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ABSTRACT

Advances in numerical simulation techniques play an important role in helping mining engineers understand those
parts of the rock mass that cannot be readily observed. The Material Point Method (MPM) is an example of such
a tool that is gaining popularity for studying geotechnical problems. In recent years, the original formulation of
MPM has been extended to not only account for simulating the mechanical behaviour of rock under different
loading conditions, but also to describe the coupled interaction of pore water and solid phases in materials. These
methods assume that the permeability of mediums is homogeneous, and we show that these MPM techniques fail
to accurately capture the correct behaviour of the fluid phase if the permeability of the material is heterogeneous.
In this work, we propose a novel implementation of the coupled MPM to address this problem. We employ
an approach commonly used in coupled Finite Volume Methods, known as the Two Point Flux Approximation
(TPFA). Our new method is benchmarked against two well-known analytical expressions (a one-dimensional
geostatic consolidation and the so-called Mandel-Cryer effect). Its performance is compared to existing coupled
MPM approaches for homogeneous materials. In order to gauge the possible effectiveness of our technique in the
field, we apply our method to a case study relating to a mine known to experience severe problems with pore water.
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1 Introduction

Numerical modelling is an essential tool for understanding the induced stress changes in
underground hard rock mines. Mines rely on these tools for numerous purposes, of which arguably
the most important is the planning of mining operations that mitigate seismic risk. Since engineers
cannot physically observe the solid rock mass, numerical techniques must be capable of providing
reliable predictions of the complex behaviour of the material. Many of the available commercial
software packages simulate models that only allow for a single solid phase and frequently neglect
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groundwater’s influence on the stress regime in the rock mass [1–4]. Studies investigating the effect
of groundwater principally concentrate on mine dewatering or the environmental impact in coal
mines [5–8]. The coupled effect of the pore water pressure on the stress in the solid of hard rock
mines is often overlooked when undertaking numerical stress modelling experiments. For example,
it is expected that the effective stress of rock decreases as the water pore pressure increases.
Therefore, it means that a geological fault that is filled with water may become unclamped
under high pore pressure, making it much more likely to slip and consequently more seismically
hazardous. Experiments that exclude the effect of the fluid may misleadingly suggest that the
fault is stable. It is this prospect that motivates much of the work in this paper, in which we
present a new numerical tool to aid hard rock mining applications which takes explicit account
of the fluid phase, and thus making our tool a multiphase solver. We emphasize that we use the
term multiphase to refer to the solid and fluid phases of the different materials in our context.
This contrasts with the term multiphase’s standard meaning in petroleum engineering, where it is
typically used when discussing two different fluids such as oil and water.

A standard modelling technique that is often used in the mining industry is based on
boundary elements. The Boundary Element Method (BEM) [9] can represent large-scale mining
configurations but assumes a medium that is linear elastic. This restricts its use to heterogeneous
rock situations, making it less suited to the simulation of more complex multiphase problems. On
the other hand, Finite Element Method (FEM) based solvers tend to be very reliable for analysing
a wide range of mining-related problems. It has the distinct advantage that it can be used to model
complex mining geometries in heterogeneous mediums. Furthermore, many extensions of the basic
FEM, like the control volume FEM (CVFEM) [10], can simulate the coupled effect of multiphase
problems. However, FEM can struggle when handling large deformations, and complex remeshing
techniques are often essential to deal satisfactorily with this effect. To alleviate this problem,
we suggest and investigate the properties of another family of methods often referred to as the
Material Point Method (MPM) [11]. This strategy is attractive because the MPM can describe
large deformations without invoking expensive and intricate remeshing. In mining simulations, grid
locations near excavations (empty spaces) are susceptible to undergoing large deformations if high
stresses exist. Moreover, the MPM can construct layouts with complex geometries with relatively
little effort; this property is a direct consequence of the fact that the technique relies on a regular
grid and so avoids the remeshing complications typically encountered within FEM. Furthermore,
it has the property that it can simulate coupled multiphase problems using a single solver, therefore
by-passing the need for a hybrid approach. One drawback of the MPM is its computational cost
since particle, as well as grid states, have to be accounted for. High-density grids of entire mining
layouts may necessitate significant memory resources. Basson et al. [12] describe a way to alleviate
this effect by making use of a layered MPM background grid to simulate large mining problems.

The original formulation MPM was proposed by Sulsky et al. [11]. It is a hybrid Lagrangian
and Eulerian Particle-In-Cell method that uses Lagrangian material points (otherwise known as
particles) to carry history-dependent properties and employs an Eulerian background mesh as a
communication tool for transferring information between the particles. Physical properties are first
interpolated onto the background mesh, then the equations of motion are solved, and finally, the
updated states are interpolated back to the particles themselves.

The MPM has been successfully used to study many problems, and its application to
geotechnical questions [13–15]. More recently, the MPM has been extended to account for
multiphase problems that embody fully coupled soil-fluid interaction [16–19]. The treatment of
multiple phases within hydro-mechanical geotechnical problems using a single solver is particularly
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interesting to our current study. This method, used in the investigations [20,21], eliminates the
need for complicated hybrid approaches that would otherwise be necessary to handle the coupling
of the various phases.

Many coupled MPM formulations use the Biot theory approach [22] in which the momentum
balance equation for the solid phase is solved on the Eulerian grid, and a Darcy velocity is
assumed to describe the relative motion of the fluid with respect to the solid. The theory of
mixtures [23] has also been successfully applied; this approach is founded on momentum balance
equations solved independently on the Eulerian grid, while the coupling is modelled by introducing
drag terms for both phases. Bandara [24] has successfully applied both the theory of mixtures
and the Biot’s theory approach and used a two-point formulation to describe the coupled MPM
(see Fig. 1). In the two-point formulations of the multiphase MPM, the medium consists of
distinct groups of particles for each phase; solid particles and fluid particles are treated separately.
This leads to the doubling up of particles within the grid and requires extensive computational
resources. In the single-point formulation of the MPM, each particle carries information about
both phases simultaneously.

