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ABSTRACT

Cancer is one of the most critical diseases that has caused several deaths in today’s world. In most cases, doctors and
practitioners are only able to diagnose cancer in its later stages. In the later stages, planning cancer treatment and
increasing the patient’s survival rate becomes a very challenging task. Therefore, it becomes the need of the hour
to detect cancer in the early stages for appropriate treatment and surgery planning. Analysis and interpretation
of medical images such as MRI and CT scans help doctors and practitioners diagnose many diseases, including
cancer disease. However, manual interpretation of medical images is costly, time-consuming and biased. Nowadays,
deep learning, a subset of artificial intelligence, is gaining increasing attention from practitioners in automatically
analysing and interpreting medical images without their intervention. Deep learning methods have reported
extraordinary results in different fields due to their ability to automatically extract intrinsic features from images
without any dependence on manually extracted features. This study provides a comprehensive review of deep
learning methods in cancer detection and diagnosis, mainly focusing on breast cancer, brain cancer, skin cancer,
and prostate cancer. This study describes various deep learning models and steps for applying deep learning models
in detecting cancer. Recent developments in cancer detection based on deep learning methods have been critically
analysed and summarised to identify critical challenges in applying them for detecting cancer accurately in the
early stages. Based on the identified challenges, we provide a few promising future research directions for fellow
researchers in the field. The outcome of this study provides many clues for developing practical and accurate cancer
detection systems for its early diagnosis and treatment planning.
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1 Introduction

Cancer is a disease that affects all kinds of life of patients, including business life, family
life and social life. But, diagnosis and treatment of cancer is a long and challenging task in
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comparison to other diseases [1]. Cancer is caused due to the formation of bad neoplasms along
with normal division and reproduction of the cells in various organs and tissues [2].

Nowadays, cancer has been placed at the second position in diseases resulting in death. Cancer
has many forms like skin cancer, breast cancer, leukaemia, prostate cancer, brain cancer etc. In
2018, approximately 9.6 million people suffered and died from cancer [3]. Figs. 1 and 2 present
the top five most dangerous cancer spread in the US (men and women) and the number of deaths
in the year 2019 [4].

Figure 1: Top five most dangerous cancer types and deaths in men (in US) [4]

Figure 2: Top five most dangerous cancer types and deaths in women (in US) [4]

By 2030, it has been predicted that 13.1 million people will die due to cancer [5]. It has been
analyzed from the cause of deaths that one in every ten persons (including both male and female)
suffers from cancer disease. The primary cause of the increased number of deaths due to cancer
is its diagnosis in later stages, which is challenging to treat. It has been observed that most of
the patients suffering from cancer disease get well treated if diagnosed in the early stages [6].
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Therefore, early diagnosis of cancer disease can help proper treatment and improve long term
survival of the cancer patients [7].

Several medical imaging methods have been adopted for the early detection and diagnosis of
cancer disease. These images can be used to early detect, monitor the situation and follow up
during the treatment of the cancer patients [8]. Interpreting a large number of medical images
by doctors is a challenging and time-consuming task. Manual interpretation of medical images
can be biased and error-prone. To automate interpreting medical images for early detection of
cancer, the computer-aided diagnosis has been started since 1980. Computer-aided diagnosis helps
the doctor in detecting cancer disease in early stages by integrating medical images accurately and
efficiently [9].

Numerous methods have been developed in recent years concerning the computer-aided diag-
nosis of cancer disease [2]. Artificial intelligence (AI) based systems that can imitate human
intelligence are gaining increasing attention of doctors and practitioners for detecting cancer
disease. AI-based systems, particularly deep learning systems, are learning systems widely used to
solve real-life problems.

Deep learning systems help doctors and practitioners to detect cancer disease in early stages
from medical images. Such systems require training of the machine learning methods for detecting
similar patterns in new medical images. Deep learning systems can be divided into four categories
based upon their learning strategy, supervised learning, semi-supervised learning, unsupervised
learning and reinforced learning. The supervised learning method requires labelled data for train-
ing the machine learning algorithm. The trained model is further used to predict the label of
unknown samples. The unsupervised learning method needs data without labels. It creates an
implicit model based upon the training data to categorize unknown samples. The semi-supervised
learning method uses labelled and unlabeled data for training the algorithm. The reinforced
learning method learns from the environment through feedback. They improve their performance
with experience. Deep learning systems have been successfully applied in many domains such as
cybersecurity, industry production and diagnosing different diseases [10].

This paper contributes in the following ways:

• Describes the use of deep learning methods for detecting and diagnosing cancer disease.
• Explains and classifies the most popular deep learning methods for detecting cancer.
• Summarizes the recent developments in deep learning for detecting cancer disease.
• Identifies the challenges in applying deep learning for cancer detection.
• Provides many clues for the fellow researchers to conduct future research in this field.

The remaining part of this paper is organized as follows, Section 2 highlights various phases
being followed in detecting cancer using deep learning methods. Section 3 classifies the existing
deep learning architectures, followed by their details in Section 4. Section 5 provides a compre-
hensive review of deep learning methods for detecting cancer, particularly for breast cancer, brain
cancer, skin cancer and prostate cancer. Section 6 summarizes and discusses the key findings of
this paper and highlights critical challenges in using deep learning methods for quick and accurate
diagnosis of cancer disease. Finally, Section 7 concludes the paper at the end.

2 Cancer Detection Process

Recent advancements in medical and information technologies have increased the success rate
of disease diagnostic systems and hence medical treatment. Medical images such as MRI, CT
and ultrasound play a crucial role in detecting many diseases in their early stages. The medical



1274 CMES, 2022, vol.130, no.3

images are very significant in detecting cancer in its early stage and plan the treatment accordingly.
Detection of cancer from medical images using deep learning systems involve three phases, namely,
pre-processing, segmentation and post-processing for better analysis of images to detect cancer
disease [11]. Each phase in detecting cancer based on medical images involves applying different
methods before training the deep-learning algorithm. The details are provided in the following
subsections.

2.1 Pre-Processing Phase
Pre-processing is the first phase in the pipeline of detecting cancer based on medical images.

Raw medical images may contain some noise. The presence of noise may affect the accuracy of
analyzing the medical image for detecting cancer. Pre-processing phase removes the noise from raw
medical images and improves the quality of the image. Pre-processing phase enables low contrast
images between skin lesions, normal skin, irregular border, and other skin artifacts like skin lines,
hairs, and black frames.

Several methods have been proposed for removing the different types of noise like Gaussian
noise, Poisson noise, salt and pepper noise, and speckle noise. The most common noise removing
methods include adaptive median filter, adaptive wiener filter, Gaussian filter, mean filter, and
median filter.

The noise in the medical images is removed or adjusted during the pre-processing functions
like colour correction, contrast adjustment, hair removal, image smoothing, localization, nor-
malization, and vignetting effect removal. The appropriate combination of these pre-processing
functions can result in more accurate detection of cancer using medical images.

Pre-processing methods include automatic colour equalization, black frame removal tech-
niques, colour space transform, contrast enhancement, dull Razor, Gaussian filter, hair removal
technique, Karhunen-Loe’s transform [12], non-skin masking, and pseudo-random filter.

