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ABSTRACT

Wefirst propose the normal Pythagorean neutrosophic set (NPNS) in this paper, which synthesizes the distribution
of the incompleteness, indeterminacy, and inconsistency of the Pythagorean neutrosophic set (PNS) and normal
fuzzy number. We also define some properties of NPNS. For solving the decision-making problem of the non-
strictly independent and interacting attributes, two kinds of NPNS Choquet integral operators are proposed. First,
the NPNS Choquet integral average (NPNSCIA) operator and the NPNS Choquet integral geometric (NPNSCIG)
operator are proposed. Then, their calculating formulas are derived, their properties are discussed, and an approach
for solving the interacting multi-attribute decision making based on the NPNS is studied. Finally, the two kinds of
operators are applied to validate the stability of the new method.
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1 Introduction

As an important branch of modern decision theory, MADM is widely used in many fields
such as economy, management, military, and engineering. One of the core problems of MADM
is how to give the attribute values under each attribute. Since Zadeh [1] proposed the concept
of fuzzy set (FS), FS has become a hot research topic. Different scholars apply various methods
and new theories to fuzzy decision making, improve and optimize the existing problems in fuzzy
decision making, and make its development more perfect and reasonable. To popularize the FS,
in 1986, Atanassov [2] introduced the concept of intuitionistic fuzzy set (IFS) and studied it. IFS
can express membership degree and non-membership degree at the same time, and their sum is
less than or equal to 1. Compared with traditional fuzzy sets, IFS is more suitable for describing
fuzziness and uncertainty in practical problems. However, in the process of dealing with decision
making, the sum of membership degree and non-membership degree may be greater than 1. So
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Yager [3] proposed the Pythagorean fuzzy set (PFS), which allows the sum of membership degree
and non-membership degree to be greater than 1, but its sum of squares is not more than 1.
PFS is an extension of IFS. Therefore, the processing of fuzzy and uncertain information has a
stronger performance. On the basis of Yager’s research, different scholars applied various methods
and new theories to Pythagorean fuzzy decision making. For example, Peng et al. [4] put forward
the Pythagoras soft set by integrating Pythagoras with the soft set. Liang and Peng et al. [5,6]
studied interval-valued Pythagorean fuzzy sets. Liu et al. [7] proposed the Pythagorean hesitation
fuzzy set by combining the Pythagorean and hesitation fuzzy set. Fan et al. [8] generalized the
membership degree and non-membership degree of the Pythagorean fuzzy number and proposed
the triangular Pythagorean fuzzy set. But IFS can only deal with incomplete information but
not with uncertain and inconsistent information. Therefore, Smarandache [9,10] proposed the
neutrosophic set (NS) theory based on IFS. It is a generalization of FS and IFS by adding
independent uncertainty on the basis of IFS. In the NS theory, decision-makers can use the degree
of truth, indeterminacy, and falsity to describe the evaluation of objective things. Since it was
proposed, it has attracted extensive attention and research. Wang et al. [11] proposed a concept of
single-valued neutrosophic sets (SVNS). Liu et al. [12] proposed a weighted aggregation operator
and decision making method based on interval value neutrosophic sets (IVNS). Fan et al. [13–15]
proposed decision making methods based on SVNS, linguistic neutrosophic multisets(LNM), and
refined-SVNS. Liu et al. [16,17] proposed the normal neutrosophic set (NNS). Ye [18] proposed
Correlation Coefficients of NNS. Jansi et al. [19] in 2019 proposed Pythagorean neutrosophic set
(PNS) as an extension of Ajay et al. applied PNS in fuzzy graphs [20].

Ideally, the constructed decision indicator system should have the conditions of completeness,
representativeness, and independence. However, in many practical cases, these attributes are usually
not independent but correlated. In order to solve the MADM problem of attribute correlation,
Marichal [21] in 2000 generalized the fuzzy measure defined by Sugeno [22] and proposed the
Choquet integral [23]. Since Choquet integral was put forward, it has been hotly discussed by
many scholars. Xu [24] applied Choquet integral to multi-attribute decision making of intuitional
fuzzy sets and proposed intuitional fuzzy correlated average operator, intuitional fuzzy correlated
geometric operator, etc. Tan et al. [25] proposed intuitionistic fuzzy Choquet integral average
operator and intuitionistic fuzzy Choquet integral geometric operator. Qu et al. [26] applied the
Choquet integral to the interval-hesitation fuzzy multi-attribute decision making and proposed
the interval-hesitation fuzzy Choquet integral operator. Peng et al. [27] applied Choquet integral
to The Pythagorean fuzzy decision making environment and proposed the Pythagorean fuzzy
Choquet integral average operator and geometric operator. Dong et al. [28] proposed General-
ized Choquet Integral Operator of Triangular Atanassov’s Intuitionistic Fuzzy Numbers. Wan
et al. [29] proposed Generalized Shapley Choquet integral operator based method for interactive
interval-valued hesitant fuzzy uncertain linguistic. When solving MADM problems, Choquet inte-
gral operator can effectively deal with the redundant part of attribute compatibility, and solve the
problem of attribute correlation by balancing the influence degree between attributes. In view of
the Choquet integral operator can be used to consider the relationship between information, this
paper proposes the normal Pythagorean neutrosophic set (NPNS) and generalize Choquet integral
operator to the NPNS environment. NPNS synthesizes the distribution of the incompleteness,
indeterminacy, and inconsistency of PNS and the normal neutrosophic number, which is more
reasonable than PNS and NNS on expressing the decision making information. NPNS Choquet
integral operator not only considers the importance between attributes but also reflects the relation
between attributes. Then the properties of this operator are discussed, and an algorithm for
solving the MADM problem is proposed based on this operator.
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We organize the paper as follows. Section 2 describes basic concepts. Section 3 defines two
Choquet integral operators of NPNS. Section 4 establishes the DM model based on NPNSCIA
or NPNSCIG Operator. Section 5 provides an example. Section 6 gives conclusions.