Figure 1: An illustration of the difference between the single-point and two-point implementations
of the two-phase MPM. Top: the mixture is represented by a total of 64 porous particles
representing the solid phase and another 64 fluid particles for the fluid phase giving 128 particles
in total. Bottom: now, the mixture is represented by 64 particles, each of which carries information
about the states of both phases

Both Al-Kafaji [16] and Bandara et al. [17] have used a single-point formulation to solve
problems within saturated porous media. Yerro et al. [19] extended the single-point formulation to
allow for three phases in which solid, fluid and gas components are coupled. Each formulation has
its advantages and disadvantages, and arguably none are demonstrably superior to the others in all
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instances. Instead, the choice of the particular implementation is best guided by the details of the
specific problem at hand. For example, when a problem requires the presence of free water (see
Fig. 2 as well as pore water, then the use of a two-point formulation based on Mixture Theory
is recommended. However, attempting to apply this to quasi-static problems requires additional
mechanical damping to both phases simultaneously, which may be difficult as this could lead to
pressure oscillations [24]. It significantly increases the computational overhead associated with the
requirement to account for both solid and fluid particles. If there is no free water present, then it
is much easier to implement a single-point formulation as the position of the fluid is redundant
and focus can be directed on the fluid pressure and velocities at the location of the solid particle
instead. Therefore, for our study, the single-point MPM was chosen since our interest is to assess
the response of the solid phase due to pore pressure changes in the fluid. Our investigations do
not require any free water, which is ignored henceforth.

Figure 2: An example of the two point implementation of the MPM to represent a fluid-solid
mixture together with free water particles lying outside the boundary of the mixture

The remainder of the paper is structured as follows. In Section 2 we first outline the problems
associated with using existing coupled MPM approaches to simulate materials with heterogeneous
permeability. We then propose a modification that enables MPM to cater for mediums with
variable permeability; this is the subject of Section 2.1. We then describe the details of a full
computational cycle of our modified MPM. The performance of our new method is validated in
Section 3 against two well-known analytical expressions and a comparison with the performance
of a conventional coupled MPM as commonly found in the literature. Having benchmarked
the new method against some test examples, we then use it to model an actual active mine in
Section 4; in particular, we investigate the effect of pore pressure changes of a fluid-filled fault on
the surrounding stress. We conclude the paper with some observations and final remarks.

2 Problem Description

In a single-point formulation of the two-phase MPM, the medium is represented by a solitary
particle layer which means that each particle must carry information about both the solid and
fluid phases. Most existing literature that uses this approach assumes that the continuum is defined
as a homogeneous porous solid material with constant permeability and porosity [16,17,24]. This
can be problematic when trying to simulate heterogeneous materials in which the permeability is
heterogeneous. It is essential for what follows, so it is worth exploring this claim a little further.
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The schematic shown in Fig. 3, sets out, in simple terms, the main elements needed to advance the
coupled MPM through one time step. For definiteness, let us suppose that the background grid
is a regular Cartesian mesh; we need to bear in mind that what happens in this instance equally
applies to more intricate nonstructured grids. The grid is initially populated with particles in some
predetermined state, as depicted in Fig. 3a. The particle properties are then mapped onto the
nearby cell nodes; this interpolation is performed using suitably chosen shape functions (Fig. 3b).
In the original formulation of MPM, the shape functions are standard tri-linear forms similar to
those often used in FEM methods. In more advanced versions of the implementation, higher-order
shape functions can be used if greater transfer tiers are required outside the host cell (see, for
example [25], or a variant of the MPM known as the Generalized Interpolated Material Point
Method (GIMP) [26]). This intentionally smears information over a much larger volume than
the cell occupied by the particle; this is a complicating factor when simulating nonhomogeneous
materials as usually a clear boundary between different materials cannot be distinguished. Several
adaptions that purport to address this problem in the MPM have been proposed [27–30]. In
Fig. 3c, the grid is stepped forward in time by solving the equations of motion at the grid nodes.
Once complete, the particles are updated in Fig. 3d. These include position, velocity and stress,
among others. Finally, in Fig. 3e, the grid is reset in preparation for the next time step.

Figure 3: A flow diagram illustrating the stages required to advance the coupled MPM through
one time step

To delve a little deeper into the source of the problem, we focus on the process by which
the fluid phase properties are mapped onto the nearby nodes, see Fig. 3b. First, we define the
generalised Darcy’s law [31–33] for a fluid phase α according to

wα =− κ

gρα

(∇pα + ρα (g − as)) , (1)

where wα is the relative velocity of the fluid to the solid phase; κ is the solid phase conductivity
(units m/s); pα is the fluid pore pressure; ρα is the fluid density; g is scalar gravity; and g and
as denote the gravitational acceleration and the acceleration of the solid phase, respectively. The
fluid velocity at a node of the background mesh can be discretised to (as explained in detail in
[34])

wα = κ

Mg

⎛
⎝

Np∑
∇S(x)pαVα

⎞
⎠+ κ (g − as)

g
. (2)

The summation is taken over all Np particles that are located in the cells that share this node
and depends upon the gradient of the shape functions S(x). In this expression, Vα represents the
fluid phase volume of the particle determined using

Vα = nVp (3)
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where n is the solid phase porosity and Vp is the combined particle volume of both the solid
and fluid phases (see Section 2.2 below for more detail on the particle volume calculation.)
Furthermore, the fluid phase mass of an individual particle is

mα = Vαρα (4)

so that the total nodal fluid phase mass is expressed as M = ∑
N S(x)mα. When a material is

isotropic, and κ is uniform, Eq. (2) correctly calculates the nodal Darcy velocities as illustrated in
Fig. 4.

Figure 4: The effect of an heterogeneous material on the predicted fluid velocities. We show in
the upper diagram the situation that arises when the material in which all particles have the same
permeability. The fluid phase velocities (arrows) calculated at the grid nodes are correctly resolved
by standard MPM techniques. To contrast the situation when there is non-constant permeability,
consider the material in the lower diagram; here it is supposed that the cell containing blue par-
ticles has one value of permeability while the surrounding cells with black particles all have zero
permeability. In this scenario, standard MPM interpolation techniques will predict an incorrect
fluid phase velocity at the four interior grid nodes where the velocity should be zero

On the other hand, when the material is heterogeneous, the situation changes as κ is no longer
constant around the node. To amplify this point, assume the cell at the centre of the grid contains
particles for which κ is non-zero but that κ = 0 in the neighbouring cells as sketched in Fig. 4
We would expect wα = 0 at these nodes of the central cell as no fluid can be passed from this cell
to its neighbours. However, if we naively apply Eq. (2) we note that wα is non-zero, ultimately
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resulting in a loss of pore pressure in the particles of the centre cell. We need to address this
issue to ensure that mediums with heterogeneous permeability can be modelled faithfully.