The pre-processing method helps to analyze the medical images for accurate detection of
cancer disease. For instance, for detecting brain cancer, MRI images are transformed to grayscale
images followed by contrast adjustment using smoothing function [13]. Sometimes, skull striping is
also helpful for extracting the brain tissues from the rest of the skull [14]. Lung cancer diagnosis
involves transforming the CT scans into grayscale images, normalizing the image, and reducing
the noise in images. The images may be converted into binary images for removing unwanted
portions.

2.2 Image Segmentation Phase
Image segmentation is an essential phase in the pipeline of analyzing medical images. It

involves dividing the medical image into different portions or regions of interest for extracting
necessary information. This step differentiates the background of the image and the region of
interest. Methods for segmenting the medical images can be divided into four categories described
below:

• Model-based segmentation
• Pixel-based segmentation
• Region-based segmentation
• Threshold-based segmentation

Different methods have been developed for each category. For example, threshold-based
segmentation methods include histogram-based threshold methods, local and global threshold
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methods, maximum entropy, and Ostu’s methods. Region-based methods include seeded region
growing method and Watershed segmentation method. Pixel-based segmentation methods apply
artificial neural networks, fuzzy c-means clustering, and Markov field method etc. Finally, model-
based segmentation includes the employment of a parametric deformable model.

Several methods have been developed in different categories of image segmentation. The most
well-known methods include active contours, adaptive thresholding, bootstrap learning [15], clus-
tering and statistical region growing [16], contextual hypergraph [17], cooperative neural network
segmentation, distributed and localized region identification, edge detection, fuzzy C-Means clus-
tering, gradient flow vector, histogram thresholding, principal component transform, probabilistic
modelling, region fused band and narrow band graph partition, sparse coding, and supervised
learning. Multiple segmentation methods can be integrated to design hybrid segmentation methods
to improve the accuracy of analysis results.

2.3 Post-Processing Phase
The post-processing phase in the pipeline of analyzing medical images for detecting cancer

disease consists of grabbing relevant features after applying pre-processing and image segmentation
steps. To accomplish the task of grabbing features, several methods have been proposed. The
most common methods include border expansion, island removal, opening and closing operations,
region merging, and smoothing. After applying the post-processing methods, the features are
extracted from the selected region of the image to further analyze for detecting the disease. The
common feature extraction methods include decision boundary features, Fourier power spectrum
(FPS), Gaussian derivative kernels [18], grey level co-occurrence matrix (GLCM), principal com-
ponent analysis (PCA), wavelet Packet Transform (WPT) [19]. Fig. 3 summarizes the phases in
cancer detection with their methods.

Figure 3: Summary of cancer detection phases and respective methods
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2.4 Classification Phase
The classification phase involves the application of deep learning methods for classifying

medical images into respective cancer categories based on the features extracted by the post-
processing phase as described in Sub-Section 2.3. Different types of deep learning methods have
been developed based on different principles. Broadly, deep learning methods can be divided into
four categories described in Section 3. The classification phase involves training and testing the
deep learning classifier for detecting cancer types based on the extracted features from images. The
first phase trains a deep learning classifier using training dataset images. After appropriate training
iterations, the trained deep learning model predicts the cancer type of unknown images based on
the extracted features. The most commonly used deep learning methods for cancer detection are
convolution neural network (CNN), long short term memory (LSTM), recurrent neural network
(RNN), and gated recurrent units (GRU).

3 Classification of Deep Learning Models

Correct acquisition of medical images and their interpretation plays a significant role in
accurately detecting and diagnosing cancer disease. There exist many image capturing devices with
high-resolution such as CT scan, MRI scan and X-ray scans. After their pre-processing phase,
the disease detection system involves extracting relevant features from these medical images and
training the models from the extracted features. The trained model is further used to detect the
disease from respective unknown medical images.

Due to considerable variation in medical images of different patients, the conventional
machine learning method cannot provide authentic and accurate results. In recent years, deep
learning methods have been successfully employed in different fields, specifically in analyzing
medical images. These methods are beneficial and efficient in analyzing medical images to detect
diseases, particularly cancer disease.

Deep learning methods are a subset of machine learning methods that allows approximating
the outcome using the given data set and train the model as per the result. Deep learning methods
involve neural networks with multiple layers of neurons like the input layer, multiple hidden layers,
and output layer [20]. Due to the presence of multiple layers, the deep learning model gets trained
more accurately. The deep learning models can be categorized based upon their learning strategies
into four classes, namely, supervised learning, semi-supervised learning, unsupervised learning and
reinforced learning models, presented in Fig. 4.

Figure 4: Classification of deep learning models

3.1 Supervised Deep Learning Models
This class of deep learning models require predefined labelled data for its training. During

the training phase, the deep learning model needs to train with all possible input combinations
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with the target class label. After training, the trained model is utilized to predict the label of
unknown samples. The most commonly used deep learning models in the supervised learning
category include CNN, LSTM, RNN, and GRU [21].

3.2 Un-Supervised Deep Learning Models
Supervised deep learning models do not require any labelled training data. These models ana-

lyze the intrinsic features of the data based on some relevant features to group similar data. These
models are generally used for clustering and feature reduction purposes. The most commonly used
unsupervised deep learning models include Auto Encoders (AE), Restricted Boltzmann Machines
(RBM).

3.3 Semi-Supervised Deep Learning Models
A semi-supervised deep learning model partly uses labelled data and unlabeled data for its

training. The most commonly used deep learning models in this category include RNN, LSTM,
GRU and Generative Adversarial Networks (GAN).

3.4 Reinforced Deep Learning Models
Reinforced deep learning models work on taking appropriate actions to increase the rewards in

a given environment. These models get trained for identification of actual behaviour by interacting
with the environment [22].

4 Deep Learning Models

Several variants of deep learning architecture have been proposed in recent years. The most
prominent deep learning models are described below.

4.1 Convolutional Neural Networks (CNN)
The convolutional neural network is a feed-forward neural network that is capable of pro-

cessing input without any iteration cycles as presented in Fig. 5. each layer in the CNN has a
different function.

Figure 5: CNN architecture

Convolutional layer can be mathematically represented by Eq. (1).

G(X)= gN(gN−1(. . . (g1(X)))) (1)
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Here, N gives hidden layer count, X represents input vector, and g represents a function to
the layer N. A CNN model consists of a convolutional layer having a function gN of multiple
convolutional kernels (h1 . . .hk) denoting a linear function in kth kernel as shown in Eq. (2).

hk(x, y)=
m∑

s=−m

n∑

t=−v

w∑

v=−d

Vk(s, t, v)X(x− s, y− t, z− v) (2)

Here, (x, y, z) defines the pixel position of input X, m gives height, n signifies width, and w
shows the depth of the filter. Vk presents the weight of kth kernel.

The sub-sampling layer of CNN is also called the pooling layer. This layer summarises
surrounding pixels and computes the outcome at a given position with summarised features. This
layer helps to reduce the features of the data. It also exhibits the invariance of translational
and rotational transformations. Several methods have been proposed for the pooling layer [23],
including max pooling, average pooling, etc.

Activation functions are used in activating the outcome of the layer based on a given input.
Many activation functions have been proposed in the literature. The most commonly used activa-
tion functions include sigmoid function [24], tanh function, rectified linear unit (ReLU) function
[25]. CNN models have been widely used for medical image analysis to detect the different diseases
in different organs of the body.