2 Some Basic Concepts

2.1 Pythagorean Fuzzy set (PFS)
Definition 1 [3]. Set Y as an object set, a PFS is expressed as � = {y, (u�(y), v�(y))y ∈Y }, u�:

Y ∈ [0, 1] denotes membership and ν�: Y ∈ [0, 1] denotes non-membership, and 0 ≤ (u�(y))2 +
(ν�(y))2 ≤ 1 for each y ∈Y .

2.2 Normal Fuzzy Number (NFN)

Definition 2 [30]. Set �(y)= e
−
(
y−α

ε

)2
(ε > 0) as the membership-function of �, and then � =

(α, ε) is an NFN and all NFNs are denoted as N.

2.3 Neutrosophic Set (NS)

Definition 3 [10,11]. Set Y as an object set, �̄ = {y, 〈J�̄(y),K�̄(y),L�〉(y)|y ∈Y }, then �̄ is called
neutrosophic set (NS), J�̄(y) express truth-membership , K�̄(y) express indeterminacy-membership
and L�̄(y) express falsity-membership. ∀y ∈ Y , J�̄(y),K�̄(y),L�̄(y) ∈ [0, 1] and 3≥ J�̄(y)+K�̄(y)+
L�̄(y)≥ 0.

2.4 Pythagorean Neutrosophic Set (PNS)

Definition 4 [19]. Set Y as an object set, �̄ = {y, 〈J�̄(y),K�̄(y),L�(y)〉|y ∈Y}, then �̄ is
called Pythagorean neutrosophic set (PNS), J�̄(y) express truth-membership, K�̄(y) express
indeterminacy-membership and L�̄(y) express falsity-membership. Here J�̄(y) and L�̄(y) are
dependent and K�̄(y) is independent. ∀y ∈ Y ,J�̄(y),K�̄(y),L�̄(y) ∈ [0, 1] and 1 ≥ J�̄(y)+ L�̄(y) ≥
0 , 1≥ (J�̄(y))2+ (L�̄(y))2 ≥ 0 , 1≥K�̄(y)≥ 0.

2.5 Normal Pythagorean Neutrosophic Set (NPNS)

Definition 5. Set Y is an object set, (α, ε) ∈N, then �̂ = {〈y, (α, ε), (J
�̂
(y),K

�̂
(y),L

�̂
(y))〉|y ∈Y}

is defined as the normal Pythagorean neutrosophic set (NPNS) in Y, J
�̂
(y) express the truth-

membership, K
�̂
(y) express indeterminacy-membership and L

�̂
(y) express falsity-membership.

Here J
�̂
(y) and L

�̂
(y) are dependent and K

�̂
(y) is independent. ∀y ∈ Y , ,J�̄(y),K�̄(y),L�̄(y) ∈

[0, 1] and 1≥ J�̄(y)+L�̄(y)≥ 0 , 1≥ (J�̄(y))2 + (L�̄(y))2 ≥ 0 , 1≥K�̄(y)≥ 0, J
�̂
(y)= (J

�̂
)2e

−
(
y−α

ε

)2
,

K
�̂
(y)= 1− (1− (K

�̂
)2)e

−
(
y−α

ε

)2
and L

�̂
(y)= 1− (1− (L

�̂
)2)e

−
(
y−α

ε

)2
.

For convenience, a normal Pythagorean neutrosophic element (NPNE) is denoted as ε̂ =
〈(α, ε), (J,K,L)〉.

Definition 6. Set ε̂1 = 〈(α1, ε1), (J1,K1,L1)〉 and ε̂2 = 〈(α2, ε2), (J2,K2,L2)〉 as two NPNEs, then
we define the NPNEs’ operations:

i. ε̂1⊕ ε̂2 =
〈

(α1+α2, ε1+ ε2),
( (J1)2+ (J2)2− (J1)2(J2)2, (K1)

2(K2)
2, (L1)

2(L2)
2)

〉
(1)
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ii. ε̂1⊗ ε̂2 =
〈 (

α1α2,α1α2

√
ε1

2

α1
2 + ε2

2

α2
2

)
,

( (J1)2(J2)2, (K1)
2 + (K2)

2− (K1)
2(K2)

2, (L1)
2 + (L2)

2− (L1)
2(L2)

2

〉
(2)

iii. χε̂1 =
〈
(χα1,χε1) ,

(
1−

(
1− (J1)

2
)χ

,
(
(K1)

2
)χ

,
(
(L1)

2
)χ)〉

χ > 0 (3)

iv. ε̂1
χ =

〈(
α1

χ ,χ1/2α1
χ−1ε1

)
,
( (

(J1)
2
)χ

, 1−
(
1− (K1)