2.1 Application of the Two Point Flux Approximation within the MPM
When using domain discretisation approaches to solve partial differential equations, a rela-

tively large domain is divided into smaller elements, otherwise known as finite volumes (FVs).
Finite Volume methods are usually the industry-preferred method for solving problems involving
porous media as they are based on the conservation of continuity of fluxes [35]. These methods
can be divided into two main classes, namely Two Point Flux Approximations (TPFA) [36] and
Multi Point Flux Approximations (MPFA) [37]. TFPA methods are widely used in commercial
software packages to study fluid flow in porous media; it is an attractive approach because it is
simple to implement and computationally efficient. However, these methods struggle to accurately
resolve the flux for grids that are not K-orthogonal; that is, instances when the principal directions
of the permeability tensor do not coincide with the orientation of the input grid. The standard
TPFA must be adapted to deal with such cases [38]. On the other hand, MPFA methods are
adept at solving problems involving unstructured grids. Furthermore, as mentioned previously,
when dealing with the full permeability tensor, one may choose to solve the problem using either
FEM, Mimetic Finite Difference or the MPFA [39]. However, these implementations are typically
much more complicated than the TPFA, which leads to a computationally expensive algorithm. In
what follows, we attempt to adapt the TPFA to fit into the computational scheme of the MPM,
and since the standard MPM grid is K-orthogonal, it follows that the TPFA is the preferred
choice. If, however, unstructured grids are to be considered, then the MPFA should be preferred.

The total fluid flux through the surface of a finite volume can be written as

F =−
∫

Ω

(K∇pα) · n dΩ (5)

where n is the unit normal vector on the boundary of a surface dΩ that points away from the
centre of the cell; and K is the full permeability tensor. Within the MPM framework, the back-
ground grid cells can be considered as finite volumes. Thus, if the cell C is a three-dimensional
cube, then this is formula is adapted so that

FC =−
∑∫

Ω

(K∇pα) · n dΩ (6)

where the sum is taken over the six faces of the cube. The integral term on the right-hand side
of Eq. (6) is usually referred to as the flux through face dΩ. If this depends only on the scalar
pressure across the edges of the cell, then the discretisation method is of TPFA type, but if the
fluid pressures of surrounding cells also enter the integral, we are dealing with a MPFA case. We
will assume the pressure varies linearly across two adjacent cells for our calculations, and thus we
follow the TPFA approach.

To demonstrate how the flux at the interface of two cells are calculated in practice, consider
two cells A and B, each with length l, as depicted in Fig. 5. Suppose that cell A has permeability
k1, cell B has permeability k2 and that the shared face q of the two cells is a distance l/2 from
the centre of each cell. The flux between the centre of A and q can be written

FA|q = k1
pq − pA

l/2
(7)
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where pq is the fluid pressure at the interface and pA is the fluid pressure at the centre of A. An
analogous expression for the other cell gives

Figure 5: A schematic of a one-dimensional application of the TPFA. Here we have neighbouring
cells A and B, each of side l, but with different permeabilities k1 and k2. The purpose of the
TPFA is to calculate the flux across the common face q

FB|q = k2
pq − pB

l/2
(8)

where pB is the fluid pressure at the centre of B. Since the fluxes FA|q and FB|q should be the
same, this enables us to deduce that

pq = T1pA +T2pB

T1 +T2
(9)

where Tj = kj/l with j = 1, 2. If we use Eq. (9) in expression (7) we obtain the flux expression

FA|q = 2
1/T1 + 1/T2

(pA − pB) , (10)

which shows that the flux through q is a function of the harmonic average of the permeabilities
of the two cells. If we were to apply Eq. (10) directly within the MPM framework, we would
need to conduct additional calculations to determine the flux across all the cell interfaces in the
background grid. Although the MPM scheme can be modified to include this step, it is undesirable
as it adds extra computational overhead to the algorithm. Furthermore, since the nodes of the
background mesh are used directly in the method, it would be advantageous to resolve the Darcy
velocities at the nodes of the background mesh rather than across the interfaces of the grid
cells. A schematic of conventional mapping scheme is depicted in Fig. 6 and requires the direct
application of Eq. (2) to each one of the nodes denoted by the black squares. The Darcy velocity
depends on the pore pressure and conductivity of all particles in the cells that share the node. As
already mentioned, this method is only accurate if the conductivity of the particles contributing
to the node is isotropic.

To improve matters, here we propose a modification of Eq. (2) to ensure that each node only
uses information gleaned from particles located in cells that share a common interface. This will
allow fluid flow to only occur across these boundaries, as is the case in the TPFA. To explain the
process, we direct the reader to the second diagram in Fig. 6. Here we have drawn nine square
cells, with the central one denoted C. Now the goal is to set the Darcy velocities at each of
the four nodes of C such that it describes the total fluid flux through the surfaces of C. For
definiteness, let us focus on the upper-left (north-west) node of C, which we have labelled Q; this
choice of the node is not essential, and analogous considerations apply for the other three nodes
of C.
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Figure 6: An illustration of the distinction between the conventional mapping technique employed
in MPM and the modification suggested in the current work. In the left-hand diagram, which
relates to the conventional approach, Eq. (2) is applied to all particles (indicated blue) in the grid.
The Darcy velocity at a particular node (black rectangles) is inferred from the velocities of all the
particles within the cells which share the node. The Darcy velocity at the node can point in any
direction as a result of the particle summation. Right: particle pore pressures are combined to
obtain a cell centered average pore pressure. Fluid flow is then limited to cells that share common
faces with each node

We base many of our design decisions guided by the strategy employed in the usual TPFA.
First, we remark that in examining node Q, we will only consider contributions from particles
located in cells 1, 3 and 5; that is, cell C together with those cells that have Q has a node and
which share an interface with C (i.e., the cells to the north and the west of C). For each of these,
the cell pore pressure pc is set to be the average value of the individual particle pressures so that

pc = 1
Np

Np∑
pα, (11)

where Np denotes the number of particles contained in the cell and pα is the particle pore pressure.
The fluid mass mc in each cell c is calculated from Eq. (4) as mc = nVcρα where Vc is the volume
of the cell. The total fluid can then be mapped to Q and becomes

MQ =
Nc∑

S(xc)mc (12)

where S(xc) is the shape function evaluated at the position of the centre of the cell and Nc is the
number of cells (in our example case three).

The standard shape functions of an isoparametric hexahedron can be calculated using the
schematic idea that is sketched in Fig. 7. The illustration shows how to compute the shape
function for a one-dimensional problem, and this is then easily extended to three dimensions
by calculating the product of three one-dimensional functions S(x) = S(x)S(y)S(z). The sides in
Fig. 7 are simple linear functions that ensure that the weighting varies from 1 if the point x lies
on the node and zero if it coincides with a neighbouring node.

