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ABSTRACT

Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on
physicians’ clinical experience and judgments, the surgical treatment options of renal cancer patients lack their
scientifical and reasonable information expression and group decision-making model for renal cancer patients.
Fuzzy multi-sets (FMSs) have a number of properties, which make them suitable for expressing the uncertain
information of medical diagnoses and treatments in group decision-making (GDM) problems. To choose the
most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma (RCC) (T1 stage
kidney tumor), this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation
information of the renal cancer patients. First, we propose a conversion method of transforming FMSs into entropy
fuzzy sets (EFSs) based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the
information expression and operations of FMSs and define the score function of an entropy fuzzy element (EFE)
for ranking EFEs. Second, we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE
Aczel-Alsina weighted arithmetic averaging (EFEAAWAA) and EFE Aczel-Alsina weighted geometric averaging
(EFEAAWGA) operators. Third, we develop a multicriteria GDM model of renal cancer surgery options in the
setting of FMSs. Finally, the proposed GDM model is applied to two clinical cases of renal cancer patients to choose
the best surgical treatment scheme for a renal cancer patient in the setting of FMSs. The selected results of two
clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.
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1 Introduction

The incidence of renal cell carcinoma (RCC) accounts for 2%–3% of adult malignant tumors.
RCC is second only to prostate cancer and bladder cancer in urologic tumors, but it is the
malignant tumor with the highest mortality rate in the urinary system [1]. The incidence rate is
increasing every year in most countries and regions [1,2]. In recent years, with the widespread
application of imaging techniques such as B-mode ultrasound, computed tomography (CT), and
magnetic resonance imaging (MRI), as well as the increase in physical examination and screening,
more and more patients with T1 stage RCC (tumor less than 7 cm in diameter) have been diag-
nosed early. Currently, surgery is the preferred treatment for T1 stage RCC [3,4]. Localized renal
tumor surgery methods include open surgery, laparoscopic surgery, etc., which can be performed
by transperitoneal or retroperitoneal (translumbar) approach, including radical nephrectomy or
partial nephrectomy. At present, the selection of surgical methods mainly depends on the physi-
cian’s past training skills and personal experience/judgment. Generally, surgical treatment options
(STOs) for T1 stage RCC depend not only on its anatomical characteristics, but also on the
hospital’s medical conditions, the patient’s financial ability, physical fitness and so on. It is obvious
that existing renal cancer STOs lack a scientifical and reasonable evaluation/decision-making
model in clinical applications.

In fact, the physician’s experience and judgment on the anatomical characteristics of RCC
and some medical assessments of a renal cancer patient are also incomplete, uncertain, and vague
because they cannot give accurate arguments in the medical diagnosis/assessment. In this case,
fuzzy sets [5] are very suitable for the representment and processing of incomplete and uncertain
information. Hence, fuzzy sets have been widely applied in medical diagnosis/evaluation problems.
Then, many medical diagnosis/evaluation methods are mainly based on fuzzy relations of diseases
and symptoms to obtain diagnosis/evaluation results of patients [6–10]. In hesitant situations,
hesitant fuzzy sets (HFSs) and cubic HFSs have been utilized in medical diagnosis [11] and
assessments of prostate hyperplasia symptoms and prostatic cancer [12,13]. However, due to the
hesitation feature, HFS lacks the same fuzzy value information in the hesitation fuzzy elements,
which shows its insufficiency in the expression of hesitation information. Since fuzzy multi-sets
(FMSs) [14] can occur more than once with the different and/or identical membership values,
El-Azab et al. [15] proposed correlation measures of FMSs and used them for medical diagnosis
problems. Then, Turkarslan et al. [16] introduced a conversion method for transforming FMS into
a consistency fuzzy set (CFS) based on the mean and consistency level (complement of standard
deviation) of a fuzzy sequence in FMS, then they proposed the correlation coefficient and cosine
similarity measure of CFSs and applied it to medical diagnosis problems in the setting of FMSs.

FMS has a number of properties that make it suitable for the expression of multivalued
information (the group evaluation information) with the different and/or same fuzzy values, which
are usually occurred in group evaluation process of a patient’s medical diagnosis and treatment.
Since the existing STO for a renal cancer patient is mainly dependent on the clinical experience
and judgment of physicians, the determination of the best STO for a renal cancer patient lacks
a scientific and reasonable decision-making model in the existing literature. However, in existing
clinical applications, there is no fuzzy decision-making/evaluation model for the most suitable STO
regarding a patient with T1 stage RCC. Therefore, it is necessary to develop an effective group
decision-making (GDM) model to determine the most suitable STO corresponding to a fuzzy
multivalued/group evaluation information for the renal cancer patient. Then, the STO problem
is a multicriteria GDM problem, where the medical team (a group of physicians) is required to
assess the situations of the renal cancer patient and decide the most suitable STO for the patient.
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Although some authors recently applied three-way decision methods [17–19] to decision-making
problems with fuzzy or fuzzy rough information, they cannot handle GDM problems with FMS
information.

However, the GDM problem usually contains uncertain, incomplete, and vague evaluation
information in the assessment process of a patient with T1 stage RCC because no physician
can give an accurate evaluation value of the patient’s condition. Then, the FMS information
is very suitable for the information expression of the GDM problem of STOs. In a GDM
problem, the consistency level can be reflected by the complement of standard deviation of group
evaluation values [16]. Since there is a certain degree of approximately linear relationship between
the standard deviation and Shannon/probability entropy [20], the larger the standard deviation,
the smaller the Shannon/probability entropy value. Therefore, the Shannon/probability entropy
measure can also reflect the consistency level of group evaluation values. Thus, we can effectively
express the group evaluation information based on the average value and entropy value of a
fuzzy sequence in FMS to reasonably simplify information expression and operations between
different fuzzy sequence lengths. Motivated by these ideas, this study proposes a multicriteria
GDM model based on the Aczel-Alsina aggregation operators and score function of entropy
fuzzy elements (EFEs) to solve the GDM problem of STOs regarding the patient with T1 stage
RCC under the environment of FMSs. To do so, the aims of this work are (1) to propose a
conversion method for transforming FMSs into entropy fuzzy sets (EFSs), a score function of
EFE for ranking EFEs, and operation relations of EFEs based on the Aczel-Alsina t-norm and
t-conorm operations [21,22], (2) to present the EFE Aczel-Alsina weighted arithmetic averaging
(EFEAAWAA) and EFE Aczel-Alsina weighted geometric averaging (EFEAAWGA) operators and
their properties, (3) to develop a multicriteria GDM model of the renal cancer STOs, and (4) to
apply the proposed GDM model to two clinical cases of renal cancer patients for deciding the
most suitable STO for each renal cancer patient in the setting of FMSs and verifying the efficiency
and rationality of the proposed GDM model.