4.2 Fully Convolutional Networks (FCNs)
Fully Convolutional Networks (FCNs) is designed using locally connected layers, such as con-

volution, pooling and upsampling layers as presented in Fig. 6 [26]. There is no dense layer used
in this kind of architecture. It enables a reduction in the number of parameters and computation
time. This network can work regardless of the original image size, without requiring any fixed
number of units at any stage, given that all connections are local [27].

Figure 6: FCN architecture
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4.3 U-Net Fully Convolutional Neural Network
This neural network has been developed for segmenting biomedical images. This network

consists of two different parts known as in encoder and decoder. The encoder part extracts the
context of the image using a sequence of conventional and pooling layers. In contrast, the decoder
part is responsible for the symmetric expanding path using transport convolutional and precise
localization. This enables the network to take the input image of any size.

4.4 Generative Adversarial Networks (GANs)
A generative adversarial network was proposed by Goodfellow et al. [28] based on a two-

player min-max game. It consists of two players. The first player is the generator and the second
player is the discriminator. The generative network G transforms prior distribution pz of the
random noise z ∼ pz to real looking images G(z) ∼ pfake [29]. Discriminator network D classifies
the fake image generated by G using a real training data set distribution x ∼ preal.

The argument of G is optimized as per the feedback received from D network, intending
to make D network fool in the classification job. D generates better and more realistic fake
images, whereas G trains itself to generate the actual images. GANs can map the random to a
real distribution. It has been used in different domains, including detection, domain adaptation,
reconstruction, and segmentation.

4.5 Recurrent Neural Networks (RNNs)
A recurrent neural network is an effective neural network for processing sequential or time-

series based data [30]. This network computes a hidden vector sequence from the input values
and generates a corresponding output sequence. In this network, the next state is a function of
previous hidden States. This network is widely used for processing sequential data. RNNs learn
from training data similar to the traditional feed-forward NNs. But, they have an additional
memory element as presented in Fig. 7. The memory element considers the prior input that
may impact the current input and output of RNN [31]. In contrast, feed-forward NNs assume
independence between input and output. In contrast, the output of RNN depends upon current
input and previous information in sequence.

Figure 7: RNN architecture



1280 CMES, 2022, vol.130, no.3

RNNs can map different inputs to different outputs, unlike traditional feed-forward networks
that map one input to one output. Input and output of RNN can vary in their length. According
to the input and output length, different RNN types have been developed and used for different
use cases, such as sentiment analysis, music generation, and machine translation. RNN can be
one-to-one, one-to-many, many-to-one, and many-to-many types.

RNNs can use different types of activation functions like sigmoid, softmax, tanh and Relu
expressed in Eqs. (3)–(6), respectively.

f (x)= 1
1+ e−x (3)

f (x)= ex
∑

i = 1ne−x (4)

f (x)= e−x − e−x

e−x + e−x (5)

f (x)= max(0, x) (6)

4.6 Long Short-Term Memory (LSTM)
LSTM is a variant of the recurrent neural network [32]. LSTM addresses the problem of

long-term dependencies. The long-term dependency occurs if the previous state influencing the
current output is not in the recent past. This issue was not addressed by RNN accurately in
predicting the current state. In order to address the long-term dependency issue, LSTMs have been
designed with “cells” in the hidden layers of their architecture, consisting of three gates—an input
gate, an output gate, and a forget gate [33]. Information flow is controlled using these gates for
predicting the outcome of NN.

LSTM works in different steps. The first step decides the information be thrown from the
cell state. This is decided by forget gate or sigmoid layer based on input xt and cell state ht−1.
It generates number between 0 and 1 for each cell state ht−1. 1 indicates to keep the value, and
0 indicate to throw the value. The second step decides the information for storing in cell state. It
involves two parts: the input gate or sigmoid layer for updated values and the tanh layer, creating
a new vector of values that can be added to the state. These two vectors are combined to update
the state in the next step. Accordingly, old cell state ht−1 is updated to ht considering forgettable
information. The outcome of LSTM is based on filtered cell state, after passing through sigmoid
layer, tanh layer, and multiplication with sigmoid layer as depicted in Fig. 8.

Figure 8: LSTM architecture
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4.7 Restricted Boltzmann Machine (RBM)
RBM has been designed as a two-layer neural network [34,35]. It has generating capability.

It can learn the probability distribution of input data. It has been widely used for classification,
regression, feature reduction, collaborative filtering and modelling.

RBM is a particular case of the Boltzmann machine with restrictions on the connection
between visible and hidden nodes as depicted in Fig. 9. It enables easy implementation of RBM
relative to the Boltzmann machine. The two layers, visible and hidden layers, are connected
by a fully bipartite graph. That implies each node of the visible layer is connected with each
node of the hidden layer. But, there is no connection between nodes of the same layer. This
restriction of no interconnection of nodes in the same layer enables an efficient training method
in contrast to the Boltzmann machine. RBM is a Stochastic NN, where each neuron exhibits
random behaviour upon activation. It differentiates RBM from autoencoder. It also consists layer
of bias units for hidden and visible bias. The hidden bias of RBM produces activation on the
forward pass, whereas visible bias enables RBM to reconstruct the input during backward pass.
The reconstructed input is found different from the actual input as there is no connection between
visible nodes; there is no way of transferring information among them.

Figure 9: RBM architecture

4.8 Autoencoder (AE)
AE is unsupervised learning based deep neural network. This network learns input data to

low dimensional feature space, as presented in Fig. 10.

The network consists of the input layer, hidden layer and output layer. The training process
of AE consists of two phases, namely, encoding and decoding. In the first phase, the input is
encoded as represented by Eq. (7).

J = σ(YI ,J +BI ,J) (7)

Here, σ represents an activation function. This representation J is decoded using a new weight
matrix, as shown in Eq. (8).

Î = σ̂ (YJ,Î +BJ,Î) (8)
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Here, σ̂ represents an activation function. YJ,Î can be considered as the transpose of YI ,J or

a new learnable matrix. This way, the autoencoder gets trained by minimizing the error. AE has
many variants described in the following subsections.

Figure 10: AE architecture

4.8.1 Stacked Autoencoders
The basic architecture of stacked AE consists of stacking of AEs in their hidden layers. The

hidden layers are trained using an unsupervised learning strategy. It is followed by the fine-tuning
face using a supervised learning strategy. Stacked AE consists of three phases. The first atomic
order gets trained based on input training data to create a feature vector in the first phase. In
the second phase, that generated feature vector is passed to the next layer. This process is iterated
to the last hidden layer. In the third phase, the back-propagation method is adopted to minimize
the cost function after training the hidden layers. Accordingly, weights are updated to get an
acceptable trained model.

4.8.2 Sparse Autoencoders (SAE)
SAE is a variant of autoencoder with sparsity involved in the hidden layers. In this case, the

number of neurons in hidden layers is greater than that of the input layer. This network is trained
using a greedy strategy when it is connected to the encoding network only. During the training
process, the first hidden layer is trained as a stacked autoencoder separately. The output of this
layer is fed to the next layer for training. In this network, features are captured using low level
stacked autoencoder and later extracted features are passed to the higher levels of autoencoder
for extracting deep features. In this way, sparse stacked autoencoder can extract 3D pictures from
the raw training data.

4.8.3 Convolutional Autoencoders (CAE)
CAE involves learning the image features based on an end to end unsupervised learning

strategy. This network is considered superior to the stacked autoencoder due to a relationship
between image pixels. In this case, features are extracted after filters get trained. The extracted
features are combined to form the input.