2
)χ

, 1−
(
1− (L1)

2
)χ)

χ > 0
〉

(4)

Definition 7. Set ε̂ = 〈(α, ε), (J,K,L)〉 as a NPNE, and then its score functions are

Φ1(ε̂)= α(2+ J2−K2 −L2) (5)

Φ2(ε̂)= ε(2+ J2 −K2−L2) (6)

and its accuracy functions are

Ψ1(ε̂)= α(2+ J2−K2 +L2) (7)

Ψ2(ε̂)= ε(2+L2−M2 +N2) (8)

Definition 8. Set ε̂1 = 〈(α1, ε1), (J1,K1,L1)〉 and ε̂2 = 〈(α2, ε2), (J2,K2,L2)〉 as two NPNEs, then
we have

ifΦ1(ε̂1) > Φ1(ε̂2) then ε̂1 > ε̂2;

ifΦ1(ε̂1)=Φ1(ε̂2) then

ifΨ1(ε̂1) > Ψ1(ε̂2) then ε̂1 > ε̂2;

ifΨ1(ε̂1)=Ψ1(ε̂2) then

if Φ2(ε̂1) < Φ2(ε̂2) then ε̂1 > ε̂2;

if Φ2(ε̂1)=Φ2(ε̂2) then

ifΨ2(ε̂1) < Ψ2(ε̂2) then ε̂1 > ε̂2;

ifΨ2(ε̂1)=Ψ2(ε̂2) then ε̂1 = ε̂2.

2.6 Fuzzy Measure (FM)
Definition 9 [22]. Set D(Y ) as the power set to Y = {y1,y2, . . . ,yn}, η(yi) expresses the weight

of yi, and then η :D(Y )∈ [0, 1] is called the FM of Y while satisfying the following conditions:

i.η(∅)= 0,η(Y )= 1;

ii.∀�,Υ ∈D(Y ), if � ⊆Υ then η(�)≤ η(Υ ) ;

iii.η(�∪Υ )= η(�)+ η(Υ )+χη(�)η(Υ ),∀�,Υ ∈D(Y ),and χ ∈ (−1,∞).

If χ = 0 then η(�∪Υ ) = η(�) + η(Υ ), which indicates that the attribute sets � and Υ

are independent of each other; if − 1 < χ < 0 then η(�∪Υ ) < η(�) + η(Υ ), which indi-
cates that there is information redundancy between attribute sets � and Υ ; if χ > 0 then
η(�∪Υ ) > η(�) + η(Υ ), which indicates that there is information complementarity between
attribute sets � and Υ .
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If ∀yρ ∈Y ,ρ,= 1, 2, . . . ,n,ρ �= ,yρ ∩y =∅, then ⋃n
ρ=1 yρ =Y and the fuzzy measure

ϑsatisfies : η(Y )= η
(⋃n

ρ=1
yρ

)
=
{

1
ϑ

(∏n
ρ=1(1+ϑη(yρ))− 1

)
,ϑ �= 0,∑n

ρ=1 η(yρ), ϑ = 0.
(9)

For η(Y )= 1, according to Eq. (9), when ϑ �= 0, η can be confirmed:

ϑ + 1=
n∏

ρ=1

(1+ϑη(yρ)) (10)

2.7 Choquet Integral (CI)
Definition 10 [21]. Set Y = {y1,y2, . . . ,yn} and η as an FM on Y and ξ as a nonnegative real

value function. Then we define the Choquet integral of function ξ about η:

Cη(ξ)=
n∑

ρ=1

ξγ (ρ)(η(Zγ (ρ))− η(Zγ (ρ−1))), (11)

In which (γ (1),γ (2), . . . ,γ (n)) express an arrangement and can make ξγ (1) ≥ ξγ (2) ≥ . . .≥ ξγ (n)
and Zγ () = {yγ (ς)|ς ≤ }( ≥ 1), Zγ (0) =∅ , yγ (ς) expresses the corresponding weight to ξγ (ς).

3 Two Choquet Integral Operators of NPNS

In this section, we define two normal Pythagorean neutrosophic set based Choquet integral
operators, one is the normal Pythagorean neutrosophic set Choquet integral averaging (NPN-
SCIA) operator, and the other is the normal Pythagorean neutrosophic set Choquet integral
geometric (NPNSCIG) operator. Meantime, we discuss some properties of them.

3.1 The NPNSCIA Operator
Definition 11. Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection of NPNE ε̂ρ =

〈(αρ , ερ), (Jρ ,Kρ,Lρ)〉 ( ρ = 1, 2, . . . ,n), while

NPNSCIA(ε̂1, ε̂2, . . . , ε̂n)=⊕n
ρ=1(η(Zγ (ρ))− η(Zγ (ρ−1)))ε̂γ (ρ) (12)

NPNSCIA is called the NPNS Choquet integral averaging operator, in which (γ (1),γ (2), . . . ,
γ (n)) express an arrangement and can make ε̂γ (1) ≥ ε̂γ (2) ≥ . . . ≥ ε̂γ (n) and Zγ () =
{yγ (ς)|ς ≤ }( ≥ 1),Zγ (0) =∅ and yγ (ς) is the corresponding weight of ε̂γ (ς).

According to some relevant operation rules of NPNE, we can get the form of the NPNSCIA
operator shown in Theorem 1.