In this study, the proposed GDM model can overcome the flaw of the traditional STOs and
provide a new effective way for determining the best STO for a renal cancer patient. Then, the
GDM applications of two clinical cases show the effectiveness and rationality of the proposed
GDM model in the setting of FMSs. Comparative analysis indicates that the merits of the
proposed model are more reasonable and flexible than existing methods in information expression
and decision-making algorithms.

The rest of this paper consists of the following sections: Section 2 presents a conversion
method for transforming FMSs into EFSs based on the mean and Shannon entropy of a fuzzy
sequence in FMS, a score function of EFE for ranking EFEs, and the Aczel-Alsina t-norm and
t-conorm operations of EFEs. Section 3 proposes the EFEAAWAA and EFEAAWGA operators.
In Section 4, a multicriteria GDM model of renal cancer STOs is established based on the
EFEAAWAA and EFEAAWGA operators and the score function in the setting of FMSs. Finally,
the GDM applications of two clinical cases show the effectiveness and rationality of the proposed
GDM model in the setting of FMSs in Section 5. Section 6 indicates some conclusions and future
research.

2 EFSs and Operations of EFEs in the FMS Environment

This section proposes a conversion method that converses FMSs into EFSs based on the mean
and Shannon entropy of fuzzy sequences in FMS, and then defines the score function and ranking
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rules of EFEs. Then, operational relations of EFEs are presented based on the Aczel-Alsina t-
norm and t-conorm operations [21,22].

2.1 EFSs Based on the Mean and Shannon Entropy of Fuzzy Sequences in FMS
This part proposes a conversion method that converses FMSs into EFSs based on the mean

and Shannon entropy of fuzzy sequences in FMS, and then defines the score function and ranking
rules of EFEs.

First, we introduce the concept of the Shannon/probability entropy [20].

Let B = {b1, b2, . . . , bn} be a probability distribution on a random variable set. Then, the
Shannon entropy of the probability distribution B is defined as

P(B)=−
n∑

j=1

bj ln(bj), (1)

where bj ∈ [0, 1] and
∑n

j=1 bj = 1.

Especially when all values of bj (j = 1, 2, . . . , n) are the same, the Shannon entropy reflects the
maximum value of P(B), which means the perfect consistency of bj. To some extent, there is an
approximately linear relationship between Shannon entropy and standard deviation: the smaller
the standard deviation (the better the consistency level), the larger the entropy value.

Then, we introduce the concept of FMS [14].

Let U = {u1, u2, . . . , un} be a finite set. Then, the FMS F on U is defined as

F = {〈
uj, MF

(
uj

)〉
: j = 1, 2, . . . , n; uj ∈ U

}
,

where MF (uj) is an increasing fuzzy sequence MF
(
uj

) =
(
ζ 1

F

(
uj

)
, ζ 2

F

(
uj

)
, . . . , ζ

sj
F

(
uj

))
(j =

1, 2, . . . , n), simply denoted as the j-th fuzzy sequence MFj =
(
ζ 1

Fj, ζ
2
Fj, . . . , ζ

sj
Fj

)
.

In the following, we present a conversion method for transforming FMS into EFS.

Definition 2.1. Let U = {u1, u2, . . . , un} be a finite set. Then, the EFS E on U is defined below:

E = {〈
uj, mE

(
uj

)
, eE

(
uj

)〉
: j = 1, 2, . . . , n; uj ∈ U

}
,

where mE(uj) and eE(uj) are the average value and entropy value of the fuzzy sequence MF (uj)

in the FMS F , respectively, which are yielded by the following formulae:

mE
(
uj

)= 1
sj

sj∑
k=1

ζ k
F

(
uj

)
, mE

(
uj

)
ε [0, 1] (2)

eE
(
uj

)=− 1
ln sj

sj∑
k=1

(
ζ k

F

(
uj

)
∑sj

k=1 ζ k
F

(
uj

) ln
ζ k

F

(
uj

)
∑sj

k=1 ζ k
F

(
uj

)
)

, eE
(
uj

)
ε [0, 1] (3)

For the simplified representation, a basic element
〈
uj, mE

(
uj

)
, eE

(
uj

)〉
in E is denoted as

pEj =< mEj, eEj >, which is named EFE.
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Remarks: 1. Since the entropy of sj components cannot exceed lnsj(sj > 1), the presented
Shannon entropy is the normalized entropy eE(uj) ∈ [0, 1], and also there exists the following
result:

sj∑
k=1

ζ k
F

(
uj

)
∑sj

k=1 ζ k
F

(
uj

) = 1,

which can satisfy the Shannon entropy condition.

2. In the EFE pEj =< mEj, eEj >, mEj reflects the mean of multiple fuzzy values in a fuzzy
sequence and eEj is the entropy value of multiple fuzzy values in a fuzzy sequence. Based on
the Shannon entropy (probability entropy) concept, the bigger the entropy value, the higher the
consistency level of probability values in a probability distribution. In a GDM problem, the
entropy value reflects the consistency level of the group evaluation values. If the entropy value
reaches the maximum value, it reflects that the fuzzy values are identical in a fuzzy sequence
(group evaluation values). For example, there is the fuzzy sequence MF = (0.6, 0.6, 0.6, 0.6), its
mean is 0.6, and then its entropy is equal to 1. It is obvious that the average value and entropy
value in the EFE can effectively and reasonably reflect the information expression characteristics
of fuzzy sequences in FMSs.

Example 1. Let U = {u1, u2, u3} be the universal set. Assume that there is F = {< u1, (0.6, 0.6) >,
< u2, (0.8, 0.6, 0.6, 0.5) >,< u3, (0.8, 0.7, 0.5) >} in U . Then, using Eqs. (2) and (3) we have the
following results:

mE (u1)= 1
s1

s1∑
k=1

ζ k
F (u1)= (0.6+ 0.6) /2 = 0.6,

mE (u2)= 1
s2

s2∑
k=1

ζ k
F (u2)= (0.8+ 0.6+ 0.6+ 0.5) /4 = 0.625,

mE (u3)= 1
s3

s3∑
k=1

ζ k
F (u3)= (0.8+ 0.7+ 0.5) /3 = 0.6667,

eE (u1)=− 1
ln s1

s1∑
k=1

(
ζ k

F (u1)∑s1
k=1 ζ k

F (u1)
ln

ζ k
F (u1)∑s1

k=1 ζ k
F (u1)

)

=− 1
ln 2

{0.6/1.2 ln (0.6/1.2)+ 0.6/1.2 ln (0.6/1.2)} = 1,

eE (u2)=− 1
ln s2

s2∑
k=1

(
ζ k

F (u2)∑s2
k=1 ζ k

F (u2)
ln

ζ k
F (u2)∑sj

k=1 ζ k
F (u2)

)

=− 1
ln 4

{0.8/2.5 ln (0.8/2.5)+ 0.6/2.5 ln (0.6/2.5)+ 0.6/2.5 ln (0.6/2.5)+ 0.5/2.5 ln (0.5/2.5)}
= 0.9893,
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eE (u3)=− 1
ln s3

s3∑
k=1

(
ζ k

F (u3)∑s3
k=1 ζ k

F (u3)
ln

ζ k
F (u3)∑s3

k=1 ζ k
F (u3)

)

=− 1
ln 3

{0.8/2 ln (0.8/2)+ 0.7/2 ln (0.7/2)+ 0.5/2 ln (0.5/2)} = 0.9835.

