86×10−6 8.40×10−8 7.36×10−8 6.52×10−8

Material 2 5.12×10−3 1.47×10−3 2.84×10−3 7.79×10−5 3.48×10−5 4.15×10−5

Material 3 5.98×10−3 2.43×10−3 3.50×10−3 8.22×10−5 3.36×10−5 4.83×10−5

4.2 A Rectangular Plate with a Hole
In the previous section, a disk with a simple boundary condition was considered. In this

section, a complicated geometry with more challenging boundary conditions is considered. As
shown in Fig. 6, a rectangular plate with a fixed hole is considered. The upper and right edges of
the rectangle are subjected to uniform compressive and tensile tractions, respectively. The material
principal directions make an angle of π/4 (45◦) with the global coordinates system. The outer
boundary is not smooth and high stress concentrations occur at two points on the circle. The three
materials listed in Table 2 are used and the problem is solved many times with different numbers
of source points and collocation points. Moreover, different values for the location parameter of
source points are examined. In each case, the collocation points are uniformly distributed on the
boundaries and the geometry of the pseudo boundaries is assumed similar to the main boundaries.
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Figure 6: Rectangular plate with a fixed hole

There is no exact solution for this problem. An accurate reference solution is obtained by the
finite element method (FEM) with a fine mesh using ANSYS software. Maximum absolute values
of stresses occur on the circle and the error of solution is defined in terms of these stresses as
follows:

Er = 1√
3

⎡
⎣(

(σxx)MFS
max − (σxx)FEM

max

(σxx)FEM
max

)2

+
(

(σyy)
MFS
max − (σyy)

FEM
max

(σyy)FEM
max

)2

+
(

(τxy)
MFS
max − (τxy)

FEM
max

(τxy)FEM
max

)2
⎤
⎦

1/2

.

(26)

Importantly, a large number of nodes and elements should be considered for finite element
(FE) analysis of this problem to obtain relatively accurate solutions. In Table 4, the FEM results
for critical stresses are listed. The results in Table 4 are associated with Material 3. As it is
observed, a large number of nodes are required to achieve solutions accurate to two decimal
places.

Table 4: The FEM results for the rectangular plate with Material 3 and with different number of
nodes

Number of nodes (σxx)FEM
max (σyy)

FEM
max (τxy)

FEM
max

27307 2.0786 2.8727 2.4730
107995 2.1224 2.8773 2.5208
427599 2.1393 2.9125 2.5189

In the first case, the problem with Material 1 is solved using the MFS. Since the degree of
the anisotropy of Material 1 is relatively small, by considering only 164 source points (100 and
64 source points for outer and inner boundaries, respectively), sufficiently accurate solutions can
be obtained. Moreover, we consider different values of the location parameter of source points,
i.e., K, and different ratios of the number of collocation points to the number of source points,
i.e., M/N. The errors of the results for this case with Material 1 are reported in Table 5. As
observed, the solutions with K = 0.95 is slightly more accurate than K = 0.9. Moreover, the results
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with M/N > 1 are better than the standard MFS with M/N = 1. However, it is observed that
increasing the ratio M/N greater than 2 has no significant effect on the accuracy of the results.
Therefore, the value of 2 can be a good suggestion for the ratio M/N.

Table 5: The error of the solution (Er) for different ratios of M/N with Material 1 and N = 164

M/N K = 0.9 K = 0.95

1 0.003620 0.002849
2 0.003036 0.0002779
3 0.003497 0.0002805
4 0.003653 0.0002856

In the second case, the problem with Material 2, which has a higher degree of anisotropy, is
solved. In this case, 100 + 128 = 228 source points, i.e., 100 source points for the outer boundary
and 128 source points for the inner boundary, are considered instead of 164. The corresponding
errors are listed in Table 6. As seen in this table, the solution obtained by considering M/N = 2
is far more accurate than M/N = 1. Similarly, increasing the ratio M/N more than 2 has no
significant effect on the accuracy of the solution. Remarkably, by increasing the value of K, i.e.,
increasing the distance between main and pseudo boundaries, the accuracy of the results is not
enhanced in this case.

Table 6: The error of the solution (Er) for different ratios of M/N with Material 2 and N = 228

M/N K = 0.9 K = 0.95

1 0.8682 0.01120
2 0.002727 0.005994
3 0.002731 0.006368
4 0.002720 0.006428

Solving the problem with Material 3 is far more difficult because the degree of anisotropy
of Material 3 is larger than the previous cases. In Tables 7–9, the results for the cases with 200
+ 256 = 456, 400 + 512 = 912, and 800 + 1024 = 1824 source points, for the problem with the three
materials are given. M/N = 2 is considered in all cases. Evidently, the accuracy of the results
for the case with Material 3 is considerably lower than the two materials with smaller degrees
of anisotropy. Moreover, increasing the distance between main and pseudo boundaries does not
necessarily enhance the accuracy of the results, which is in contrast with the previous problem
(disk) where by increasing the distance between the main and pseudo boundaries, the error of the
results was reduced.
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Table 7: The error of the solution (Er) for different materials, N = 456, M/N = 2

K = 0.9 K = 0.95 K = 0.97

Material 1 0.001214 0.0001916 0.0001641
Material 2 0.001809 0.001009 0.001597
Material 3 0.03615 0.02874 0.07752

Table 8: The error of the solution (Er) for different materials, N = 912, M/N = 2