Next, the conductivity term is evaluated independently for each cell that shares an interface
with C and has Q as one of its nodes. In this example, there are two such cells, and we denote
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these interfaces c1|3 and c1|5. We have previously seen that the conductivities at the interfaces are
simply the harmonic average of the relevant two cell conductivities so can be expressed

κ1|3 = 2
1/κ1 + 1/κ3

and κ1|5 = 2
1/κ1 + 1/κ5

. (13)

Figure 7: A schematic of a one-dimensional linear shape function that is commonly used in the
MPM. In three dimensions the shape function can be calculated using S(x)= S(x)S(y)S(z)

With these key changes in mind, we can now derive the appropriately modified version of
Eq. (2). To start the process, it is convenient to imagine that κ is uniform around Q (although
we relax this in due course). Applying Eq. (2) directly to Q as done in existing MPM approaches
gives

wQ = κ

MQg

{
∇S(x1)p1 V1 +∇S(x3)p3 V3 +∇S(x5)p5 V5

}
+ κ

(
g − aQ

)
g

(14)

where the terms Vi, pi and ∇S(xi) denote the fluid volume of cell i and the pressure and the
gradient of the shape functions evaluated at the centre of that cell. In the last term aQ represents
the nodal acceleration of the solid phase at Q; we say more about calculation of this quantity in
Section 2.2 below. Note that there is no restriction on the direction of the fluid flux in Eq. (14)
and requiring the flux to be only perpendicular to the boundaries of c1|3 and c1|5 require a
modification to the formulation.

As has been kindly pointed out to us by an anonymous referee, if κ is just a constant scalar,
expression (14) simplifies to Eq. (2) and then the procedure becomes similar to that typical in
a standard two-phase implementation. However, in our TPFA approach, the aim is to define a
relation that is dependent only on the adjacent neighbours around node Q of cell c in Fig. 6. We
see that cell 1 contributes to Q through both the interfaces, c1|3 and c1|5, whereas cells 3 and 5
contribute to Q only via c1|3 and c1|5, respectively. Furthermore, since κ is no longer constant, its
value needs to be ascribed correctly depending on which interface is relevant.

With these changes taken into account we can modify (14) to

wQ = V
MQg

{∇S(x1)� n1|3p1κ1|3 +∇S(x1)� n1|5p1κ1|5 +∇S(x3)� n1|3p3κ1|3 +∇S(x5)� n1|5p5κ1|5
}

+ 1
g

{
S(x1|3)κ1|3

(
g − a1|3

)+S(x1|5)κ1|5
(
g − a1|5

)}
(15)
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where n1|3 and n1|5 denote the normal directions of the interfaces c1|3 and c1|5, the symbol �
represents the element-wise product of vectors and a1|3 and a1|5 represents the acceleration of the
solid phase of respective interfaces. These are simply taken as the average value of the acceleration
of the interface nodes. The terms S(x1|3) and S(x1|5) represent shape function values evaluated at
the interface centre position. In our example we can simplify matters somewhat because our cells
are of equal volumes V . Since the shape function gradients are evaluated at the respective cell
centres, it follows that ∇S(x1)� n1|3 =−∇S(x3)� n1|3 and ∇S(x1)� n1|5 =−∇S(x5)� n1|5. With
this, Eq. (5) becomes

wQ = V
MQg

{
∇S(x1)� n1|3κ1|3(p1 − p3)+∇S(x1)� n1|5κ1|5(p1 − p5)

}

+ 1
g

{
S(x1|3)κ1|3

(
g − a1|3

)+S(x1|5)κ1|5
(
g − a1|5

)}
. (16)

We have developed result (16) with the specific node Q in mind. However, this balance can
easily to extended so as to apply for any of the nodes of cell X: specifically

w = VC

Mg

{ c∑
∇S(xC)� nC|cκC|c(pC − pc)

}
+ 1

g

c∑
S(xC|c)κC|c

(
g − aC|c

)
(17)

where subscript C represents a value evaluated at cell C and subscript c represents a value
evaluated at an adjacent cell that shares a common interface with C as well the the node.

Given this modified expression for the Darcy velocity, we need to embed it within the cycle
of calculations that are required to complete a time step within the modified MPM.

2.2 The MPM Method
In this section, we will explain how we deploy the dynamic MPM in our modelling exper-

iments. The Lagrangian particle layer present in our solid skeleton and the momentum balance
equations for the fluid-solid mixture are solved on a regular Eulerian background mesh composed
of trilinear shape functions S(x). Isothermal conditions hold as we shall assume that there is no
mass exchange between phases, the solids are always fully saturated, and there is no acceleration
of the fluid with respect to the solid. Moreover, we suppose that the densities of the two phases
remain constant, the porosity of the solid phase does not change, the compressive stress is
negative, while the pore pressure is positive.

Our medium is heterogeneous, which means we can not assume constant conductivity as com-
monly adopted in the majority of MPM applications [16,17,24]. We, therefore, need to carefully
consider our treatment for determining the Darcy velocity of the fluid phase at the nodes of the
background grid in the presence of this complication.

To initiate our model, suppose that at time t a particular particle p is positioned at xt
p,

has velocity vt
p and occupies a volume V0

p . We assume that the Cauchy effective stress is σ t
p

and the strain is εt
p (both expressed in Voigt notation). Furthermore, the solid phase conductivity

κ0
p, the fluid pore pressure pt

p together with the solid phase mass ms = (1− np)ρsV0
p , in which ρs

is the solid phase density and np the particle porosity, are all known.
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With this particle state specified, we can derive:

1. the volume of the mixture Vt
p =

(
1+ εt

1p

)(
1+ εt

2p

)(
1+ εt

3p

)
V0

p ;

2. the fluid phase mass mα = npραV0
p , where ρα is the fluid phase density and

3. the particle mass mp = ms +mf , where ms and mf denotes the mass of the solid and fluid
respectively.

The method then proceeds as follows. For each particle p, we can identify the particular
grid cell that contains p and then links are created between p and the eight nodes of that cell.
Reciprocal links from the nodes back to the particle are formed, and the combined information
is stored in a bi-directional map Ml↔p which is called upon all subsequent steps whenever
interpolation is required.