In the convolutional autoencoder, there is the same number of arguments for creating an
activation map. This makes it suitable for medicinal images. By replacing the fully connected
layer of a simple autoencoder with a convolutional layer, it becomes a convolutional autoencoder.
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Except for decoding network, input and output layers have the same size, but it changes in the
convolutional network.

4.9 Deep Belief Networks (DBN)
Deep belief network is a stacked restricted Boltzmann machine. It is a generative model as

presented in Fig. 11.

Figure 11: DBN architecture

The architecture of the deep belief network consists of two layers of restricted Boltzmann
machine called visible layer or input layer and hidden layer. In this case, a restricted Boltzmann
machine is optimized based on contractive diversion theorem by combining gradient Descent and
Gibbs sampling using a greedy learning strategy.

4.10 Residual Network (ResNet)
He et al. [36] introduced a specific type of NN for solving complex problems. Generally,

in tractional NN approaches, more layers are added to improve the accuracy of the resulting
solutions. The main idea behind adding more layers is that these layers can learn more complex
features of the problem and results in accurate solutions. But, it has been proved that adding more
layers on top of NN results in an increased error % in top layers. This indicates that adding more
layers on top of a network causes NNs’ performance degradation in training and test datasets.
The performance degradation can be linked to the optimization function, initialization of the
network, and, more importantly, the vanishing gradient problem. This problem of training very
deep networks has been alleviated with the introduction of ResNet or residual networks. Resnets
consists of Residual Blocks as depicted in Fig. 12.
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Figure 12: ResNet learning blocks

It can be seen from Fig. 12 that there exists a direct connection that enables skipping of
some layers in between. Such connection is known as ‘skip connection’ and is the central concept
of residual blocks. The output of the layer is different due to this skip connection. Using skip
connection, residual block solves the problem of vanishing gradient in deep NN. It allows this
alternate direct path for the gradient to flow through. Skip connection also helps the NN model
learn the identity functions that ensure the higher layer performance will be better or the same
as that of the lower layer. ResNet resulted in a considerable enhancement in the performance of
NN with many layers in comparison to traditional NNs.

4.11 Xception
Chollet at Google Inc. introduced an extreme version of the Inception network called Xcep-

tion [37]. Xception is a CNN architecture based entirely on depthwise separable convolution
layers. The developer made a hypothesis that mapping of cross-channel correlations and spatial
correlations in the feature maps of CNNs can be entirely decoupled. Accordingly, he proposed
extreme Inception called Xception.

The proposed Xception architecture consists of 36 convolutional layers for extracting features,
followed by a logistic regression layer. The 36 convolutional layers are structured into 14 modules,
all of which have linear residual connections around them, except for the first and last modules.
The Xception architecture is proposed as a linear stack of depthwise separable convolution layers
with residual connections.

4.12 VGG Net
Simonyan et al. [38] proposed a CNN model called VGG Net. VGG Net resulted in an

accuracy of 92.7% in the ImageNet dataset consisting of over 14 million images belonging to 1000
classes.

VGG Net architecture replaces large kernel-sized filters with 11 and 5 in the first and second
layers. It reported a considerable improvement over AlexNet architecture, with multiple 3 × 3
kernel-sized filters one after another. It takes the input to CNN is a fixed-size 224 × 224 RGB
image. The preprocessing step involves subtracting the mean RGB values computed on the training
dataset for each pixel. Preprocessing step is followed by running of the image through a stack
of CNN layers having filters of 3 × 3. Its architecture also consists of 1 × 1 convolution filters
that ensure the linear transformation of the input channels, followed by non-linear ones. The
convolutional strides are assumed to be 1 pixel. The spatial padding of convolutional layer input
is designed so that the spatial resolution is maintained after convolution. The padding process is
followed by spatial pooling using five max-pooling layers over a 2×2-pixel window, with stride 2.
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VGG Net is the most popular deep learning architecture used for benchmarking on any
particular task. It has been made open source and can be used out of the box for various
applications.

The deep learning architectures mentioned above are summarized in Fig. 13.

Figure 13: Deep learning architectures

5 Deep Learning Methods in Cancer Detection

Deep learning is a subset of machine learning algorithms that are highly capable of ana-
lyzing digital images. In the recent past, deep learning methods have reported extraordinary
accurate results compared to conventional machine learning algorithms. Deep learning models
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have minimized the use of manually extracted features and image processing methods by using
multiple layered architectures [39]. The models have significant characteristics of extracting deeper-
level images by transforming them into two consecutive layers. Deep learning models enable an
analysis of different shapes, patterns, density functions and colours of the images using different
feature maps. Deep learning models have been successfully employed in several natural language
processing, image processing, and time series analysis [15]. Besides, deep learning has also become
the most popular method for analyzing medical images to detect different diseases. The researchers
have successfully applied deep learning models for detecting the different kinds of cancers based
upon medical images such as CT scans, MRI scans and ultrasound scans.

This section provides a comprehensive review of state of the art in deep learning methods
used for detecting cancer disease. We focus on four kinds of cancer: breast, brain, skin, and
prostate, using deep learning methods.

5.1 Breast Cancer
Many researchers have applied deep learning methods for detecting and diagnosing breast

cancer in recent years. For example, Albayrak et al. [40] proposed a deep learning-based approach
that extracts features from the histopathology images for detecting breast cancer. The extracted
features are supplied to support vector machine for its training and classification purpose to detect
best cancer images. Spanhol et al. [41] used AlexNet to construct a CNN for classification of
normal and abnormal metosis using breast best histopathological images. The researchers used
different deep learning models to extract intrinsic features from the images and classify the images.

Similarly, Chen et al. [42] proposed the detection of mitosis using breast histology images.
They proposed to extract mitosis patient features from images using a pre-trained fully CNN.
It is followed by the application of CaffeNet model for the classification of mitosis samples.
Further, three networks having a fully connected layer with different settings have been employed
to generate multiple probability scores. The authors proposed to take an average of multiple scores
to obtain the final output.

Albarqouni et al. [43] also trained deep CNN model for expert crowd annotations concerning
biomedical context. The author proposed a multi-scale CNN architecture that combines crowd
and annotations in a particular way. So that, for each softmax layer, there is an aggression layer
for aggregating the predicted results from multiple candidates. The authors of [44] suggested the
use of a stacked sparse autoencoder based approach for classifying nuclei using histopathological
images of the breast. They suggested optimizing the model using a greedy approach that considers
one hidden layer at a time for training. The output of the previously hidden layer is supplied to
the next layer as an input. They demonstrated the validity of their proposed approach using a
mammographic image dataset.

Wichakam et al. [45] proposed a hybrid approach by integrating the support vector machine
and the CNN model to detect mass on digital mammograms. They suggested using Mammogram
patches to train the CNN model for extracting high-level features from the last fully connected
layer. The extracted features are supplied to support vector machines for training and classification
purposes.

Some researchers focused on transfer learning methods to address the issue of insufficient
training data. Wichakam et al. [45] proposed the use of a pre-trained CNN model for detecting
mass in the given mammogram. However, in the case of limited training data, there can be an
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over-fitting problem. To avoid the over-fitting problem, Swiderski et al. [46] used the statistical
self-similarity method and non-negative matrix factorization to increase the training data.