Theorem 1. Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection of NPNE ε̂ρ =
〈(αρ , ερ), (Jρ,Kρ,Lρ)〉( ρ = 1, 2, . . . ,n), after using the NPNSCIA operator, the collective value
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obtained is also an NPNE and is denoted by

NPNSCIA(ε̂1, ε̂2, . . . , ε̂n)=
〈

⎛
⎜⎜⎜⎝

n∑
ρ=1

(η(Zγ (ρ))− η(Zγ (ρ−1)))αγ (ρ),

n∑
ρ=1

((η(Zγ (ρ))− η(Zγ (ρ−1))))εγ (ρ)

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1−
n∏

ρ=1
(1− (Jγ (ρ))

2)η(Zγ (ρ))−η(Zγ (ρ−1)),

n∏
ρ=1

((Kγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1)),

n∏
ρ=1

((Lγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

〉
(13)

In which (γ (1),γ (2), . . . ,γ (n)) express an arrangement and can make ε̂γ (1) ≥ ε̂γ (2) ≥ . . .≥ ε̂γ (n)
and Zγ () = {yγ (ς)|ς ≤ }( ≥ 1),Zγ (0) =∅ and yγ (ς) is the corresponding weight of ε̂γ (ς).

Now, we proof Eq. (13).

Proof:

When n= 1, we can easily get Eq. (13).

When n= 2, we get:

NPNSCIA(ε̂1, ε̂2)= (η(Zγ (1))− η(Zγ (0)))ε̂γ (1) ⊕ (η(Zγ (2))− η(Zγ (1)))ε̂γ (2) =(
(η(Zγ (1))− η(Zγ (0)))αγ (1),
(η(Zγ (1))− η(Zγ (0)))εγ (1)

)
,

(
(η(Zγ (2))− η(Zγ (1)))αγ (2),
(η(Zγ (2))− η(Zγ (1)))εγ (2)

)
,〈⎛⎝1− (1− (Jγ (1))

2)η(Zγ (1))−η(Zγ (0)),
((Kγ (1))

2)η(Zγ (1))−η(Zγ (0)),
((Lγ (1))

2)η(Zγ (1))−η(Zγ (0))

⎞
⎠〉⊕

〈⎛⎝1− (1− (Jγ (2))
2)η(Zγ (2))−η(Zγ (1)),

((Kγ (2))
2)η(Zγ (2))−η(Zγ (1)),

((Lγ (2))
2)η(Zγ (2))−η(Zγ (1))

⎞
⎠〉

(
(η(Zγ (1))− η(Zγ (0)))αγ (1) + (η(Zγ (2))− η(Zγ (1)))αγ (2),
(η(Zγ (1))− η(Zγ (0)))εγ (1) + (η(Zγ (2))− η(Zγ (1)))εγ (2)

)

=
〈⎛⎜⎜⎜⎝

1− (1− (Jγ (1))
2)η(Zγ (1))−η(Zγ (0)) + 1− (1− (Jγ (2))

2)η(Zγ (2))−η(Zγ (1))

−(1− (1− (Jγ (1))
2)

η(Zγ (1))−η(Zγ (0))
)(1− (1− (Jγ (2))

2)
η(Zγ (2))−η(Zγ (1))

),
((Kγ (1))

2)η(Zγ (1))−η(Zγ (0))((Kγ (2))
2)η(Zγ (2))−η(Zγ (1)),

((Lγ (1))
2)η(Zγ (1))−η(Zγ (0))((Lγ (2))

2)η(Zγ (2))−η(Zγ (1))

⎞
⎟⎟⎟⎠
〉
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⎛
⎜⎜⎜⎝

2∑
ρ=1

(η(Zγ (ρ))− η(Zγ (ρ−1)))αγ (ρ),

2∑
ρ=1

((η(Zγ (ρ))− η(Zγ (ρ−1))))εγ (ρ)

⎞
⎟⎟⎟⎠ ,

=
〈
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
2∏

ρ=1
(1− (Jγ (ρ))

2)η(Zγ (ρ))−η(Zγ (ρ−1)),

2∏
ρ=1

((Kγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1)),

2∏
ρ=1

((Lγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

〉

Making a hypothesis, when n= ς the Eq. (13) is established:

NPNSCIA(ε̂1, ε̂2, . . . , ε̂ς )=
〈

⎛
⎜⎜⎜⎝

ς∑
ρ=1

(η(Zγ (ρ))− η(Zγ (ρ−1)))αγ (ρ),

ς∑
ρ=1

((η(Zγ (ρ))− η(Zγ (ρ−1))))εγ (ρ)

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1−
ς∏

ρ=1
(1− (Jγ (ρ))

2)
η(Zγ (ρ))−η(Zγ (ρ−1)),

ς∏
ρ=1

((Kγ (ρ))
2)

η(Zγ (ρ))−η(Zγ (ρ−1)),

ς∏
ρ=1

((Lγ (ρ))
2)

η(Zγ (ρ))−η(Zγ (ρ−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

〉

Then n= ς +1,

NPNSCIA(ε̂1, ε̂2, . . . , ε̂ς , ε̂ς+1)=
〈

⎛
⎜⎜⎜⎝

ς∑
ρ=1

(η(Zγ (ρ))− η(Zγ (ρ−1)))αγ (ρ),

ς∑
ρ=1

((η(Zγ (ρ))− η(Zγ (ρ−1))))εγ (ρ)