For each grid node l, we use the information within Ml↔p to identify all the associated linked
particles. These having been found, we can compute the mass mt

l , and velocity vl of the node
using

mt
l =

Np∑
p=1

mpS(xt
p) and vl =

Np∑
p=1

mpvt
p

mt
l

S(xt
p) (18)

respectively. The force exerted due to the solid-fluid mixture is

f t
l =

Np∑
p=1

[
−∇S(xt

p)
(
σ t

p − pt
pq

)
Vt

p +
(
mpb+ ts

)
S(xt

p)
]

(19)

where q = [111000]T , b is a body force (such as gravity) acting on the particle p, and ts is an
external traction force acting on the solid phase of the particle. The linear momentum balance
equation for the mixture is solved at the node using

at
l =

f t
l + f d

l

mt
l

, (20)

where the frequency independent damping term is defined to be

f d
i =−γ

∣∣f t
l

∣∣ sign
(
vt

l

)
(21)

and is added to enhance the numerical stability of the process and to encourage the convergence
to a quasi-static solution [40]. The constant γ is a dimensionless damping factor, and empirical
evidence suggests it should typically be set somewhere in the range 0.7–0.85, see, for example, [15].
The nodal velocity at the end of the Lagrangian step is updated using Eq. (20) so that

vt+�t
l = vt

l + at
l�t (22)

and boundary conditions for at
l and vt+�t

l can be applied if necessary.

At this point in the process, our novel MPM formulation deviates from many of the estab-
lished two-phase MPM strategies. In these standard versions, the nodal Darcy velocities are
calculated by appealing to Eq. (2), but, as we have already discussed, this does not take into
account any anisotropy in the conductivity of particles. We have shown that Eq. (17) captures this
phenomenon, and we use this balance to execute nodal Darcy velocity calculations.
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Having updated the state of each node, we can revert to the particles. For each particle, we
use Ml↔p to identify all the nearby grid nodes Nn within its range and use them to calculate
several relevant quantities. First, we update the position and velocity of the particle using

xt+�t
p = xt

p +�t
Nn∑
l=1

vt+�t
l S(xt

p) and vt+�t
p = vt

p +�t
Nn∑
l=1

at
lS(xt

p) (23)

while the strain increments for the solid phase are

ε̇s = �t
2

Nn∑
l=1

[
∇S(xt

p)vt+�t
l +

(
∇S(xt

p)vt+�t
l

)T
]

. (24)

The fluid phase strain increment for each particle requires the calculation of the average pore
pressure and conductivity of the cell which are set to be

pt
c =

1
Np

Np∑
p=1

pt
p and κ t

c =
1

Np

Np∑
p=1

κ t
p. (25)

Each cell is then revisited to deduce the associated nodal Darcy velocities wt
l for the nodes

only belonging to that cell. This is done by applying Eq. (17) to each face of the cell in turn.
As an aside, we need to emphasise that once wt

l is calculated for all the nodes of a specific cell;
these are then cleared before the algorithm proceeds. Otherwise, should a particular node lie on
the boundary of two or more cells, when evaluating Eq. (17) for the second (or subsequent) cell,
a previous value of wt

l stored from an earlier calculation may contaminate the analysis. Once all

the values for wt
l known for all nodes, we can compute the particle fluid phase strain increment

using the standard expression

ε̇α = �t
2

Nn∑
l=1

[
∇S(xt

p)wt+�t
l +

(
∇S(xt

p)wt+�t
l

)T
]

(26)

and the pore pressure is advanced using

pt+�t
p = pt

p −�t
(

Kf

np

)
(tr(ε̇α)+ tr (ε̇s)) (27)

where Kf is the fluid bulk modulus. The appropriate constitutive relation can then be applied to
update the particle stress. Once all particle information has been advanced, the whole system has
been moved through one timestep, and the process can then be repeated.

2.3 Time Step Scaling
The explicit nature of the proposed iteration scheme means that the timestep �t must be

chosen sufficiently small that the usual Courant-Friedrichs-Levy (CFL) [41] condition holds and
stability of the solution method is ensured. An upper bound on the proper time step is given by
�tc = L/vp, where L is the smallest cell length of the background grid and vp is the velocity of
the pressure wave for the applied material properties. For mining-related studies, the value of �tc
typically lies in the range from 1×10−7 to 1×10−4 seconds. Such small values can be problematic



392 CMES, 2022, vol.131, no.1

when simulating coupled pore pressure diffusion problems, as typically one would need to simulate
millions of time steps.

Fortunately, for a simulation that is kept near quasi-static equilibrium, this stringent constraint
on the timestep can often be relaxed somewhat. Basson et al. [12] used the maximum nodal
unbalanced force ratio and maximum particle velocity of the MPM to determine whether a system
is in approximate equilibrium. If it is, the time step can be safely increased by adapting Eq. (20)
to

at
l =

f t
l + f d

l

mt
lD

t
, (28)

where Dt is a mass density scaling factor. Here we set Dt = 1 if model is not in equilibrium but
set Dt+�t = kDt if it is. Experiments suggest that optimal performance is achieved if k ≈ 1.005

which corresponds to a time step �t =
√

Dt+�t�tc.

3 Benchmarking of the Method

Before using our technique in practical contexts, it is essential to validate its performance
against well-known and standard examples. For this purpose, we selected two problems [24] for
which analytical results exist. The case studies were specifically chosen to test our new MPM
and compare it with the results of existing two-phase MPM implementations. These benchmarks
assume the medium has homogeneous permeability and thus, unfortunately, will not test the
performance of our method when handling heterogeneous cases since analytical expressions for
these cases are very sparse. On the other hand, one of the key features of our technique is
that its treatment of the fluid-phase coupling is very different to that implicit in other coupled
MPM formulations. In this way, our tests compare the performance of our methodology against
analytical knowledge and give a way of assessing its usefulness and advantages over existing MPM
implementations. In our experiments, we examined the values of the two sums in Eq. (17)

T1 = VC

Mg

{ c∑
∇S(xC)� nC|cκC|c(pC − pc)

}
and T2 = 1

g

c∑
S(xC|c)κC|c

(
g − aC|c

)
(29)

in the two subsections that follow.

3.1 Geostatic Stress Distribution Due to Gravity
The first example taken from Bandara [24] explores the geostatic consolidation problem

presented by a fully saturated one-dimensional soil column. The initial solid-phase effective stress
and fluid phase pore pressure are set to be zero at time t = 0. Gravity is then applied to the
material, and the system is allowed to evolve to quasistatic equilibrium. The final solution is
known to be

σT = z[(1− n)ρs + nρα]g, σs = z[(1− n)ρs + ρα(n− 1)]g and pα = zραg, (30)

where σT is the total stress at depth z; σs is the effective stress of the solid phase; n is the solid
phase porosity; and ρα and ρs is the density of the fluid and solid phases, respectively. Even
though the value of T1 will influence the results as the system settles towards its final steady-state,
this test is beneficial for monitoring T2 as the effect of gravity on the fluid phase will dominate
wα at the grid nodes and consequently the final pore pressure obtained in the particles. To be
more specific, since our method does not incorporate all the particles around a particular node,
as is conventionally done in MPM, the nodal mass term M and cell mass terms mc feed directly
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into the final solution of the fluid phase pore pressure. If either of these terms is not resolved
correctly, then the output of the method will differ from the known analytical expressions.