Ertosun et al. [47] presented an approach to detect the presence of a mass in a mammogram
followed by the location of the mass in the images. It requires learning of the features from
mammogram images in multiple scales. So, Kallenberg et al. [48] suggested a model on tag con-
volutional autoencoder for learning features from mammograms. They validated the robustness of
the model by introducing sparsity regularization in their model. Similarly, Dhungel et al. [49] used
a structured support vector machine for combining many functions, including a mixture model
of deep belief networks before the location method for segmenting the mass in mammograms.
They also suggested a hybrid model of deep learning model and random forest classifier for
detecting mass in mammograms [50]. Kim et al. [51] developed a 3D multi-view approach that
learns bilateral features using digital breast tomosynthesis. Similarly, CNN is also applied by many
researchers using different breast cancer datasets in [52–54].

The review of deep learning methods for detecting breast cancer is summarized in Table 1.

Table 1: Summary of deep learning based breast cancer detection methods (in chronological
order)

Study DL model Target disease Image type Dataset Results

Xing et al. [52] CNN Nucleus
segmentation

Histopathology - Precision =
0.71,
Recall = 0.88,
F-Measure =
0.78

Ertosun et al.
[47]

CNN Mass
segmentation

Mammographic DDSM Accuracy =
0.85

Dhungel et al.
[49]

DBN Mass
segmentation

Mammographic DDSM+
INbreast

Dice index =
0.88

Dhungel et al.
[50]

Hybrid
(DBN+CNN)

Mass detection Mammographic DDSM+
INbreast

TPR = 0.75

Xu et al. [44] SSAE Nuclei
classification

Histopathology Synthetic Accuracy =
0.76

Wichakam
et al. [53]

CNN Mass detection Mammographic INbreast Accuracy =
0.98

Chen et al. [42] Hybrid
(FCN+CNN)

Mitosis
detection

Histopathology MITOSATYPIA-
12,
MITOSATYPIA-
14

Rank = 1

Albarqouni
et al. [43]

CNN Mitosis
detection

Histopathology MITOSATYPIA-
13

AUC = 0.76

Albayrak et al.
[40]

CNN Mitosis
detection

Histopathology MITOSATYPIA-
14

Accuracy =
0.96

Kim et al. [51] CNN Latent bilateral
feature
representation
learning

Tomosynthesis Synthetic AUC = 0.847

(Continued)
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Table 1 (continued).

Study DL model Target disease Image type Dataset Results

Kallenberg
et al. [48]

SSAE Breast density
segmentation &
risk scoring

Mammographic Synthetic AUC = 0.59

Spanhol et al.
[41]

CNN Breast cancer
classification

Histopathology BreaKHis Accuracy =
0.89

Suzuki et al.
[54]

CNN Mass detection Mammographic DDSM DR = 0.899

Swiderski et al.
[46]

CNN Lesion
recognition

Mammographic DDSM Accuracy =
0.858

5.2 Brain Cancer
Brain cancer is one of the most challenging tasks in detecting cancer. It is an uncontrolled

development, and that can develop in any portion of the brain. The most challenging task in
detecting brain cancer is to separate the affected portion of the brain from the healthy part.
Several research efforts have been made in detecting brain cancer.

Guo et al. [55] proposed two algorithms based on two dimensional CNN and three dimen-
sional CNN. The proposed algorithms work on two-dimensional slice brain images and three-
dimensional brain images extracting prominent features. The integration of these two algorithms
reported better performance than kaze feature and scale-invariant features Swift (SIFT).

Similarly, Pereira et al. [56] suggested an image segmentation approach using CNN that seg-
ments MRI images automatically. In their research, the authors analyzed intensity normalization
as well as other functions for detecting brain tumors.

Zhao et al. [57] advocated a hybrid approach using a conditional random field and fully
connected convolutional neural network for segmenting the brain cancer images. In the first phase,
the authors proposed to train a conditional random field and fully connected convolutional neural
network using image patches. Finally, they fine-tuned their system using image slices directly.

Kamnitsas et al. [58] suggested joining adjacent image patches into one pass based on a dense
training method of the CNN model. They reduced false positives based on three dimensional
fully connected random field. Similarly, researchers also used CNN for detecting brain cancer in
[59,60].

The review of deep learning methods for detecting brain cancer is summarized in Table 2.

Table 2: Summary of deep learning based brain cancer detection methods (in chronological order)

Study DL model Target disease Image type Dataset Results

Zhao et al.
[57]

CNN Brain tumor
Segmentation,
Cancer
detection

MRI BraTS Accuracy = 0.77

(Continued)
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Table 2 (continued).

Study DL model Target disease Image type Dataset Results

Liu et al.
[59]

CNN Feature
learning of
brain tumor

MRI Synthetic Accuracy = 0.95

Pereira
et al. [56]

CNN Brain tumor
segmentation

MRI BraTS Sensitivity = 0.86

Kamnitsas
et al. [58]

CNN Brain tumor
segmentation

MRI BraTS Precision = 0.68

Ahmed
et al. [60]

CNN Classification
of brain
tumor

MRI Synthetic Accuracy = 0.81

5.3 Lung Cancer
Deep learning methods have been successfully applied for detecting lung cancer and the

survival time of the patients. For example, Zhu et al. [61] proposed a deep convolutional neural
network for predicting the survival time of lung cancer patients using their pathological images.
Similarly, Paul et al. [62] use a pre-trained CNN model to detect lung cancer based on CT scan
images. Han et al. [63] suggested a hybrid approach of CNN and DBN using an end-to-end
learning strategy for protecting lung cancer from the images. The authors use Tut medicinal CT
Scan images for pulmonary load classification.

On similar lines, Hussein et al. [64] employed the CNN model on 3D CT Scan images using
an end to end at learning strategy. They suggested extracting two-dimensional patches from three
dimensional CT Scan images rather than creating a map of two-dimensional model.

The review of deep learning methods for detecting lung cancer can be summarized in Table 3.

Table 3: Summary of deep learning based lung cancer detection methods (in chronological order)

Study DL model Target disease Image type Dataset Results

Hua et al.
[65]

DBN &
CNN

Nodule
classification

CT scan
slices

LIDC-IDRI Sensitivity = 0.73,
Specificity = 0.82

Setio et al.
[66]

CNN Pulmonary
nodules
detection

Volume CT
scan

LIDC-
IDRI,
ANODE09,
DLCST

Sensitivity = 0.90

Paul et al.
[62]

CNN Survival
prediction

Volume CT
scan

Synthetic Accuracy = 0.825

Zhu et al.
[61]

CNN Survival
analysis

HistopathologySynthetic Concordance
index = 0.629

(Continued)
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Table 3 (continued).

Study DL model Target disease Image type Dataset Results

Tajbakhsh
et al. [67]

MTANN
& CNN

Lung nodule
detection

CT scan
slices

Synthetic AUC = 0.8806

Kim et al.
[68]

SSAE Pulmonary
nodule
classification

CT scan
slices

Synthetic Accuracy = 0.955

Dou et al.
[69]

CNN Pulmonary
nodules
detection

Volume CT
scan

LIDC-IDRI a Sensitivity =
0.677

Hirayama
et al. [70]

CNN Extraction of
ground glass
opacity
(GGO)
candidate
region

CT scan
slices

LIDC TPR = 0.93

Wang et al.
[71]

CNN Lung nodule
classification

CT scan
slices

JSRT Sensitivity = 0.69,
Specificity = 0.96

Hussein
et al. [64]

CNN Nodule char-
acterization

Volume CT
scan

LIDC-IDRI Accuracy = 0.92

Shen et al.
[72]

CNN Lung nodule
malignancy
suspiciousness
classification

Volume CT
scan

LIDC-IDRI Accuracy = 0.87

5.4 Skin Cancer
Skin cancer or melanoma is one of the most challenging jobs in detecting cancer. Several

methods have been proposed for the accurate detection of skin cancer. For instance, Pomponiu
et al. [73] proposed a pre-trained CNN and AlexNet model for extracting features from skin
images. They used a k-nearest neighbour classifier for classifying the lesion. The proposed model
reported an accuracy of 93.62% based on 399 skin images.