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1−
ς∏

ρ=1
(1− (Jγ (ρ))

2)η(Zγ (ρ))−η(Zγ (ρ−1)),

ς∏
ρ=1

((Kγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1)),

ς∏
ρ=1

((Lγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

〉

(
(η(Zγ (ς+1))− η(Zγ (ς)))αγ (ς+1),
(η(Zγ (ς+1))− η(Zγ (ς)))εγ (ς+1)

)
,

⊕
〈⎛⎜⎝1− (1− (Jγ (ς+1))

2)
η(Zγ (ς+1))−η(Zγ (ς)),

((Kγ (ς+1))
2)

η(Zγ (ς+1))−η(Zγ (ς)),

((Lγ (ς+1))
2)

η(Zγ (ς+1))−η(Zγ (ς))

⎞
⎟⎠
〉
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⎛
⎜⎜⎜⎝

ς∑
ρ=1

(η(Zγ (ρ))− η(Zγ (ρ−1)))αγ (ρ) + (η(Zγ (ς+1))− η(Zγ (ς)))αγ (ς+1),

ς∑
ρ=1

((η(Zγ (ρ))− η(Zγ (ρ−1))))εγ (ρ) + (η(Zγ (ς+1))− η(Zγ (ς)))εγ (ς+1)

⎞
⎟⎟⎟⎠ ,

=
〈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1−

ς∏
ρ=1

(1− (Jγ (ρ))
2)

η(Zγ (ρ))−η(Zγ (ρ−1))

)
+ (1− (1− (Jγ (ς+1))

2)
η(Zγ (ς+1))−η(Zγ (ς))

)−(
1−

ς∏
ρ=1

(1− (Jγ (ρ))
2)

η(Zγ (ρ))−η(Zγ (ρ−1))

)
(1− (1− (Jγ (ς+1))

2)
η(Zγ (ς+1))−η(Zγ (ς))

),(
ς∏

ρ=1
((Kγ (ρ))

2)
η(Zγ (ρ))−η(Zγ (ρ−1))

)
((Kγ (ς+1))

2)η(Zγ (ς+1))−η(Zγ (ς)),(
ς∏

ρ=1
((Lγ (ρ))

2)
η(Zγ (ρ))−η(Zγ (ρ−1))

)
((Lγ (ς+1))

2)η(Zγ (ς+1))−η(Zγ (ς))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〉

⎛
⎜⎜⎜⎝

ς+1∑
ρ=1

(η(Zγ (ρ))− η(Zγ (ρ−1)))αγ (ρ),

ς+1∑
ρ=1

((η(Zγ (ρ))− η(Zγ (ρ−1))))εγ (ρ)

⎞
⎟⎟⎟⎠ ,

=
〈
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
ς+1∏
ρ=1

(1− (Jγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1)),

ς+1∏
ρ=1

((Kγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1)),

ς+1∏
ρ=1

((Lγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

〉

This proves Theorem 1.

Theorem 2. Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection of NPNE ε̂ρ =
〈(αρ , ερ), (Jρ ,Kρ,Lρ)〉( ρ = 1, 2, . . . ,n), if ε̂ρ = ε̂ = (α, ε), (J,K,L), then

NPNSCIA(ε̂1, ε̂2, . . . , ε̂n)=NPNSCIA(ε̂, ε̂ . . . , ε̂)= ε̂ (14)
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Proof:

Since ε̂ρ = ε according to Definition 11, we can get:

NPNSCIA(ε̂1, ε̂2, . . . , ε̂n)=NPNSCIA(ε̂, ε̂ . . . , ε̂)=

〈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

n∑
ρ=1

(η(Zγ (ρ))− η(Zγ (ρ−1)))α,

n∑
ρ=1

((η(Zγ (ρ))− η(Zγ (ρ−1))))ε

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1−
n∏

ρ=1
(1− J2)

(η(Zγ (ρ))−η(Zγ (ρ−1))),

n∏
ρ=1

(K2)
(η(Zγ (ρ))−η(Zγ (ρ−1))),

n∏
ρ=1

(L2)
(η(Zγ (ρ))−η(Zγ (ρ−1)))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〉

for
n∑

ρ=1
(η(Zγ (ρ))− η(Zγ (ρ−1))) = 1, according to the definition of the fuzzy measure, then

NPNSCIA
(ε̂1, ε̂2, . . . , ε̂n)= 〈(α, ε), (J,K,L)〉 = ε̂ .

Theorem 3. Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection of NPNE ε̂ρ =
〈(αρ , ερ), (Jρ,Kρ,Lρ)〉( ρ = 1, 2, . . . ,n), if ε̂ρ

′ is a replacement of ε̂ρ then

NPNSCIA(ε̂1
′, ε̂2′, . . . , ε̂n′)=NPNSCIA(ε̂1, ε̂2, . . . , ε̂n) (15)

It is easy to prove it according to Definition 11, here we omit.