Thus, the FMS F can be transformed into the EFS E = {< u1, (0.6, 1) >,
< u2, (0.625, 0.9893) >, < u3, (0.6667, 0.9835) >}.

To compare EFEs, we define the score function and ranking rules of EFEs.

Definition 2.2. Set two EFEs as pEj =< mEj, eEj > (j = 1, 2). Then, the score function of pEj is
defined below:

R
(
pEj

)= mEj × eEj for R
(
pEj

) ∈ [0, 1] (4)

Then, the ranking rules of pE1 and pE2 are indicated as follows:

(i) If R(pE1) > R(pE2), then pE1 > pE2;
(ii) If R(pE1)= R(pE2), then pE1 = pE2.

2.2 Aczel-Alsina T-Norm and T-Conorm Operations of EFEs

Aczel-Alsina [21] and Alsina et al. [22] presented the t-norms Sδ(g, h): [0, 1]2 → [0, 1] and
t-conorms Tδ(g, h): [0, 1]2 → [0, 1] for g, h ∈ [0, 1] with any parameter δ ≥ 0 and defined the
following t-norms and t-conorms:

(i) The Aczel-Alsina t-norms are defined by

Sδ(g, h)=

⎧⎪⎪⎨
⎪⎪⎩

S0(g, h), if δ = 0

min(g, h), if δ =∞
e−((− ln g)δ+(− ln h)δ)1/δ

, otherwise

(ii) The Aczel-Alsina t-conorms are defined by

Tδ(g, h)=

⎧⎪⎪⎨
⎪⎪⎩

T0(g, h), if δ = 0

max(g, h), if δ =∞
1− e−((− ln(1−g))δ+(− ln(1−h))δ)1/δ

, otherwise

where S0(g, h) and T0(g, h) are the drastic t-norm and the drastic t-conorm, respectively, which
are represented below:

S0 (g, h)=

⎧⎪⎪⎨
⎪⎪⎩

g, if h = 1

h, if g = 1

0, otherwise

and T0 (g, h)=

⎧⎪⎪⎨
⎪⎪⎩

g, if h = 1

h, if g = 1

1, otherwise

Regarding the Aczel-Alsina t-norm and t-conorm with δ ≥ 1, we can define some operations
of EFEs.
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Definition 2.3. Let pE1 =< mE1, eE1 > and pE2 =< mE2, eE2 > be two EFEs, δ ≥ 1, and ω > 0.
Then, their operational rules are defined as follows:

(1) pE1 ⊕ pE2 =
〈
1− e−((− ln(1−mE1))

δ+(− ln(1−mE2))
δ)1/δ

, 1− e−((− ln(1−eE1))
δ+(− ln(1−eE2))

δ)1/δ
〉
;

(2) pE1 ⊗ pE2 =
〈
e−((− ln mE1)

δ+(− ln mE2)
δ)1/δ

, e−((− ln eE1)
δ+(− ln eE2)

δ)1/δ
〉
;

(3) ωpE1 =
〈
1− e−(ω(− ln(1−mE1))

δ)1/δ
, 1− e−(ω(− ln(1−eE1))

δ)1/δ
〉
;

(4) (pE1)
ω =

〈
e−(ω(− ln mE1)

δ)1/δ
, e−(ω(− ln eE1)

δ)1/δ
〉
.

Clearly, the above operational results are still EFEs. Especially when δ = 1, the above
operational rules are reduced to the following operational rules:

(1) pE1 ⊕ pE2 = 〈mE1 +mE2 −mE1mE2, eE1 + eE2 − eE1eE2〉;

(2) pE1 ⊗ pE2 = 〈mE1mE2, eE1eE2〉;

(3) ωpE1 =
〈
1− (1−mE1)

ω , 1− (1− eE1)
ω
〉
;

(4) pω
E1 =

〈
mω

E1, eω
E1

〉
.

3 Aczel-Alsina Aggregation Operators of EFEs

This section proposes the EFEAAWAA and EFEAAWGA operators according to the opera-
tional relations in Definition 2.3 and indicates their properties.

3.1 EFEAAWAA Operator
This part proposes the EFEAAWAA operator according to the operational relations in

Definition 2.3.

Definition 3.1 Let pEj =< mEj, eEj > (j = 1, 2, . . . , n) be a group of EFEs, along with their
corresponding weight vector ω = (ω1,ω2, . . . ,ωn) for ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. Then, the

EFEAAWAA operator is defined by

EFEAAWAA (pE1, pE2, . . . , pEn)=
n⊕

j=1
ωjpEj (5)

According to the operational relations in Definition 2.3, the EFEAAWAA operator contains
the following theorem.

Theorem 3.1 Set pEj =< mEj, eEj > as a group of EFEs (j = 1, 2, . . . , n) with their corresponding
weight vector ω = (ω1,ω2, . . . ,ωn) for ωj ∈ [0, 1] and

∑n
j=1 ωj = 1. Then, the aggregated value of

the EFEAAWAA operator is also EFE, which is obtained by the following formula:

EFEAAWAA (pE1, pE2, . . . , pEn)=
n⊕

j=1
ωjpEj =

〈
1− e

−
(∑n

j=1 ωj(− ln(1−mEj))
δ
)1/δ

,

1− e
−

(∑n
j=1 ωj(− ln(1−eEj))

δ
)1/δ

〉 (6)
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Proof: Theorem 3.1 can be proved by mathematical induction.

(a) If n = 2, according to Definition 3.1 and Eq. (5) there is the following result:

EFEAAWAA (pE1, pE2)=ω1pE1 ⊕ω2pE2

=
〈

1− e
−

(
ω1(− ln(1−mE1))

δ
)1/δ

, 1− e
−

(
ω1(− ln(1−eE1))

δ
)1/δ

〉

⊕
〈

1− e
−

(
ω2(− ln(1−mE2))

δ
)1/δ

, 1− e
−

(
ω2(− ln(1−eE2))

δ
)1/δ

〉

=
〈

1− e
−

(∑2
j=1 ωj(− ln(1−mEj))

δ
)1/δ

, 1− e
−

(∑2
j=1 ωj(− ln(1−eEj))

δ
)1/δ

〉
.