Esteva et al. [74] also used a pre-trained CNN model using 129,450 images. They used a
mixture of skin lesion images and dermatoscopic images. Their research work performed two sets
of classification experiments, namely benign nevi vs. malignant melanoma and benign seborrheic
keratosis vs. keratinocytes carcinomas. They used transfer learning for extracting features and
classification of diseases.

Han et al. [63] conducted a set of experiments for the classification of twelve kinds of skin
diseases based upon 19,398 images using the ResNet model.

Masood et al. [75] suggested a self-advised semi-supervised model detecting melanoma based
on two self-advised support vector machines and a deep belief network. They conducted their
experiments using three different datasets combined with two kernels, namely, polynomial kernel
and radial basis function kernel. They fine-tuned the model using the exponential loss function to
maximize the separation between label data.
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In another approach, researchers [76] integrated manually extracted features and deep learning
features for training the SVM classifier models to predict the probability score of samples. The
outcome is computed based upon the highest score of the samples.

Sabbaghi et al. [77] integrated a deep neural network to classify medical images and improved
the accuracy of the bag of features.

Demyanov et al. [78] applied stochastic gradient descent for training the CNN model. The
trained model was used for detecting regular globules and network patterns. Residual blocks are
also used for replacing convolutional layers of the fully connected convolutional neural network
[79]. The resultant network is called a fully convolutional residual network (FCRN) and is applied
in the classification of unknown samples. Similarly, CNN model was also used for detecting
melanoma using pre-processed medical images in [80,81].

Some researchers used ABCDE method for detecting cancer using medical images [79,82].
They used different pre-processing methods like histogram analysis, segmentation techniques and
contour tracer.

Some researchers applied clustering techniques in combination with classification techniques
to analyze skin cancer [83,84]. They used fuzzy C-mean clustering, K-means clustering in
combination with K-nearest neighbour classifier and support vector machine.

He et al. [85] trained a CNN model consisting of eight layers using the back-propagation
method based upon 900 images. The trained CNN model achieved 91.92% accuracy on the
training data set and 89.5% accuracy on the test dataset.

Pham et al. [86] used data augmentation methods for improving the accuracy of the CNN
model. In their work, they attempted to address the issue of the limited availability of training
data. By using data augmentation, the authors reported an accuracy of 89.2% based on 600
medical images. They also highlighted the impact of using data augmentation methods on the
performance of the CNN model in their paper.

Zhang et al. [87] conducted a set of experiments for detecting four types of cutaneous diseases
using deep learning techniques. They summarized classification and diagnosis features in the form
of a hierarchical structure. They reported an accuracy of 87.25% for detecting the diseases with
a probability error of 2.24%.

Vesal et al. [88] developed a convolutional neural network called SkinNet. SkinNet is used for
segmenting and detecting skin cancer diseases. The proposed system is a modified version of U-
net CNN model. The authors reported the values of 85.1%, 93% and 76.67% for dice coefficient,
sensitivity and Jaccard index, respectively. The authors also suggested a multi-task conventional
neural network in combination with segmentation and joint detection framework in [89]. The
proposed system is called the faster region-based CNN model. They used region proposals and
bounding boxes for localizing the lesion. Bounding blocks were defined by using the softmax
function.

Horie et al. [90] developed a CNN model to detect oesophagal cancer, adenocarcinoma, and
SCC (Squamous cell carcinoma). They trained their proposed model using 8,428 medical images
of 384 patients in Japan. The trained model was tested based upon 1,118 images collected from
47 patients. They reported accuracy and sensitivity of 98% both.

Gomez-Martin et al. [91] analyzed dermoscopic, clinical, and confocal parameters to detect
flat leg lesions pink shaded in elders. An accuracy of 49.1%, specificity of 73.4% and sensitivity
of 68.7% have been reported using the clinical diagnosis process. Whereas 59.6%, 85% and 67.6%
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accuracy, sensitivity and specificity respectively is reported using dermoscopy. Confocal microscopy
resulted in 85.1%, 97.5% and 88.2% accuracy, sensitivity and specificity, respectively.

The review of deep learning methods for detecting skin cancer is summarized in Table 4.

Table 4: Summary of deep learning based skin cancer detection methods (in chronological order)

Study DL model Target disease Image type Dataset Results

Masood
et al. [75]

DBN Skin lesion
classification

Dermoscopy Synthetic Accuracy = 0.89

Sabbaghi
et al. [77]

SSAE Melanomas
classification

Dermoscopy Synthetic Accuracy = 0.95

Pomponiu
et al. [73]

CNN Skin mole
lesion
classification

Dermoscopy DermIS,
DermQuest

Accuracy = 0.96

Sabouri
et al. [81]

CNN Lesion
border
detection

Clinical
photography

DermIS,
DermQuest

Accuracy = 0.867

Demyanov
et al. [78]

CNN Dermoscopy
patterns
classification

Dermoscopy ISIC Accuracy = 0.88

Majtner
et al. [76]

CNN Skin lesion
classification

Dermoscopy ISIC Accuracy = 0.826

Yu et al.
[79]

Hybrid
(FCN+
CNN)

Melanoma
recognition

Dermoscopy ISIC Accuracy = 0.855

Nasr-
Esfahani
et al. [80]

CNN Melanoma
detection

Clinical
photography

MED-NODE Accuracy = 0.81

Esteva et al.
[74]

CNN Dermotologist-
level skin
cancer
classification

Dermoscopy Open-access
online dataset,
Unpublished
clinical dataset

AUC = 0.96

Mahbod
et al. [92]

CNN Skin lesion
classification

Dermoscopy ISIC AUC = 0.975

5.5 Prostate Cancer
Prostate cancer is highly diagnosable in males. It is considered as the third-highest cause

of death in males [55]. It requires successful segmentation of the medical images for its timely
diagnosis and radiotherapy. Guo et al. [55] suggested a combined model of deep learning and
sparse patch matching for successful segmentation of prostate medical images. They suggested the
use of the sparse stacked autoencoder method for extracting the features from MRI images.

Similarly, Yan et al. [93] also proposed a prostate cancer detection method using stacked
autoencoder as a classifier. They suggested using a sparse text autoencoder to improve the
extracted features in the supervised fine-tuning method.
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Shen et al. [72] developed a multivariate convolutional neural network raising the issue of
variable nodule size. This network is capable of generating multi-scale features. For this purpose,
this network replaces the max-pooling layer with a multi-crop pooling layer in the CNN model.
The authors suggested using the randomized leaky rectified linear unit for doing non-linear
transformation in their research.

Yu et al. [79] developed a volumetric convolutional neural network segmenting three dimen-
sional MRI images of prostate patients to detect cancer. The authors suggested an extension of
their research by using the residual block that enables the volume to volume prediction.