Theorem 4. Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection of NPNE ε̂ρ =
〈(αρ , ερ), (Jρ,Kρ,Lρ)〉 and ε̂ρ

∗ = 〈(αρ
∗, ερ

∗), (Jρ
∗,Kρ

∗,Lρ
∗)〉 ( ρ = 1, 2, . . . ,n) as two collections of

NPNE on Y, and their ranking orders are ε̂γ (1) ≥ ε̂γ (2) ≥ . . . ≥ ε̂γ (n) and ε̂γ (1)
∗ ≥ ε̂γ (2)

∗ ≥
. . . ≥ ε̂γ (n)

∗, if ε̂γ (ρ) ≤ ε̂γ (ρ)
∗ for all ρ, which means αγ (ρ) ≤ αγ (ρ)

∗, εγ (ρ) ≥ εγ (ρ)
∗, (Jγ (ρ))

2 ≤
((Jγ (ρ))

2)∗, (Kγ (ρ))
2 ≥ ((Kγ (ρ))

2)∗ and (Lγ (ρ))
2 ≥ ((Lγ (ρ))

2)∗, then

NPNSCIA(ε̂1, ε̂2, . . . , ε̂n)≤NPNSCIA(ε̂1
∗, ε̂2∗, . . . , ε̂n∗) (16)

Proof:

Since αγ (ρ) ≤ αγ (ρ)
∗, εγ (ρ) ≥ εγ (ρ)

∗ for all ρ and η(Zγ (ρ)) − η(Zγ (ρ−1)) ≥ 0 (can be got in
Definition 10), then

n∑
ρ=1

(η(Zγ (ρ))− η(Zγ (ρ−1)))αγ (ρ) ≤
n∑

ρ=1
(η(Zγ (ρ))− η(Zγ (ρ−1)))αγ (ρ)

∗

and
n∑

ρ=1
((η(Zγ (ρ))− η(Zγ (ρ−1))))εγ (ρ) ≥

n∑
ρ=1

((η(Zγ (ρ))− η(Zγ (ρ−1))))εγ (ρ)
∗
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Since (Jγ (ρ))
2 ≤ ((Jγ (ρ))

2)∗, (Kγ (ρ))
2 ≥ ((Kγ (ρ))

2)∗ and (Lγ (ρ))
2 ≥ ((Lγ (ρ))

2)∗ for all ρ then

1−
n∏

ρ=1

(1− (Jγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1)) ≤ 1−

n∏
ρ=1

(1− ((Jγ (ρ))
2)

∗
)η(Zγ (ρ))−η(Zγ (ρ−1))

n∏
ρ=1

((Kγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1)) ≥

n∏
ρ=1

(((Kγ (ρ))
2)

∗
)η(Zγ (ρ))−η(Zγ (ρ−1))

n∏
ρ=1

((Lγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1)) ≥

n∏
ρ=1

(((Lγ (ρ))
2)

∗
)η(Zγ (ρ))−η(Zγ (ρ−1))

Then, with Eq. (5), Φ1(NPNSCIA(ε̂1, ε̂2, . . . , ε̂n)) ≤ Φ1(NPNSCIA(ε̂1
∗, ε̂2∗, . . . , ε̂n∗)), so we

can get NPNSCIA(ε̂1, ε̂2, . . . , ε̂n)≤NPNSCIA(ε̂1
∗, ε̂2∗, . . . , ε̂n∗).

Theorem 4 has been proved.

Theorem 5. (Boundedness). Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection of
NPNE ε̂ρ = 〈(αρ, ερ), (Jρ ,Kρ,Lρ)〉( ρ = 1, 2, . . . ,n), let ε̂− = 〈(min(αρ),max(ερ)), (min(Jρ

2),max(Kρ
2),

max(Lρ
2))〉 and ε̂+ = 〈(max(αρ),min(ερ)), (max(Jρ

2),min(Kρ
2),min(Lρ

2))〉, then

ε̂− ≤NPNSCIA(ε̂1, ε̂2, . . . , ε̂n)≤ ε̂+ (17)

Proof:

To Theorem 2,

ε̂− =NPNSCIA(ε̂
−, ε̂− . . . , ε̂−), ε̂+ =NPNSCIA(ε̂

+, ε̂+ . . . , ε̂+)

To Theorems 3–4,

NPNSCIA(ε̂
−, ε̂− . . . , ε̂−)≤NPNSCIA(ε̂1, ε̂2, . . . , ε̂n)≤NPNSCIA(ε̂

+, ε̂+ . . . , ε̂+)

Then ε̂− ≤NPNSCIA(ε̂1, ε̂2, . . . , ε̂n)≤ ε̂+.

3.2 NPNSCIG Operator
Definition 12. Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection of NPNE ε̂ρ =

〈(αρ , ερ), (Jρ ,Kρ,Lρ)〉 ( ρ = 1, 2, . . . ,n), while

NPNSCIG(ε̂1, ε̂2, . . . , ε̂n)=⊕n
ρ=1 ε̂γ (ρ)

η(Zγ (ρ))−η(Zγ (ρ−1) (18)

NPNSCIG is called the NPNS Choquet integral geometric operator, in which (γ (1),γ (2), . . . ,
γ (n)) express an arrangement and can make ε̂γ (1) ≥ ε̂γ (2) ≥ . . . ≥ ε̂γ (n) and Zγ () =
{yγ (ς)|ς ≤ }( ≥ 1),Zγ (0) =∅ and yγ (ς) is the corresponding weight of ε̂γ (ς).