K = 0.9 K = 0.95 K = 0.97

Material 1 0.001006 0.0001864 0.0001666
Material 2 0.001380 0.0008963 0.0009256
Material 3 0.1223 0.002202 0.005767

Table 9: The error of the solution (Er) for different materials, N = 1824, M/N = 2

K = 0.9 K = 0.95 K = 0.97

Material 1 0.0009517 0.0001799 0.0001666
Material 2 0.001261 0.0008971 0.0009115
Material 3 0.05698 0.001640 0.002011

For better clarification, the contours of the stress components in the rectangular plate
obtained by the FEM with 427599 nodes, and by the MFS with 912 source points and M/N = 2
are shown in Figs. 7–9. The variations of stress components on the internal circle are also shown
in Figs. 10–12. These figures demonstrate that the stress solutions obtained by the MFS are in
very good agreement with those obtained by the FEM. Moreover, the complicated distribution
of stresses in the domain and the stress concentrations at some locations on the circle are clearly
shown in these figures.
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Figure 7: Contours of normal stress in the x-direction (in MPa) in the case with Material 3, (a)
FEM with 427599 nodes, (b) MFS with N = 912 and M/N = 2

Figure 8: continued
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Figure 8: Contours of normal stress in the y-direction (in MPa) in the case with Material 3, (a)
FEM with 427599 nodes, (b) MFS with N = 912 and M/N = 2

Figure 9: Contours of shearing stress (in MPa) in the case with Material 3, (a) FEM with 427599
nodes, (b) MFS with N = 912 and M/N = 2
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Figure 10: Normal stress in the x-direction on the internal circle obtained by the FEM with
427599 nodes and by the MFS with N = 912, M/N = 2, and Material 3

Figure 11: Normal stress in the y-direction on the internal circle obtained by the FEM with
427599 nodes and by the MFS with N = 912, M/N = 2, and Material 3

Figure 12: Shearing stress on the internal circle obtained by the FEM with 427599 nodes and by
the MFS with N = 912, M/N = 2, and Material 3

5 Conclusions

The important parameters, which have significant influence on the accuracy of the MFS for
the analysis of two-dimensional anisotropic elastostatic problems, were numerically studied in this
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work. Although the findings reported in this research is not based on mathematical analysis, some
suggestions regarding the MFS for the elastostatic analysis of anisotropic bodies are offered that
can help solve practical problems. According to the numerical studies conducted in the work, the
following conclusions are drawn:

• Three materials with low, moderate, and high degrees of anisotropy were examined in simple
and complicated elastostatic problems. As observed, in the same conditions, the accuracy
of the results corresponding to the problem with highly anisotropic material was far lower
than the same problem with lower degree of anisotropy.

• Anisotropic elastostatic problems with simple geometry and simple boundary conditions can
be efficiently solved using the standard MFS with equal numbers of source and collocation
points, i.e., M/N = 1.

• For anisotropic elastostatic problems with complicated geometry and/or complicated bound-
ary conditions, more collocation points than source points render far more accurate results.
Through the examples presented in this work, it was observed that M/N = 2 could be a
suitable choice.

• In simple problems, raising the value of K, i.e., increasing the distance between main and
pseudo boundaries, enhances the accuracy of the results; however, it is not the case for
complicated problems. It should also be mentioned that in the cases where the value of K is
small, i.e., the distance between main and pseudo boundaries is small relative to the distance
between source points, some undesired oscillations of variables occur on the boundary. In
other words, in complicated anisotropic elastostatic problems, it may be necessary to find
a suitable distance between main and pseudo boundaries by a trial and error procedure or
by an optimization process. As the starting value, K = 0.95 is suggested for the location
parameter of source points in these cases.

Unlike the element-based methods, meshfree methods do not require any re-meshing pro-
cess [53]. This advantage makes the proposed boundary-type meshfree method particularly suitable
for some practical problems. In the follow-up works, shape optimization problems and inverse
problems for the identification of elastic constants [54] or reconstruction of boundary conditions
of anisotropic bodies can be considered. Recently, domain-type meshfree methods have been
employed for the analysis of contact problems [55–57]. The proposed method may also be used
for analysis of contact problems. Future research may focus on analyzing the mechanical behavior
of polycrystalline structures [58,59] using the MFS.
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Appendix A: Transformation of Elastic Compliance Coefficients

Assume that the first principal material direction makes an angle of θ with the x-direction as
shown in Fig. A1. Denoting the elastic compliance coefficients in the material coordinates system
and in the global Cartesian coordinates system by āij and aij, respectively, the transformation of
the constants can be expressed as follows:⎡
⎢⎢⎢⎣

a11 a12 a16

a21 a22 a26

a61 a62 a66

⎤
⎥⎥⎥⎦= [T ]T

⎡
⎢⎢⎢⎣

ā11 ā12 0

ā21 ā22 0

0 0 ā66

⎤
⎥⎥⎥⎦ [T ], (A1)

where

[T ] =

⎡
⎢⎢⎢⎣

cos2θ sin2θ 2 sin θ cos θ

sin2θ cos2θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2θ − sin2θ

⎤
⎥⎥⎥⎦ . (A2)

Figure A1: The angle between principal material directions and global Cartesian coordinates

http://dx.doi.org/10.1016/j.cma.2020.113434
http://dx.doi.org/10.1002/nme.6509