(7)

(b) If Eq. (6) for n = k is true, there exists the equation:

EFEAAWAA (pE1, pE2, . . . , pEk)=
k⊕

j=1
ωjpEj =

〈
1− e

−
(∑k

j=1 ωj(− ln(1−mEj))
δ
)1/δ

,

1− e
−

(∑k
j=1 ωj(− ln(1−eEj))

δ
)1/δ

〉 (8)

(c) If n = k+ 1, according to Eqs. (7) and (8) we yield the result:

EFEAAWAA
(
pE1, pE2, . . . , pEk, pEk+1

)
= k+1⊕

j=1
ωjpEj =

〈
1− e

−
(∑k

j=1 ωj(− ln(1−mEj))
δ
)1/δ

, 1− e
−

(∑k
j=1 ωj(− ln(1−eEj))

δ
)1/δ

〉

⊕
〈

1− e
−

(
ωk+1(− ln(1−mEk+1))

δ
)1/δ

, 1− e
−

(
ωk+1(− ln(1−eEk+1))

δ
)1/δ

〉

=
〈

1− e
−

(∑k+1
j=1 ωj(− ln(1−mEj))

δ
)1/δ

, 1− e
−

(∑k+1
j=1 ωj(− ln(1−eEj))

δ
)1/δ

〉

Based on the results of (a), (b), and (c), Eq. (6) can exist for any n.

Clearly, the EFEAAWAA operator of Eq. (6) contains the following properties.

Theorem 3.2 The EFEAAWAA operator implies the following properties:

(p1) Idempotency: Set pEj =< mEj, eEj > (j = 1, 2, . . . , n) as a collection of EFEs. If pEj = pE(j =
1, 2, . . . , n), there is EFEAAWAA(pE1, pE2, . . . , pEn)= pE.

(p2) Commutativity: If a collection of EFEs (p
′
E1, p

′
E2, . . . , p

′
En) is any permutation of

(pE1, pE2, . . . , pEn), there is EFEAAWAA (p
′
E1, p

′
E2, . . . , p

′
En)= EFEAAWAA(pE1, pE2, . . . , pEn).
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(p3) Boundedness: If the maximum and minimum EFEs are given by pE max =
〈
max

j

(
mEj

)
, max

j

(
eEj

)〉

and pE min =
〈
min

j

(
mEj

)
, min

j

(
eEj

)〉
, there is pEmin ≤ EFEAAWAA(pE1, pE2, . . ., pEn)≤ pEmax.

(p4) Monotonicity: If pEj ≤ p∗Ej (j = 1, 2, . . . , n), there exists EFEAAWAA(pE1, pE2, . . . , pEn) ≤
EFEAAWAA(p∗E1, p∗E2, . . . , p∗En).

Proof: (p1) Since pEj =< mEj, eEj >=< mE, eE >= pE(j = 1, 2, . . . , n), using Eq. (6) we obtain
the result:

EFEAAWAA (pE1, pE2, . . . , pEn)=
n⊕

j=1
ωjpEj

=
〈

1− e
−

(∑n
j=1 ωj(− ln(1−mEj))

δ
)1/δ

, 1− e
−

(∑n
j=1 ωj(− ln(1−eEj))

δ
)1/δ

〉

=
〈

1− e
−

(∑n
j=1 ωj(− ln(1−mE))δ

)1/δ

, 1− e
−

(∑s
k=1 ωj(− ln(1−eE))δ

)1/δ
〉

=
〈

1− e
−

(
(− ln(1−mE))δ

)1/δ

, 1− e
−

(
(− ln(1−eE))δ

)1/δ
〉

= 〈
1− eln(1−mE), 1− eln(1−eE)

〉= 〈mE, eE〉 = pE.

(p2) The property is straightforward.

(p3) Since the inequalities minj
(
pEj

) ≤ pEj ≤ maxj
(
pEj

)
and minj

(
eEj

) ≤ eEj ≤ maxj
(
eEj

)
exist,

we can yield the following inequalities:

1−e
−

(∑n
j=1ωk(−ln(1−minj(mEj)))

δ
)1/δ

≤1−e
−

(∑n
j=1ωj(−ln(1−mEj))

δ
)1/δ

≤1−e
−

(∑n
j=1ωj(−ln(1−maxj(mEj)))

δ
)1/δ

1−e
−

(∑n
j=1ωj(−ln(1−minj(eEj)))

δ
)1/δ

≤1−e
−

(∑n
j=1ωj(−ln(1−eEj))

δ
)1/δ

≤1−e
−

(∑n
j=1ωj(−ln(1−maxj(eEj)))

δ
)1/δ

Based on the property (p1) and the ranking rules, we have pEmin≤
n⊕

j=1
ωjpEj ≤pEmax, i.e., pEmin≤

EFEAAWAA(pE1,pE2,...,pEn)≤pEmax.

(p4) Since pEj ≤p∗Ej(j=1,2,...,n), there is
n⊕

j=1
ωjpEj ≤

n⊕
j=1

ωjp∗Ej. Then, EFEAAWAA(pE1,

pE2,...,pEn)≤EFEAAWAA(p∗E1,p∗E2,...,p∗En) exists.

Especially when δ=1, the EFEAAWAA operator is reduced to the EFE weighted arithmetic
averaging (EFEWAA) operator:

EFEWAA(pE1,pE2,...,pEn)=
n⊕

j=1
ωjpEj =

〈
1−

n∏
j=1

(
1−mEj

)ωj ,1−
n∏

j=1

(
1−eEj

)ωj

〉
(9)
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3.2 EFEAAWGA Operator
In this part, the EFEAAWGA operator is proposed based on the operational relations in

Definition 2.3.

Definition 3.2 Set pEj =<mEj,eEj >(j=1,2,...,n) as a group of EFEs with their corresponding
weight vector ω=(ω1,ω2,...,ωn) for ωj ∈ [0, 1] and

∑n
j=1ωj =1. Then, the EFEAAWGA operator

is defined by

EFEAAWGA(pE1,pE2,...,pEn)=
n⊗

j=1
p
ωj
Ej (10)

According to the operational relations in Definition 2.3, the EFEAAWG operator contains
the following theorem.

Theorem 3.3 Set pEj =<mEj,eEj >(j=1,2,...,n) as a group of EFEs with their corresponding
weight vector ω=(ω1,ω2,...,ωn) for ωj ∈ [0, 1] and

∑n
j=1ωj =1. Then, the aggregated value of the

EFEAAWGA operator is also EFE, which is yielded by the formula:

EFEAAWGA(pE1,pE2,...,pEn)=
n⊗

j=1
p
ωj
Ej =

〈
e
−

(∑n
j=1ωj(−lnmEj)

δ
)1/δ

,e
−

(∑n
j=1ωj(−lneEj)

δ
)1/δ

〉
(11)

Based on the similar verification of Theorem 3.1, Theorem 3.3 can be easily proved, which is
omitted here.

However, the EFEAAWGA operator also contain the following properties.

Theorem 3.4 The EFEAAWGA operator contains the following properties:

(p1) Idempotency: Set pEj =<mEj,eEj >(j=1,2,...,n) as a group of EFEs. If pEj =pE(j=
1,2,...,n), EFEAAWGA(pE1,pE2,...,pEn)=pE exists.

(p2) Commutativity: If a group of EFEs (p
′
E1,p

′
E2,...,p

′
En) is any permutation of

(pE1,pE2,...,pEn), EFEAAWGA(p
′
E1,p

′
E2,...,p

′
En)=EFEAAWGA(pE1,pE2,...,pEn) exists.