According to some relevant operation rules of NPNSs, we can get the form of the NPNSCIG
operator shown in Theorem 6.
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Theorem 6. Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection of NPNE
ε̂ρ = (αρ , ερ), (Jρ ,Kρ,Lρ)( ρ = 1, 2, . . . ,n), after using the NPNSCIG operator, the collective value
obtained is also an NPNE, denoted by

NPNSCIG(ε̂1, ε̂2, . . . , ε̂n)=
〈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

n∏
ρ=1

αγ (ρ)
(η(Zγ (ρ))−η(Zγ (ρ−1)),

n∏
ρ=1

αγ (ρ)
(η(Zγ (ρ))−η(Zγ (ρ−1))

√
n∑

ρ=1
(η(Zγ (ρ))− η(Zγ (ρ−1))

εγ (ρ)
2

αγ (ρ)
2

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∏
ρ=1

((Jγ (ρ))
2)η(Zγ (ρ))−η(Zγ (ρ−1)),

1−
n∏

ρ=1
(1− (Kγ (ρ))

2)η(Zγ (ρ))−η(Zγ (ρ−1)),

1−
n∏

ρ=1
(1− (Lγ (ρ))

2)η(Zγ (ρ))−η(Zγ (ρ−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〉

(19)

Theorem 7. Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection of NPNE ε̂ρ =
〈(αρ , ερ), (Jρ,Kρ,Lρ)〉( ρ = 1, 2, . . . ,n), if ε̂ρ = ε̂ = (α, ε), (J,K,L), then

NPNSCIG(ε̂1, ε̂2, . . . , ε̂n)=NPNSCIG(ε̂, ε̂ . . . , ε̂)= ε̂ (20)

Theorem 8. Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection of NPNE ε̂ρ =
〈(αρ , ερ), (Jρ,Kρ,Lρ)〉( ρ = 1, 2, . . . ,n), if ε̂ρ

′ is a replacement of ε̂ρ then

NPNSCIG(ε̂1
′, ε̂2′, . . . , ε̂n′)=NPNSCIG(ε̂1, ε̂2, . . . , ε̂n) (21)

Theorem 9. Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, ε̂ρ = 〈(αρ , ερ), (Jρ,Kρ ,Lρ)〉 and
ε̂ρ

∗ = 〈(αρ
∗, ερ

∗), (Jρ
∗,Kρ

∗,Lρ
∗)〉( ρ = 1, 2, . . . ,n) as two collections of NPNE on Y , and their

ranking orders are ε̂γ (1) ≥ ε̂γ (2) ≥ . . . ≥ ε̂γ (n) and ε̂γ (1)
∗ ≥ ε̂γ (2)

∗ ≥ . . . ≥ ε̂γ (n)
∗, if ε̂γ (ρ) ≤ ε̂γ (ρ)

∗ for

all ρ, that is αγ (ρ) ≤ αγ (ρ)
∗, εγ (ρ) ≥ εγ (ρ)

∗, (Jγ (ρ))
2 ≤ ((Jγ (ρ))

2)∗, (Kγ (ρ))
2 ≥ ((Kγ (ρ))

2)∗ and (Lγ (ρ))
2 ≥

((Lγ (ρ))
2)∗, then

NPNSCIG(ε̂1, ε̂2, . . . , ε̂n)≤NPNSCIG(ε̂1
∗, ε̂2∗, . . . , ε̂n∗) (22)

Theorem 10. (Boundedness). Set η as a fuzzy measure on Y = {y1,y2, . . . ,yn}, a collection
of NPNE ε̂ρ = 〈(αρ , ερ), (Jρ ,Kρ,Lρ)〉( ρ = 1, 2, . . . ,n), let ε̂− = 〈(min(αρ),max(ερ)), (min (Jρ

2)

max(Kρ
2),max(Lρ

2)) 〉 and ε̂+ = 〈(max(αρ),min(ερ)), (max(Jρ
2),min(Kρ

2),min(Lρ
2)) 〉 then

ε̂− ≤NPNSCIG(ε̂1, ε̂2, . . . , ε̂n)≤ ε̂+ (23)

It is easy to prove Theorems 6–10.

4 Decision Making Methods Based on NPNSCIA or NPNSCIG Operator

The multi-attribute decision problem with decision information of NPNS is described as
follows: There are m schemes H = {h1,h2, . . . ,hm} and n attributes T = {t1, t2, . . . , tn}. The decision
maker measures the schemes hi by attribute tj and gets the value ε̂ij of attributes, in which
hij = 〈(αij, εij), (Jij,Kij,Lij)〉 is an NPNE. Then, we can get the NPNE decision matrix C=(hij)mn.
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Considering the correlation between attributes, by using the NPNS Choquet integral operator, a
MADM method is presented in the NPNS environment.

Step 1: Build up C=(hij)mn;

Step 2: Calculate the fuzzy measure of attribute sets;

Step 3: Calculate by using the NPNSCIA or NPNSCIG operator;

Step 4: Calculate each scheme’s score value;

Step 5: Choose the best scheme.

5 An Illustrative Example

The company plans to choose one of the four suppliers H = {h1,h2,h3,h4} with the strongest
comprehensive ability as its long-term supplier, h1 expresses the supplier A, h2 expresses the
supplier B, h3 expresses the supplier C and h4 expresses the supplier D. When making decisions,
the company considers four attributes T = {t1, t2, t3, t4} of suppliers: quality, production capacity,
after-sales service and management ability, and their fuzzy measures are η1 = 0.3, η2 = 0.3, η3 =
0.3 and η4 = 0.2.