Ma et al. [94] proposed an approach based on CNN for using the region of interest and
detecting prostate cancer based on image patches. They computed the final results based on a
multi-atlas label function.

The review of deep learning methods for detecting prostate cancer is summarized in Table 5.

Table 5: Summary of deep learning based prostate cancer detection methods (in chronological
order)

Study DL model Target disease Image type Dataset Results

Guo et al.
[55]

SSAE Deformable
prostate
segmentation

MRI Synthetic Precision = 0.87

Zhao et al.
[57]

CNN Prostate
segmentation

MRI BraTS Accuracy = 0.77

Milletari
et al. [95]

CNN Prostate
segmentation

3D MRI PROMISE12 Dice loss = 0.869

Yu et al.
[79]

FCN Prostate
segmentation

3D MRI PROMISE12 Accuracy = 0.855

Yan et al.
[93]

SSAE Prostate
recognition

MRI PROMISE12 DSC = 0.89,
HD = 3.8

Kallen et al.
[96]

CNN Gleason
grading

Histopathology Synthetic Accuracy = 0.89

Gummeson
et al. [97]

CNN Gleason
grading

Histopathology Synthetic Error rate = 7.3%

Kwak et al.
[98]

CNN Lumen-based
prostate cancer
detection

Histopathology Synthetic AUC = 0.95

Ma et al.
[94]

CNN Prostate
segmentation

CT scan slices Synthetic Dice similarity
coefficient = 86.80%

(Continued)
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Table 5 (continued).

Study DL model Target disease Image type Dataset Results

Tian et al.
[99]

FCN Prostate
segmentation

MRI Synthetic Dice similarity
coefficient = 85.3%

Cheng et al.
[100]

HNN Prostate
segmentation

MRI Synthetic Dice similarity
coefficient = 88.70%

5.6 Other Types of Cancer
Many doctors and practitioners also applied deep learning methods for detecting cancer of

different forms like bladder cancer, cervical cancer, etc. For instance, Song et al. [101] suggested
the use of multi-scale conventional neural networks in association with the partitioning method
for segmenting by cervical cytoplasm. Their proposed system helps to perform segmentation and
graph partitioning to improve the segmentation results. Similarly, Xu et al. [102] also used deep
learning-based CNN model for diagnosing cervical dysplasia diagnosis. They fine-tuned their CNN
model using cervigram dataset. They proposed joining the extracted features of images with
multi-model clinical features to train the classifier. The trained classifier is further used to detect
unknown samples of cancer.

Many researchers used deep learning methods to detect bladder cancer. For instance, deep
learning was used the CNN model for pleural segmentation based on CT urographical images
in [103]. In this research, the trained CNN model was used for computing probability map of
patterns around the bladder in CT urographical images.

Liver cancer is also considered the primary form of cancer. Deep learning methods can help
to diagnose liver cancer using laparoscopic videos. For example, Gibson et al. [104] developed an
automatic segmentation system for laparoscopic videos to diagnose liver cancer. Similarly, Li et al.
[105] used the CNN model for the automatic segmentation process to detect liver tumors using
CT scan.

The review of deep learning methods for detecting cancer is summarized in Table 6.

Table 6: Summary of deep learning based other types of cancer detection methods (in chronolog-
ical order)

Study DL model Target disease Image type Dataset Results

Song et al.
[101]

CNN Cervical
cytoplasm and
nuclei
segmentation

Histogram
pathology

Synthetic Correct split = 90.2%

(Continued)
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Table 6 (continued).

Study DL model Target disease Image type Dataset Results

Li et al.
[105]

CNN Liver tumor
segmentation

CT slices Synthetic Dice similarity
coefficient = 0.81

Mao et al.
[106]

CNN Circulating
tumor-cell
detection

Histogram
pathology

Synthetic F Score = 0.97

Song et al.
[107]

CNN Cervical
cytoplasm
segmentation

Histogram
pathology

ISBI, SZU F Score = 0.94

BenTaieb
et al. [108]

CNN Colon adeno-
carcinoma
glands
segmentation

Histogram
pathology

Warwick-
QU

Accuracy = 0.89

Cha et al.
[103]

CNN Bladder cancer
treatment
response
assessment

CT slices Synthetic Jaccard
index = 0.762

Gibson
et al. [104]

CNN Liver
segmentation
on
Laparoscopic
videos

Laparoscopy Synthetic Dice
scores = 0.95

Gordon
et al. [109]

CNN Inner/outer
bladder wall
segmentation

CT slices Synthetic Average volume
intersection =
90.0± 8.7%

6 Summary and Discussion

In this study, we reviewed 59 papers published for detecting cancer, focusing on brain cancer,
breast cancer, skin cancer, prostate cancer, and other types of cancer diseases. The summary of
papers reviewed category wise is presented in Table 7.

It is evident from the comprehensive review mentioned above that deep learning methods have
reported the best performance for detecting different types of cancer. CNN model has reported the
best performance in all architectures. Many researchers have focused on using pre-trained CNN
models for detecting cancer diseases.

In the case of breast cancer detection, histopathology and mammography remain in the focus
of doctors and practitioners (refer to Table 1). Most researchers used MRI scans for detecting
brain cancer (refer to Table 2). Volumetric CT scans are most helpful in diagnosing lung cancer
(refer to Table 3). Dermoscopy and clinical photography are found be suitable for diagnosing skin
cancer.
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Table 7: Summary of deep learning based cancer detection methods

Type of cancer Number of papers Studies

Brain 5 Ahmed et al. [60], Liu et al. [59], Kamnitsas et al.
[58], Pereira et al. [56], Zhao et al. [57]

Breast 14 Xing et al. [52], Spanhol et al. [41], Ertosun et al.
[47], Swiderski et al. [46], Suzuki et al. [54],
Dhungel et al. [50], Dhungel et al. [49], Wichakam
et al. [53], Chen et al. [42], Albarqouni et al. [43],
Albayrak et al. [40], Kallenberg et al. [48], Kim
et al. [68], Xu et al. [44]

Lung 11 Wang et al. [71], Hirayama et al. [70], Hussein
et al. [64], Dou et al. [69], Shen et al. [72], Hua
et al. [65], Setio et al. [66], Kim et al. [51], Paul
et al. [62], Tajbakhsh et al. [67], Zhu et al. [61]

Prostate 10 Milletari et al. [95], Yu et al. [79], Yan et al. [93],
Cheng et al. [100], Gummeson et al. [97], Guo
et al. [55], Kallenberg et al. [48], Kwak et al. [98],
Ma et al. [94], Tian et al. [99]

Skin 10 Pomponiu et al. [73], Sabouri et al. [81], Demyanov
et al. [78], Majtner et al. [76], Yu et al. [79],
Mahbod et al. [92], Nasr-Esfahani et al. [80], Esteva
et al. [74], Masood et al. [75], Sabbaghi et al. [77]

Others 9 BenTaieb et al. [108], Cha et al. [103], Gibson et al.
[104], Gordon et al. [109], Li et al. [105], Mao
et al. [106], Song et al. [101], Song et al. [107],
Zhao et al. [57]

Several benchmark datasets have been developed for validating the deep learning models.
Table 8 presents the most commonly used datasets in detecting cancer.