(p3) Boundedness: If the maximum and minimum EFEs are given by pEmax=〈maxj
(
mEj

)
,

maxj
(
eEj

)〉 and pEmin=
〈
minj

(
mEj

)
,minj

(
eEj

)〉
, pEmin≤ EFEAAWGA(pE1,pE2,...,pEn)≤pEmax exists.

(p4) Monotonicity: If pEj ≤p∗Ej(j=1,2,...,n), EFEAAWGA(pE1,pE2,...,pEn)≤ EFEAAWGA(p∗E1,

p∗E2,...,p∗En) exists.

Based on the similar proof method of Theorem 3.2, Theorem 3.4 can be easily proved, which
is not repeated here.

Especially when δ=1, the EFEAAWGA operator of Eq. (11) is reduced to the EFE weighted
geometric averaging (EFEWGA) operator:

EFEWGA(pE1,pE2,...,pEn)=
n⊗

j=1
p
ωj
Ej =

〈
n∏

j=1

m
ωj
Ej,

n∏
j=1

e
ωj
Ej

〉
(12)
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4 GDM Model of Renal Cancer STOs

Renal cancer is a disease that starts in the kidneys, where kidney cells become malignant
(cancerous) and grow out of control to form a tumor. Then, renal cell carcinoma is the most
common type of renal cancer in adults and usually appears in one or both kidneys. Other less
common types of kidney cancer can occur. Once kidney cancer occurs, the physician will perform
tests to determine whether the cancer has spread in the kidneys or other parts of the body. This
process is named staging. The higher the stage, the more serious the cancer. First, the physician
must know the stage before determining a treatment option. Then, surgery is the most common
treatment for most people with early stage renal cancer (T1 stage) to remove all or part of the
kidney. However, the treatment options will depend on the stage, general health, age, and other
factors of the cancer patient.

To effectively determine a suitable STO for a kidney cancer patient in clinical medicine,
physicians usually choose a better STO for the patient among the common STOs based on their
experience and judgment of the patient’s situations. However, due to various influencing factors,
such as RENAL nephrometry score (a comprehensive standardized system for quantitating renal
tumor size) [23], tumor kidney location, tumor adjacent to renal pedicle vessel, mayo adhesive
probability score [24], and treatment effect, it is difficult for physicians to directly give a cancer
patient the most suitable STO. Hence, this is a GDM problem of STOs, which usually contains
uncertain, incomplete, and vague evaluation information in the treatment issue of a kidney cancer
patient. In this case, due to the uncertainty and ambiguity of the cognition/judgment of physicians
regarding a kidney cancer patient, each physician in the medical treatment group gives his/her
own fuzzy evaluation values of STOs over various influencing factors/criteria of a kidney cancer
patient during the medical evaluation process. Thus, the FMS information is very suitable for the
information expression of the group evaluation problem of STOs. Therefore, this section proposes
a multicriteria GDM model of STOs regarding the patient with T1 stage renal cancer under the
environment of FMSs.

Regarding current medical techniques for patients with T1 stage kidney cancer, physicians
usually consider the six potential STOs (alternatives): open radical nephrectomy (ORN), transperi-
toneal laparoscopic radical nephrectomy (TLRN), retroperitoneal laparoscopic radical nephrec-
tomy (RLRN), open partial nephrectomy (OPN), transperitoneal laparoscopic partial nephrectomy
(TLPN), and retroperitoneal laparoscopic partial nephrectomy (RLPN), which can be constructed
as a set of STOs T ={ORN, TLRN, RLRN, OPN, TLPN, RLPN}={T1,T2,T3,T4,T5,T6}. To
decide the best STO in the available set of STOs (alternatives) for a renal cancer patient, the
six potential STOs (alternatives) must be satisfactorily assessed by the main influencing fac-
tors/criteria: RENAL nephrometry score (q1), tumor kidney location (q2), tumor adjacent to
renal pedicle vessel (q3), mayo adhesive probability score (q4), hospital stay (q5), postoperative
complications (q6), patient’s financial capacity (q7), technical skills (q8), medical condition (q9),
and patient’s physical condition before surgery (q10), which are constructed as a set of criteria
Q={q1,q2,q3,q4,q5,q6,q7,q8,q9,q10}. Then, the importance weight vector of the ten criteria is

specified as ω=(ω1,ω2,...,ω10) for ωj ∈ [0, 1] and
∑10

j=1ωj =1.

In this decision-making problem, we can establish a multicriteria GDM model of renal cancer
STOs and give the following decision process.

Step 1: In the assessment process, the medical treatment group of physicians, such as the
chief physician, deputy chief physician, and physician, gives their suitable evaluation values of
the six alternatives over the ten criteria. Based on their evaluated fuzzy values, we can establish
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the FMS evaluation/decision matrix M=(MFij)6×10, where MFij =(ζ 1
Fij,ζ

2
Fij,...,ζ

sj
Fij) (j=1,2,...,10; i=

1,2,...,6) are fuzzy sequences.

Step 2: Using Eqs. (2) and (3), we transform FMSs in M into EFSs. Then, all EFSs are
constructed as the EFS matrix P=(pEij)6×10, where pEij =<mEij,eEij > (j=1,2,...,10;i=1,2,...,6)

are EFEs.

Step 3: The aggregated EFEs pEi for Ti(i=1,2,...,6) are yielded by the EFEAAWAA operator
or the EFEAAWGA operator:

pEi=EFEAAWAA(pEi1,pEi2,...,pEi10)

= 10⊕
j=1

ωjpEij =
〈

1−e
−

(∑10
j=1ωj(−ln(1−mEij))

δ
)1/δ

,1−e
−

(∑10
j=1ωj(−ln(1−eEij))

δ
)1/δ

〉
(13)

or

pEi=EFEAAWGA(pEi1,pEi2,...,pEi10)=
10⊗

j=1
p
ωj
Eij =

〈
e
−

(∑10
j=1ωj(−lnmEij)

δ
)1/δ

,e
−

(∑10
j=1ωj(−lneEij)

δ
)1/δ

〉
(14)

Step 4: The score values of R(pEi)(i=1,2,...,6) are calculated by Eq. (4).

Step 5: The alternatives are ranked in a descending order corresponding to the score values,
then the best STO is given for a renal cancer patient.

Step 6: End.

5 GDM Cases of STOs for Renal Cancer Patients

To show the applicability and efficiency of the proposed GDM model, two clinical cases of
renal cancer patients are provided to decide the most suitable STO for each renal cancer patient
by the proposed GDM model in the setting of FMSs. Then, comparison with existing related
methods shows the feasibility and rationality of the proposed model in the case of FMSs.