Our experiment was conducted on a grid of dimensions 0.12× 0.02× 1 metres. The grid was
subdivided into identical cells, cubic and with side 2 cm; each cell was seeded with eight particles.
The material properties used in our computations are listed in Table 1. The experimental results
are depicted in Fig. 8 where we also compare our model with that Bandara [24]. Agreement with
the analytical expression confirms that our modified strategy performs very well, at least for this
test case.

Table 1: The material properties adopted in the simulation of geostatic consolidation in a fully
saturated one-dimensional soil column

Young’s Modulus 1× 107 Pa

Poisson’s Ratio 0.3

Solid phase density 2143 kg/m3

Solid phase porosity 0.3

Solid phase conductivity 1× 10−3 m/s

Fluid density 1000 kg/m3

Fluid Bulk modulus 2.2× 109 Pa

Figure 8: Predictions of the effective stress and the pore pressure as given by our modified MPM
method. The agreement between the theoretical and numerical results is excellent. For comparison
purposes the equivalent results obtained by Bandara [24] using a two-point coupled MPM method
are shown in the right hand panel
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We remark that in the course of the calculation, we noted the presence of oscillations in both
the pore pressure and effective stress profiles during the system’s evolution and before settling
to equilibrium. This phenomenon is illustrated in Fig. 9 and has been widely documented in
literature [42,43] for other coupled methods. Further probing of the system revealed that these
oscillations arise owing to the presence of the drag term aC|c in Eq. (17). The omission of
this term suppresses the oscillations, but the system still attains the final equilibrium state as
predicted by the analytical expressions. While it may be acceptable to ignore the aC|c component
in those problems for which only the final quasistatic solution is of interest, this term cannot be
legitimately excluded in dynamically evolving problems. Further investigation is required into the
proper management of this numerical artefact for these kinds of problems.

Figure 9: Pressure oscillations that are present during run-time of the system before it has reached
equilibrium. Investigations showed that this numerical artifact is due to the presence of the drag
term aC|c in Eq. (17)

3.2 The Cryer Sphere Problem
In this second example, we attempt to validate the performance of our proposed technique by

applying it to the standard Cryer sphere problem [44]. This simulation requires tracking the pore
pressure in response to a constant increase in the pressure within the sample medium followed by
a steady decrease back to zero. This type of behaviour is commonly referred to as the Mandel-
Cryer effect [45]. Cryer developed an analytic expression for the pore pressure evolution at the
centre of a poroelastic sphere subjected to external pressure. The sphere has no initial stress or
pore pressure, and the fluid is allowed to drain freely from its surface. Formal analysis predicts
that the pore pressure at the centre begins to increase, reaches the level of the applied pressure and
then continues to rise to some peak value. Then, as the fluid is allowed to drain, the pore pressure
decreases again. Since this problem is fully dynamic, it is a good test for assessing the accuracy
of the component T1 in Eq. (29). Notice, however, that this problem is not purely concentrated
on T1 as the drag term aC|c will still play a role in the evolution of the problem.

An MPM model was constructed to investigate this effect. A two-dimensional half-circle can
visualise the inherent symmetry of the whole three-dimensional sphere (see Fig. 10. The grid has
dimensions 1 × 0.5 × 0.04 metres with cubic cells of side 4 cm that contain eight particles each.
The effective stress and pore pressures in the particles are initially zero and the material properties
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used in the experiment are listed in Table 2. A 10 kPa load was applied to the surface and a
drained boundary condition was applied by setting the pore pressure of the surface particles to
zero after each time step.

Figure 10: The semicircle used to simulate the Cryer sphere problem. Square cells represent the
cells of the background grid and grey points are the particles used to represent the disk

Table 2: The various material properties used for the simulation of the Cryer experiment

Young’s modulus 1× 107 Pa

Poisson’s ratio 0.1 and 0.3

Solid phase density 2143 kg/m3

Solid phase porosity 0.3

Solid phase conductivity 1× 10−3 m/s

Fluid density 1000 kg/m3

Fluid Bulk modulus 2.2× 109 Pa

Fig. 11 shows a comparison between our numerical results and the analytical prediction of
the pore pressure at the centre of the sphere. We have encouragingly good agreement with the
analytic results as well as against previous simulations reported in the literature [24,46]. We notice
that at some point, our solution deviates slightly from the analytical expressions. This is especially
evident for the case where the Poisson’s ratio was set to 0.1, as shown in the top panel of Fig. 11.
Further investigations suggested that this effect can be ascribed to the observation that the regular
MPM background grid cannot faithfully capture the perfect boundary of the sphere. A grid made
of rectangular cells can only approximate the smooth boundary of the disk; an effect that is
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inherently clear and which is emphasised in Fig. 10. This effect can be mitigated by making the
cell sizes smaller.

Figure 11: A comparison between the analytical and computed values at the centre of the sphere
for Poisson ratio 0.1 (top panel) and 0.3 (middle panel). The bottom panel shows the results of
Bandara [24] where ν is the Poisson’s ratio. Our novel MPM provides a good match between the
analytical expressions as well as existing MPM formulations
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4 A Case Study: The Ernest Henry Mine

Ernest Henry is a copper and gold producing mine situated approximately 40 km North-
East of Cloncurry in Queensland, Australia. Initially, the mine design was open pit; however, it
introduced underground operations; presently, the deepest part is at about 1.2 km. The mine is
seismically active, and its largest recorded event had a moment magnitude of 2.1. Groundwater is
a significant problem for engineers working at the mine as they constantly have to drain the deeper
levels to prevent flooding. Even though the host rock contains some pore water, it is thought that
most of the water is contained in faults that act as the fluid’s principal transport mechanisms.
Thus the porosity and conductivity are significantly more than that of the host rock.

On 28 September 2019, the mine drilled an exploration hole in the deepest part of the mine.
The hole encountered a geological fault, at which point fluid was ejected from the hole. Several
hours later, a large seismic event occurred on the same fault, but several hundreds of metres higher
and near development areas. A schematic of the hole and the event location is shown in Fig. 12.
This sequence of events raised two particular questions:

• Was the event triggered by the reduction in pore pressure in the fault?
• If pore pressure is released in the fault, how does it affect the nearby geology?