Table 8: Summary of benchmark datasets for cancer detection methods (in alphabetical order)

Benchmark dataset Medical images Usage

ANODE09 [110] CT scans Detection of pulmonary
nodules in thoracic CT scans

ASU-Mayo Clinic
Colonoscopy Video (c)
Database [111]

Colonoscopy videos Polyp detection in
colonoscopy videos.

BraTS [112] Four MRI sequences: T1,
T1c, T2, and FLAIR

Brain tumor images

(Continued)
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Table 8 (continued).

Benchmark dataset Medical images Usage

BreaKHis [113] Breast tumor images Benign and malignant breast
tumor recognition

CRCHistoPhenoty pes
[114]

H&E stained histology
images of colorectal
adenocarcinomas

Detection of nuclei in routine
colon cancer histology images

DDSM [115] Digitized film screen
mammograms

Detection and diagnosis of
mammary lesions

DermIS-BioGPS [116] Dermoscopic images Skin lesion detection
DermQuest [117] Dermoscopic images Skin lesion detection
DLCST [118] CT screening of smokers Lung cancer detection and

diagnosis
INbreast [118] Mammograms Detection and diagnosis of

mammary lesions
ISIC [119] Dermoscopic images Skin lesion detection
JSRT [120] Chest X-ray images Lung nodule detection
LIDC-IDRI [121] Diagnostic and lung cancer

screening thoracic computed
tomography (CT) scans

Lung cancer detection and
diagnosis

MED-NODE [122] Dermoscopic images MED-NODE system
MITOS-ATYPIA [123] Breast cancer biopsy images Nuclear atypia scoring
PROMISE12 [124] Prostate MRI MRI of the prostate
TCIA collections [125] Cancer-related imaging Advanced medical images
Warwick-QU [126] Images of Hematoxylin and

Eosin (H&E) stained slides
Segmentation of glands

Out of 59 papers reviewed in this work, 16 researchers have validated their work using
synthetic or unpublished datasets. Most brain cancer-detecting approaches used BraTS dataset for
validating their proposals. DDSM and INbreast datasets are the most commonly used datasets
for detecting breast cancer. Skin cancer-detecting approaches have been validated using DermIS,
DermQuest and ISIC datasets. The researchers working for lung cancer detection preferred to use
LIDC-IDRI, ANODE09, and DLCST datasets for demonstrating the performance of their deep
learning models.

Despite successful employment and improved performance of deep learning models for detect-
ing cancer, there are many challenges in implementing deep learning to diagnose cancer in the
early stages accurately.

One of the significant challenges is the lack of benchmark datasets for validating the novel
deep learning models. The deep learning methods need a large quantity of quality data for devel-
oping a trained model. Many hospitals and organizations are reluctant to share the confidential
image data of the patients. However, the picture archiving and communication society (PACS)
has made several efforts to provide medical images of several patients to the research community
for validating new deep learning models. Many researchers have also used their collected medical
image data from different cancer Research hospitals and organizations to validate their model.
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To address the issue, Esteva et al. [74] provided several medical images for validating deep
learning models. Their data set contains 127,463 and 1,942 medical images for training and testing
purposes of deep learning models in cancer detection. Besides, many datasets are available online
in the form of raw images, researchers have to explore the ground truth at their level before using
the available datasets to validate deep learning models.

Many researchers advocated using data augmentation methods to address the lack of avail-
ability of limited data for validating deep learning models. The most commonly used data
augmentation method includes rotation, filtering and cropping to increase the number of medical
image data for training and testing purposes of the deep learning models. However, this may
cause the over-fitting problem. Some researchers use the pre-trained models and transfer learning
methods to avoid the over-fitting problem.

It has been observed that low-quality images like low contrast and low signal to noise ratio
of images can be a significant cause to deteriorate the performance of deep learning models.
Low-quality medical images are another primary concern that impacts the performance of deep
learning models.

Some researchers have argued to maintain the performance of the deep learning models,
especially in brain cancer, about training data collected from multiple sources. It has been observed
that the performance of the deep learning model deteriorates on using data from different
institutions.

Several institutions have provided medical image data for validating deep learning models
in detecting cancer. These datasets can help researchers in the field to develop new models and
validate them. Table 8 presents the most commonly used benchmark datasets in the field of cancer
detection.

A significant issue that arises in the training data is the unequal distribution of data in
benchmark datasets. Deep learning models trained on imbalanced data leads to biased results
towards majority classes. Most of the researchers ignored biased cancer detection results towards
majority classes in their research.

Another problem in implementing the convolutional neural network is the object’s size to be
detected in the image. As the object’s size in the target image may vary in different images, deep
learning models must be trained to learn size variation in different scales. To address the issue
of multi-scale features, Shen et al. [72] proposed to replace the average pooling function with a
multi-crop pooling function.

One general and notable point in the recent deep learning developments is that it has
resulted in tremendous growth in the number of parameters of deep learning models. This
indicates that the models become increasingly complex in context to memory and computing
resource consumption [127]. The increased requirement of computational resources has also
increased power consumption. The increased complexity of deep learning models requires more
input–output operations. The input or output operations are more expensive in comparison to
arithmetic operations, which has led to more power consumption [128].

It has been observed that most of the hardware platforms are unable to cope up with the
exponential growth of complexity and size of deep learning models [128] due to the increased
power consumption of these models. Besides, there is an increased demand for installing machine
learning models into limited resource devices [129,130]. The increased size of deep learning models
in terms of their number of parameters also impacts security and efficiency. The heavy sized



CMES, 2022, vol.130, no.3 1299

machine-learning model has limited applicability in the domains having a limited bandwidth
channel.

In order to solve the problems mentioned above, compression algorithms are considered one
of the promising directions in deep learning algorithms. Compression algorithms can compress the
size of machine learning models and make them practical for solving complex problems. Applica-
tion of compression algorithms in developing machine learning models have practical benefits of
the requirement of reduced computing resources, communication overhead, and memory overhead
[131–133].

7 Conclusion

Cancer disease is one of the most severely affecting diseases in human life. It is well estab-
lished that cancer diagnosis and its treatment is a long and challenging procedure. Several research
efforts have been made to address the long and challenging procedure accurately and diagnose
cancer in the early stages.

In recent years, deep learning, a subset of artificial intelligence, has increased researchers and
practitioners’ attention in detecting cancer using medical images like CT scan, MRI scans, ultra-
sound, etc. Deep learning methods have been successfully implemented in classification problems
of different domains such as computer vision, cybersecurity, natural language processing and many
more.

Recently deep learning methods have been applied to detect cancer and its types in different
organs of the human body by analyzing medical images. Deep learning models have provided
extraordinary accurate results in diagnosing cancer in the early stages and help increase the
patients’ survival time.

In this study, we introduced the cancer detection problem, phases of the cancer detection
process, deep learning models and their classification, and applications of deep learning methods
in detecting different types of cancer. We highlighted recent developments in detecting cancer by
focusing on four types: brain cancer, breast cancer, skin cancer, and prostate cancer. We compared
different deep learning models with their pros & cons and described their applications in detecting
cancer in detail.

Recent developments in cancer detection are summarized and analyzed to identify chal-
lenges in implementing deep learning methods for cancer detection. The identified challenges
provide future research directions to fellow researchers. The outcome of this study is helpful
for researchers to develop new deep learning models for cancer disease diagnosis in early stages
accurately and treatment planning accordingly.
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