5.1 Applications of Two Actual Cases
Case 1 There is a patient at the First Affiliated Hospital, College of Medicine, Zhejiang

University, China. She is a 62-year-old woman with a history of hypertension for more than 10
years. During her physical examination in December 2020, she had the posterior segment of the
right kidney (right kidney tumor) through the related examinations of CT renal tumor assessment
and angiography (CTA) (kidney tumors and blood vessels). Then, her detailed diagnosis results
indicated: (1) the RENAL nephrometry score was low risk, (2) the tumor kidney location was
uncertain, (3) the tumor was not adjacent to renal pedicle vessel, (4) the mayo adhesive probability
score was low.

Regarding this clinical case of the renal cancer patient, we can apply the established GDM
model of renal cancer STOs to the decision-making problem of STOs for the renal cancer patient
and give the following decision process.

First, the medical treatment team consisting of three physicians (the chief physician, deputy
chief physician, and physician) gave their appropriate assessments of the six alternatives over the
ten criteria during the patient assessment process, then their fuzzy evaluation results can be estab-
lished as the FMS matrix M=(MFij)6×10, where MFij =(ζ 1

Fij,ζ
2
Fij,...,ζ

sj
Fij) (j=1,2,...,10; i=1,2,...,6;

sj =3) are fuzzy sequences, which are shown in Table 1.
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Table 1: The FMS matrix M=(MFij)6×10 of the renal cancer patient in Case 1

Ti q1 q2 q3 q4 q5

T1 (0.2, 0.3, 0.3) (0.2, 0.3, 0.4) (0.2, 0.3, 0.3) (0.3, 0.3, 0.3) (0.6, 0.7, 0.8)
T2 (0.4, 0.5, 0.5) (0.6, 0.7, 0.7) (0.8, 0.9, 0.9) (0.8, 0.9, 0.9) (0.2, 0.3, 0.5)
T3 (0.4, 0.4, 0.5) (0.8, 0.8, 0.9) (0.8, 0.9, 0.9) (0.8, 0.9, 0.9) (0.2, 0.3, 0.4)
T4 (0.2, 0.3, 0.5) (0.2, 0.3, 0.4) (0.2, 0.2, 0.4) (0.2, 0.3, 0.4) (0.8, 0.9, 0.9)
T5 (0.8, 0.9, 0.9) (0.7, 0.7, 0.8) (0.2, 0.3, 0.4) (0.8, 0.9, 0.9) (0.7, 0.7, 0.8)
T6 (0.8, 0.9, 0.9) (0.8, 0.9, 0.9) (0.2, 0.3, 0.5) (0.9, 0.9, 1) (0.7, 0.8, 0.9)

Ti q6 q7 q8 q9 q10

T1 (0.4, 0.4, 0.5) (0.2, 0.2, 0.3) (0.2, 0.2, 0.3) (0.2, 0.2, 0.4) (0.7, 0.7, 0.7)
T2 (0.2, 0.3, 0.4) (0.7, 0.8, 0.8) (0.4, 0.5, 0.5) (0.4, 0.5, 0.5) (0.7, 0.7, 0.8)
T3 (0.2, 0.2, 0.3) (0.7, 0.7, 0.8) (0.4, 0. 5, 0.6) (0.4, 0.4, 0.5) (0.7, 0.7, 0.8)
T4 (0.8, 0.9, 0.9) (0.4, 0.5, 0.6) (0.7, 0.7, 0.8) (0.7, 0.7, 0.8) (0.7, 0.7, 0.8)
T5 (0.7, 0.7, 0.8) (0.8, 0.9, 1) (0.8, 0.9, 0.9) (0.7, 0.9, 0.9) (0.7, 0.7, 0.8)
T6 (0.7, 0.7, 0.8) (0.8, 0.9, 1) (0.9, 0.9, 1) (0.8, 0.9, 1) (0.7, 0.8, 0.9)

Second, using Eqs. (2) and (3), we transform the FMS matrix M=(MFij)6×10 in Table 1 into
the EFS matrix P=(pEij)6×10 in Table 2, where pEij =<mEij,eEij > (j=1,2,...,10; i=1,2,...,6) are
EFEs.

Table 2: The EFS matrix P=(pEij)6×10 of the renal cancer patient in Case 1

Ti q1 q2 q3 q4 q5

T1 <0.2667, 0.9965> <0.2833, 0.9968> <0.2500, 0.9878> <0.2333, 0.9952> <0.7333, 0.9995>
T2 <0.4667, 0.9952> <0.7333, 0.9995> <0.9600, 1.0000> <0.9267, 0.9998> <0.2167, 0.9947>
T3 <0.4333, 0.9947> <0.9500, 1.0000> <0.9700, 1.0000> <0.9500, 1.0000> <0.2333, 0.9952>
T4 <0.2833, 0.9968> <02833, 0.9968> <0.2667, 0.9965> <0.2833, 0.9968> <0.9400, 0.9996>
T5 <0.9333, 0.9997> <0.7500, 1.0000> <0.2167, 0.9947> <0.9600, 1.0000> <0.7333, 0.9995>
T6 <0.9633, 0.9999> <0.9700, 1.0000> <0.2667, 0.9851> <0.9500, 1.0000> <0.7333, 0.9995>

Ti q6 q7 q8 q9 q10

T1 <0.4333, 0.9947> <0.2500, 1.0000> <0.2500, 1.0000> <0.2500, 1.0000> <0.7167, 0.9995>
T2 <0.2333, 0.9952> <0.7367, 0.9994> <0.4500, 0.9962> <0.4500, 0.9962> <0.7367, 0.9994>
T3 <0.2167, 0.9947> <0.7267, 0.9996> <0.4500, 0.9962> <0.4500, 0.9962> <0.7333, 0.9999>
T4 <0.9433, 0.9999> <0.4500, 0.9962> <0.7267, 0.9996> <0.7267, 0.9996> <0.7200, 0.9993>
T5 <0.7333, 0.9995> <0.9400, 1.0000> <0.9400, 0.9996> <0.9167, 0.9997> <0.7333, 0.9995>
T6 <0.7500, 1.0000> <0.9500, 1.0000> <0.9500, 1.0000> <0.9600, 0.9999> <0.7367, 0.9994>

In this case, we do not consider the important differences among the ten criteria. Thus, the
weight values of the ten criteria are specified as ωj =1/10(j=1,2,...,10). Using the EFEAAWAA
operator of Eq. (13) or the EFEAAWGA operator of Eq. (14), the aggregated EFEs pEi for Ti(i=
1,2,...,6) and the score values of R(pEi) are obtained by taking δ=1,2,3. Then the decision results
are shown in Table 3.
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Table 3: Decision results of the renal cancer patient in Case 1

R(pE1), R(pE2), R(pE3), R(pE4), Ranking The best
R(pE5), R(pE6) STO

δ=1 0.4026, 0.6490, 0.6615, 0.6316, T6 >T5 >T3 >T2 > T6
0.7915, 0.8477 Or 0.3328, 0.5499, T4 >T1 Or T6 >T5 >

0.5381, 0.4991, 0.7249, 0.7727 T2 >T3 >T4 >T1
δ=2 0.1774, 0.5197, 0.5540, 0.5122, T6 >T5 >T3 >T2 > T6

0.7510, 0.8679 Or 0.3079, 0.4896, T4 >T1 Or T6 >T5 >

0.4634, 0.4284, 0.6365, 0.6671 T2 >T3 >T4 >T1
δ=3 0.1217, 0.5497, 0.6001, 0.5478, T6 >T5 >T3 >T2 > T6

0.8220, 0.9522 Or 0.2929, 0.4497, T4 >T1 Or T6 >T5 >

0.4152, 0.3874, 0.5548, 0.5783 T2 >T3 >T4 >T1

In Table 3, the ranking orders reflect their difference corresponding to different aggregation
operators. Based on the ranking results in Table 3, the best STO T6 can be decided for the patient
with renal cancer, and then the STS T5 can also be given as the second option. Meanwhile, we
see that the different values of δ cannot impact on the ranking orders of STOs, which show
some robustness of ranking orders in this case. In clinical applications, physicians may select a
preference aggregation operator and value of δ in actual decision process so as to determinate the
best STO for a patient.