Figure 12: A view looking North of Ernest Henry mine showing where the drilling intersected the
fault and the seismic event that occurred several hours later near development areas. Grey lines
represent the mine layout at the time of the event and the solid plane represents the fault that is
under investigation

The fluid that is trapped within the faults is at high pressure, but this does not imply that it
necessarily moves at high speed. The high pressure arises owing to the overburden weight of the
fluid, and the porous nature of the rock means that Darcy’s law is applicable. The Institute of
Mine Seismology (IMS) was tasked to investigate these questions. An in-house developed version
of the standard coupled MPM was used to explore the issues raised. IMS has successfully used
their version of the MPM in various three-dimensional numerical studies owing to its ability to
simulate large deformation, dynamic problems twinned with the relative ease of building complex
mining geometries. It is the prospect of this occurrence at Ernest Henry mine that led to the
investigation of a way to simulate the coupled solid-fluid interaction of an heterogeneous medium
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as it is assumed that the permeability/conductivity of the faults is noticeably different than that
of the host rock. We assume that the host rock permeability is very low compared to the
rock mass that describes the fault zones and so, to this extent, can be legitimately regarded as
a heterogeneous permeability rock experiment. This is a circumstance in which current MPM
implementations will likely fail, and we try to overcome this problem using our new method.

A high-resolution single-point coupled MPM model was constructed for the mine. The scheme
incorporated an adaptive grid of the type used in the work of [12]; this has the advantage of
using various cell sizes with larger ones in areas far from the mine/faults but allowing for finer
resolution elsewhere. This refinement facilitates optimal use of computational resources; on the
one hand, it dispenses with dense cell packing in regions of little activity while, on the other, it
enables high accuracy to be retained near important zones. In our simulation, the largest cells
were cubic of side 10 metres while the smallest cubes had an edge of 1.25 metres. The cells that
overlapped with the faults were of this smallest dimension, and thus it is remarked that the faults
are not thin cracks but instead have a volume consistent with the assumption that they represent
intrusions that are infilled by porous rock.

Fig. 13 shows a schematic of the model as well as the material properties. Insitu stresses used
in the simulation are listed in Table 3. The model was composed of three materials, one being the
host rock while the others were located inside the two faults: the first, identified as fault 6, is the
one that intersected with the drill hole, and the second fault, known as the Angry Man Fault, is
oriented nearly parallel to fault 6 directly above it. In some places, the two faults are quite close,
being within 20 metres of each other, and for numerical purposes, both were ascribed a width
of 3 metres and assumed to be porous, so they provided the transport mechanism for the fluid.
The total model consisted of approximately 6 million grid cells, with each cell consisting of eight
regularly spaced particles.

Figure 13: Left: A view looking north of the mining geometry used in the MPM model. The
Angry Man Fault is shown together with Fault 6 which were intersected by the drilling. Right: A
zoomed in view of the Angry Man Fault and Fault 6 showing how close they are in space
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Several assumptions were made in the model:

• All materials were assumed to be poroelastic, however, it was assumed that only the two
faults were filled with water and that the host rock was dry. This means that fluid flow was
confined to be only within the faults.

• Initial pore pressure in the faults was set to approximately 20 MPa. This is a typical value
seen in practice, but precise pressure could not be used as it was not measured by the mine.

• Draining in the model started approximately 150 metres below the lowest mining level. To
reduce the computational complexity, no restriction was placed on the fluid’s outflow rate
at the location where the hole intersected the Fault 6.

• To reduce pressure oscillations caused by the drag term (see Section 3.1) the system was
damped such that f d was non-zero in Eq. (21). This ensured that the system remained in
a near-equilibrium solution.

Table 3: The various input parameters used in the MPM model for the Ernest Henry mine

Solid Phase Properties

Host Rock Fault 6 Angry Man

Young’s modulus [GPa] 50 30 30

Poisson’s ratio 0.22 0.20 0.20

Density [kg/m3] 2,850 2,700 2,700

Porosity 0.01 0.1 0.1

Conductivity [m/s] 0 0.01 0.01

Fluid Phase Properties

Density [kg/m3] 1000

Bulk Modulus [GPa] 2.2

Insitu Stress

Magnitude [MPa] Dip [deg] Dip Direction [deg]

σ1 0.0553×Depth 5 212

σ2 0.0372×Depth 18 303

σ3 0.0234×Depth 72 107

Initially, the model was solved for quasi-static equilibrium by assuming no mining has taken
place and using the material properties and stress conditions stated. It was assumed that all
materials were dry, which set the rock mass’s undisturbed state. The model was then resolved
for the quasi-static equilibrium by removing all particles from the system within the mining
excavations. This step represents the current mining state, and it was again assumed that all
materials were dry. These two initial steps are common in stress-strain modelling for mining
simulations for single-phase problems. Several common stress parameters were selected to quantify
the faults as:

• The major principal stress magnitude σ1,
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• The normal stress to the fault plane σn = σ t ·n, where σ t = σn, σ is the element stress tensor
and n is the normal direction of the element,

• The in plane shear stress τ = |σt − σnn|,
• The excess shear stress, otherwise known as the Coulomb stress [47], defined as σESS =

τ − μσn − σ c, where μ is the angle of internal friction and σ c is the material cohesion.
For the purpose of this study we assigned values of 25 degrees and 0 MPa to μ and σc,
respectively.

The excess shear stress (ESS) is often used in elastostatic modelling to determine whether
a fault may be at risk of slipping within the context of the elastic model. Areas on the fault
that display negative (or zero) ESS values are considered stable, whereas areas of positive ESS
are liable to slip, or may have already slipped at a prior point. Fig. 14 shows the results of the
ESS on both faults at the end of the initial phase. Positive values of ESS are observed on both
faults near the location of the seismic event, showing that this area of the fault is at risk of slip
even before draining the F6 fault. It is envisioned that since the model predicts that this area is
near failure, only minor changes in stress in this area could be sufficient to act as a triggering
mechanism for the seismic event. Therefore, for the next phase, we are interested in changes in
the selected parameters on the faults, rather than the absolute values as used in Fig. 14.

Figure 14: A view looking north of the mining geometry and faults used in the initial phase of
the simulation. Left: ESS parameter contoured on the F6 fault. Right: ESS parameter contoured
on the Angry man fault. Positive ESS values are visible near development areas where the seismic
event occurred. This may be an indicator that this area of the fault was prone to slip, prior to
draining the fault

The draining phase was initiated by modifying the particles that characterise the faults. It
was assumed that these were fully saturated, and a 20 MPa pore pressure was assigned to each
particle. To preserve quasi-static equilibrium, the diagonal terms of the particle stress matrix was
reduced by 20 MPa, thus ensuring that the total particle stress remains unaltered and Eq. (19)
is unchanged. The draining process was then commenced by identifying several particles close to
the drain point location and gradually reducing their pore pressures to zero. These pore pressures
then remained at zero throughout the remainder of the experiment. Since the simulation was
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maintained near quasi-static equilibrium, we applied the less stringent time-stepping scheme as
discussed in Section 2.3 enabling the calculation to be completed in a reduced time.