Step 1: In Table 1, the decision makers give the evaluation values described by NPNE.

Table 1: Matrix C

t1 t2 t3 t4

h1 (3, 0.4),
(√

0.7,
√
0.1,

√
0.3
)

(7, 0.6),
(√

0.3,
√
0.2,

√
0.4
)

(5, 0.4),
(√

0.3,
√
0.2,

√
0.6
)

(6, 0.5),
(√

0.7,
√
0.3,

√
0.3
)

h2 (4, 0.2),
(√

0.5,
√
0.2,

√
0.2
)

(8,0.4),
(√

0.2,
√
0.1,

√
0.7
)

(6,0.7),
(√

0.5,
√
0.2,

√
0.5
)

(7,0.6),
(√

0.8,
√
0.1,

√
0.2
)

h3 (3.5, 0.3),
(√

0.4,
√
0.2,

√
0.4
)

(6,0.2),
(√

0.3,
√
0.1,

√
0.7
)

(5.5, 0.6),
(√

0.3,
√
0.2,

√
0.6
)

(4,0.4),
(√

0.7,
√
0.2,

√
0.3
)

h4 (5, 0.5),
(√

0.2,
√
0.1,

√
0.4
)

(7,0.5),
(√

0.4,
√
0.3,

√
0.2
)

(4.5, 0.5),
(√

0.8,
√
0.1,

√
0.2
)

(6,0.5),
(√

0.2,
√
0.3,

√
0.6
)

Step 2: Using Eq. (10), we calculate ϑ =−0.2317;

Step 3: Using Eq. (9) and ϑ , we get the fuzzy measure:

η(x1,x2)= η(x1,x3)= η(x2,x3)= 0.5791;

η(x1,x4)= η(x2,x4)= η(x3,x4)= 0.4861;

η(x1,x2,x3)= 0.8389; η(x1,x2,x4)= η(x1,x3,x4)= η(x2,x3,x4)= 0.7523;

η(x1,x2,x3,x4)= 1.

Step 4: Using the NPNSCIA operator, we calculate each supplier’s comprehensive value.

h1 = 〈(5.1185, 0.4719), (0.5363, 0.1752, 0.3892)〉;
h2 = 〈(6.1232, 0.4626), (0.5323, 0.1466, 0.3600)〉;
h3 = 〈(4.7609, 0.3677), (0.4346, 0.1663, 0.4960)〉;
h4 = 〈(5.5694, 0.5000), (0.5129, 0.1622, 0.2939)〉.
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Step 5: Each supplier’s score value can be gotten by using Eqs. (5), (6);

Φ1(h1)= 10.7778;Φ1(h2)= 13.0562;Φ1(h3)= 9.1181;Φ1(h4)= 11.9763.

Φ2(h1)= 0.9937;Φ2(h2)= 0.9864;Φ2(h3)= 0.7042;Φ2(h4)= 1.0752.

Step 6: According to the value Φ1(hi) and the Definition 8, we rank each supplier h2 � h4 �
h1 � h3 and choose the excellent supplier h2 .

While using NPNSCIG operator:

Step 1’–3’: Just as Steps 1–3;

Step 4’: Using the NPNSCIG operator, we calculate each supplier’s comprehensive value.

h1 = 〈(4.8535, 0.4894), (0.4529, 0.1916, 0.4202)〉;
h2 = 〈(5.9026, 0.4630), (0.4276, 0.1562, 0.4615)〉;
h3 = 〈(4.6323, 0.3960), (0.3829, 0.1745, 0.5438)〉;
h4 = 〈(5.5115, 0.5143), (0.3391, 0.1967, 0.3437)〉.

Step 5’: Each supplier’s score value can be gotten by using Eqs. (5), (6).

Φ1(h1)= 9.6674;Φ1(h2)= 11.4833;Φ1(h3)= 8.4328;Φ1(h4)= 10.7924

Φ2(h1)= 0.9748;Φ2(h2)= 0.9007;Φ2(h3)= 0.7209;Φ2(h4)= 1.0071.

Step 6’: According to the value Φ1(hi) and Definition 8, we rank each supplier h2 � h4 � h1 �
h3 and choose the excellent supplier h2.

Compared with the literatures [16–19], NPNS Choquet integral operator can not only model
the weight of attributes and attribute-set in MADM problem, measure the correlation, comple-
mentary correlation, and preference correlation between attributes, but also can fully consider the
importance between attributes, so as to make the decision results more objective.

6 Conclusions

In this paper, NPNS and Choquet integral operators are combined to define the NPNSCIA
operator and NPNSCIG operator, which can consider the incidence relation between indica-
tors. It is proved that they have power equality, displacement invariance, ordered monotonicity,
and boundedness. A nonlinear programming model is established and the FM of indicators and
indicator sets is solved objectively. In the NPNS environment, by using the defined operators and
the established model, the problem of related MADM with attribute weight information unknown
or partially attribute weight information unknown is solved effectively. Finally, the case proves that
this method is easy and reasonable. This study extended the Choquet integral to NPNS, making
the Choquet integral better applied and developed in the related MADM problems.
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