In Case 1, the medical treatment group specified the best STS T6 for the renal cancer
patient. After she underwent surgery through the retroperitoneal laparoscopic partial nephrectomy
(RLPN), she had no postoperative complications, and then followed up well after half a year.

Case 2 There is another patient at the First Affiliated Hospital, College of Medicine, Zhejiang
University, China. He is a 67-year-old man and has no past medical history. In April 2021,
he had the right kidney tumor through the related examinations of CT renal tumor assessment
and angiography (CTA) and CT urography in the hospital. Then, his detailed diagnosis results
indicated: (1) the RENAL nephrometry score was high risk, (2) the location of the tumor’s kidney
was uncertain, (3) the tumor was adjacent to renal pedicle vessel, and (4) the mayo adhesive
probability score was low.

Regarding this clinical case of the renal cancer patient, we can also apply the established
GDM model of renal cancer STOs to the decision-making problem of STOs for the renal cancer
patient and give the following decision process.

First, the medical treatment team consisting of three physicians (the chief physician, deputy
chief physician, and physician) gave their suitable fuzzy assessments of the six alternatives over
the ten criteria in the patient assessment process, then their evaluation results can be established as
the FMS matrix M=(MFij)6×10, where MFij =(ζ 1

Fij,ζ
2
Fij,...,ζ

sj
Fij) (j=1,2,...,10; i=1,2,...,6; sj =3)

are fuzzy sequences, which are shown in Table 4.

Second, using Eqs. (2) and (3), we transform the FMS matrix M=(MFij)6×10 in Table 4 into
the EFS matrix P=(pEij)6×10 in Table 5, where pEij =<mEij,eEij > (j=1,2,...,10; i=1,2,...,6) are
EFEs.
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Table 4: The FMS matrix M=(MFij)6×10 of the renal cancer patient in Case 2

Ti q1 q2 q3 q4 q5

T1 (0.4, 0.45, 0.5) (0.23, 0.25, 0.25) (0.2, 0.2, 0.3) (0.2, 0.2, 0.25) (0.7, 0.7, 0.75)
T2 (0.9, 0.9, 0.95) (0.7, 0.75, 0.75) (0.9, 0.95, 0.95) (0.9, 0.9, 0.95) (0.2, 0.2, 0.25)
T3 (0.95, 0.96, 0.98) (0.95, 0.95, 0.96) (0.95, 0.97, 0.97) (0.95, 0.95, 0.95) (0.7, 0.75, 0.75)
T4 (0.75, 0.75, 0.75) (0.25, 0.25, 0.3) (0.2, 0.25, 0.3) (0.2, 0.3, 0.3) (0.92, 0.95, 0.96)
T5 (0.2, 0.25, 0.3) (0.7, 0.7, 0.76) (0.2, 0.2, 0.3) (0.8, 0.9, 0.95) (0.7, 0.7, 0.75)
T6 (0.2, 0.3, 0.3) (0.8, 0.9, 0.95) (0.2, 0.2, 0.3) (0.8, 0.9, 0.95) (0.7, 0.7, 0.8)

Ti q6 q7 q8 q9 q10

T1 (0.4, 0.45, 0.5) (0.2, 0.25, 0.3) (0.25, 0.25, 0.25) (0.25, 0.25, 0.25) (0.9, 0.9, 0.92)
T2 (0.2, 0.2, 0.25) (0.72, 0.74, 0.76) (0.4, 0.45, 0.5) (0.4, 0.45, 0.5) (0.9, 0.9, 0.9)
T3 (0.35, 0.4, 0.5) (0.75, 0.75, 0.8) (0.5, 0.5, 0.5) (0.5, 0.5, 0.6) (0.92, 0.92, 0.95)
T4 (0.9, 0.95, 0.95) (0.4, 0.4, 0.5) (0.7, 0.73, 0.75) (0.7, 0.73, 0.75) (0.9, 0.9, 0.9)
T5 (0.6, 0.7, 0.8) (0.8, 0.9, 0.9) (0.8, 0.8, 0.9) (0.8, 0.9, 0.9) (0.8, 0.9, 0.9)
T6 (0.6, 0.6, 0.8) (0.8, 0.9, 0.9) (0.8, 0.8, 0.9) (0.8, 0.9, 0.9) (0.8, 0.9, 0.9)

Table 5: The EFS matrix P=(pEij)6×10 of the renal cancer patient in Case 2

Ti q1 q2 q3 q4 q5

T1 <0.4500, 0.9962> <0.2433, 0.9993> <0.2333, 0.9821> <0.2167, 0.9947> <0.7167, 0.9995>
T2 <0.9167, 0.9997> <0.7333, 0.9995> <0.9333, 0.9997> <0.9167, 0.9997> <0.2167, 0.9947>
T3 <0.9633, 0.9999> <0.9533, 1.0000> <0.9633, 1.0000> <0.9500, 1.0000> <0.2500, 0.9878>
T4 <0.7500, 1.0000> <0.2667, 0.9965> <0.2500, 0.9878> <0.2667, 0.9851> <0.9433, 0.9999>
T5 <0.2500, 0.9878> <0.7200, 0.9993> <0.2333, 0.9821> <0.8833, 0.9977> <0.7167, 0.9995>
T6 <0.2667, 0.9851> <0.8833, 0.9977> <0.2333, 0.9821> <0.8333, 0.9977> <0.7333, 0.9981>

Ti q6 q7 q8 q9 q10

T1 <0.4500, 0.9962> <0.2500, 0.9878> <0.2500, 1.0000> <0.2500, 1.0000> <0.9067, 1.0000>
T2 <0.2167, 0.9947> <0.7400, 0.9998> <0.4500, 0.9962> <0.4500, 0.9962> <0.9000, 1.0000>
T3 <0.4167, 0.9899> <0.7667, 0.9996> <0.5000, 1.0000> <0.5333, 0.9965> <0.9300, 0.9999>
T4 <0.9333, 0.9997> <0.4333, 0.9947> <0.7267, 0.9996> <0.7267, 0.9996> <0.9000, 1.0000>
T5 <0.7000, 0.9938> <0.8667, 0.9986> <0.8333, 0.9986> <0.8667, 0.9986> <0.8667, 0.9986>
T6 <0.6667, 0.9912> <0.8667, 0.9986> <0.8333, 0.9986> <0.8667, 0.9986> <0.8667, 0.9986>