Fig. 15 shows the pore pressure inside the fault at two instances, namely at 5 sec and 41
sec after the commencement of draining. Figs. 16 to 19 summarise the form of four of the key
parameters evaluated at the faults. The left panels of each of these figures show the Angry Man’s
changes, whereas the right insets show the changes on the F6 fault. The values of the major
principal stress σ1 and the normal stress σn increased on the F6 fault, whereas the values of
shear stress τ and ESS decreased as the fault drained. This shows that draining has a positive
effect on this fault, and it is less likely to slip due to the fault becoming more clamped (opposite
ends of the fault plane is being squeezed together). Although less dramatic, the opposite effect is
observed for the Angry man fault. The values of σ1 and σn decreased on this fault, whereas τ

and ESS increased. This shows that draining of the F6 fault unclamps the Angry man fault and
can potentially make the fault more hazardous.

Figure 15: Left: Pore pressure in the F6 fault after 5 sec of draining. Right: the pore pressure
after 41 sec of draining. The arrow indicates the location at which the fluid was drained
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Figure 16: Top row: change in σ1 after 5 sec draining on both faults. Bottom row: change in σ1
after 40 sec draining on both faults. Left column: the Angry Man fault. Right column: the F6
fault. There are minor changes in σ1 on the Angry man fault whereas the principal stress near
the drain point on the F6 fault are more significant
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Figure 17: Top row: change in σn after 5 sec draining on both faults. Bottom row: change in σn
after 40 sec draining on both faults. Left column: the Angry Man fault. Right column: the F6
fault. There are minor changes in σn on the Angry man fault and and a large increase in σn on
the F6 fault. This indicates that the F6 fault be being more clamped whereas the Angry Man
fault is being unclamped
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Figure 18: Top row: change in τ after 5 sec draining on both faults. Bottom row: change in τ

after 40 sec draining on both faults. Left column: the Angry Man fault. Right column: the F6
fault. There are minor changes in the shear stress for both faults
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Figure 19: Top row: change in ESS after 5 sec draining on both faults. Bottom row: change in
ESS after 40 sec draining on both faults. Left column: the Angry Man fault. Right column: the
F6 fault. ESS decreased significantly on the F6 Fault, indicating the fault is less likely to slip. The
ESS on the Angry man fault increased slightly near the drain area, and more significantly near
development areas. This could potentially be a trigger for the seismic event
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The results as outlined in Figs. 16 to 19 illustrate the importance of taking pore water into
account in numerical simulations for mines such as Ernest Henry. Simulations that do not allow
for this may show that both faults are stable and unlikely to fail. We have shown this in Fig. 14.
Our models suggest that pore water is indeed essential in assessing the stability of the two faults.
Even though pore pressure reduction in the F6 improved its stability, one may imagine that
the opposite could occur; if pore pressure were to increase, then the fault becomes less stable.
Furthermore, the effect of reduction in pore pressure may affect surrounding geological structures.
In this case, the Angry Man fault conditions worsened, and even though the result was less
pronounced than for the F6 fault, one may speculate that the reduction of pore pressure of the
F6 fault could indeed be a triggering mechanism for the seismic event.

Video clips of the simulations of each modelling parameters used in this experiment can be
obtained from:

• http://downloads.imseismology.org/numericalmodelling/mpm/ess.m4v
Link to video clip showing Excess Shear Stress changes as the F6 drains

• http://downloads.imseismology.org/numericalmodelling/mpm/shear-stress.m4v
Link to video clip showing τ changes as the F6 drains

• http://downloads.imseismology.org/numericalmodelling/mpm/sigma1.m4v
Link to video clip showing σ1 changes as the F6 drains

• http://downloads.imseismology.org/numericalmodelling/mpm/normal-stress.m4v
Link to video clip showing σn changes as the F6 drains

In each of the clips we show how the draining of the F6 fault changes the properties of both
itself and the nearby Angry man fault. These clips are free to download and redistribute.

5 Concluding remarks

A fully coupled two-phase three-dimensional MPM has been developed to model stress
changes caused by fluid-filled rock in mining. This has been accomplished by modifying exist-
ing coupled MPM approaches to incorporate the description of mediums with heterogeneous
permeability. Two verification examples were used to test the accuracy of the numerical model,
and good agreement was observed in both cases. These benchmarks provide confidence that
our methodology has value when modelling real mining cases in which a seismic event is likely
triggered due to pore pressures changes caused by draining of a nearby fault. In this experiment,
we have shown that even though the effective stress changes on the fault were relatively small, it
was nonetheless still sufficient to play a role as a provocative mechanism for the event.

The case study at Ernest Henry mine highlights the importance of accounting for the effect
of pore water in mining simulations, an effect that is often neglected. However, as mining methods
become increasingly complicated, so the need for more advanced multi-phase numerical simula-
tions grows. This is especially true for simulations of mine tailings dams for which the presence
of fluid can play a central role in determining the outcome of experiments.

Our method can benefit from further improvement in two areas; a more advanced soil model
might be implemented for dealing with problems involving partial saturation, and the numerical
fluctuations in pore pressure could be reduced when dealing with dynamic problems. Further
research in both these aspects must be pursued.

An intriguing avenue for future work would be an investigation of the relationship between
our formulation and the innovative technique known as peridynamics. This is a novel non-local
method that has been suggested as a vehicle for simulating hydraulic fractures [48,49]. It would

http://downloads.imseismology.org/numericalmodelling/mpm/ess.m4v
http://downloads.imseismology.org/numericalmodelling/mpm/shear-stress.m4v
http://downloads.imseismology.org/numericalmodelling/mpm/sigma1.m4v
http://downloads.imseismology.org/numericalmodelling/mpm/normal-stress.m4v
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be of interest to see how our method might be adapted to hydraulic fracturing scenarios as this
is typically a multi-phase problem. This can not be done immediately since our current technique
assumes that the faults are of finite thickness intruded by a porous material as opposed to being
thin cracks. Further work is required to see if our method can be extended to address this
important issue.

In summary then, our new model appears to show promise for modelling multi-phase coupling
mechanisms in realistic mining situations. What we have described here is a first step in this
direction, and extensions to further real case studies is the obvious way forward. As the catalogue
of simulations increases, this would enable us to predict those circumstances in which mine sites
might benefit from our ideas. One particular attraction of our suggestions is the fact that they can
be incorporated into conventional MPM methods with only marginal extra computational cost.
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