Similarly, we do not consider the important differences among the ten criteria. Thus, the
weight values of the ten criteria are specified as ωj =1/10(j=1,2,...,10). by the EFEAAWAA
operator of Eq. (13) or the EFEAAWGA operator of Eq. (14), the aggregated EFEs pEi for
Ti(i=1,2,...,6) and the score values of R(pEi) are yielded corresponding to δ=1,2,3. Thus, the
decision results are shown in Table 6.
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Table 6: The decision results of the renal cancer patient in Case 2

R(pE1), R(pE2), R(pE3), R(pE4), Ranking result The best
R(pE5), R(pE6) STO

δ=1 0.4769, 0.7615, 0.8515, 0.7365, T3 >T6 >T2 >T5 > T3
0.7584, 0.7773 Or 0.3454, 0.5692, T4 >T1 Or T3 >T6 >

0.6622, 0.5454, 0.6287, 0.6436 T5 >T2 >T4 >T1
δ=2 0.3425, 0.7699, 0.9213, 0.7376, T3 >T2 >T6 >T4 > T3

0.7109, 0.7502 Or 0.3091, 0.4545, T5 >T1 Or T3 >T6 >

0.5438, 0.4458, 0.5077, 0.5168 T5 >T2 >T4 >T1
δ=3 0.4114, 0.8962, 0.9934, 0.8776, T3 >T2 >T4 >T6 > T3

0.7847, 0.8337 Or 0.2901, 0.3904, T5 >T1 Or T3 >T6 >

0.4773, 0.3926, 0.4287, 0.4362 T5 >T4 >T2 >T1

In Table 6, the ranking results reflect their difference corresponding to different aggregation
operators and values of δ. Based on the ranking results in Table 6, the best STO T3 can be given
to the patient with renal cancer. Since the different aggregation operators and values of δ can
impact on the ranking orders of STOs in this case, the ranking orders show some flexibility and
sensitivity to the two aggregation operators and values of δ. In clinical applications, physicians
may select a preferred aggregation operator and value of δ in actual decision process so as to
determinate the best STO for a patient.

In Case 2, the medical treatment team used the best STO T3 for the renal cancer patient. After
he underwent surgery through the retroperitoneal laparoscopic radical nephrectomy (RLRN), he
had no postoperative complications, and then followed up well after half a year.

Since the traditional method of STOs mainly depends on physicians’ clinical experience and
judgment for a renal cancer patient, the determination of the best STO for the renal cancer
patient lacks a scientifical and reasonable decision-making/evaluation model. Then, the GDM
model proposed in this study can overcome this flaw of the existing selection method and provide
a new effective way for the determination of the best STO for a renal cancer patient. However,
the GDM applications of two clinical cases indicate that the proposed GDM model of the renal
cancer STOs shows the advantages of the usability and rationality in the setting of FMSs.

5.2 Comparison with the Related Methods
In this original study, we propose the GDM model of renal cancer STOs for the first time.

Then, there are no existing methods/models for solving renal cancer STO problems in the current
literature or clinical applications. Therefore, it is difficult to make a qualitative comparison with
the existing methods. However, we have to address the comparison of the following characteristics
in the expression of information and the GDM method of STOs in the case of FMSs.

Since the traditional method of STOs mainly depends on physicians’ clinical experience and
judgment for a renal cancer patient, the determination of the best STO for the renal cancer patient
lacks a scientific and reasonable decision-making/evaluation model in current clinical applications.
Then, the GDM model proposed in this study can overcome this flaw of the existing selection
method and provide a new effective way for the determination of the best STO for a renal cancer
patient. Through the clinical application of the best STOs in the two actual cases, there were no
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postoperative complications, and the follow-up for half a year showed good results, reflecting the
effectiveness and rationality of the best STOs in the clinical application. However, the applications
of GDM in two clinical cases indicate that the proposed GDM model of renal cancer STOs shows
the advantages of its feasibility and rationality in the setting of FMS.

In the case of FMSs, El-Azab er al. [15] presented correlation coefficients of FMSs for medi-
cal diagnosis. Then, Turkarslan et al. [16] introduced the concept of CFS in terms of the average
value and consistency degree (complement of standard deviation) of a fuzzy sequence in FMS and
proposed GDM methods using the weighted correlation coefficient and weighted cosine similarity
measure of CFSs. However, existing methods [15,16] cannot be applied to the two actual cases
because we cannot find a desired/ideal STO/CFS T∗

i in current clinical applications and existing
literature and use the correlation coefficient or cosine similarity measure between the STO Ti and
the desired CFS T∗

i . Obviously, our GDM model without considering the ideal STO/CFS can
solve the STO problem and reflect its superiority over the existing methods in clinical applications.
In addition, the conversion method using the complement of the standard deviation (degree of
consistency) [16] is generally only suitable for the normal distribution, which shows its limitations,
then we can make up for this gap by using the normalized entropy conversion method. Therefore,
our model reflects its highlighting merits in the information expression of EFS, flexible aggregation
operations, and the GDM method of STOs in the case of FMSs.

6 Conclusion

In view of the lack of scientific and reasonable decision-making models in the commonly
used STO methods for renal cancer patients, this article established a multicriteria GDM model
of renal cancer STOs to overcome the flaws of the existing methods. In this study, regarding
FMSs evaluated by the medical group in the assessment process of a renal cancer patient, we
proposed a conversion method for conversing FMSs into EFSs based on the mean and Shannon
entropy of each fuzzy sequence in FMS to reasonably simplify the information expression and
operations of FMSs and defined the score function and ranking rules of EFEs. Then, we proposed
the EFEAAWAA and EFEAAWGA operators based on the Aczel-Alsina t-norm and t-conorm
operations of EFEs. Furthermore, a multicriteria GDM model was established based on the
EFEAAWAA and EFEAAWGA operators and the score function to solve the decision-making
problems of STOs for renal cancer patients in the setting of FMSs. Finally, the GDM applications
of two clinical cases indicated that the proposed GDM model can show the advantages of the
efficiency and rationality under the environment of FMSs. The decision-making results of the two
cases demonstrated that the GDM model proposed in this study can overcome the flaw of the
existing traditional STO method and provide a new effective way to determine the best STO for
a renal cancer patient in the FMS environment.

In future research, we can extend the proposed GDM model to STOs of other cancer
patients, such as prostate and bladder cancer patients under the FMS environment. Furthermore,
we further also propose new fuzzy multivalued measure algorithms and GDM models to solve
diagnosis/assessment problems of cancer patients with group fuzzy evaluation values.
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