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ABSTRACT

In Single-Photon Emission Computed Tomography (SPECT), the reconstructed image has insufficient contrast,
poor resolution and inaccurate volume of the tumor size due to physical degradation factors. Generally, nonsta-
tionary filtering of the projection or the slice is one of the strategies for correcting the resolution and therefore
improving the quality of the reconstructed SPECT images. This paper presents a new 3D algorithm that enhances
the quality of reconstructed thoracic SPECT images and reduces the noise level with the best degree of accuracy. The
suggested algorithm is composed of three steps. The first one consists of denoising the acquired projections using
the benefits of the complementary properties of both the Curvelet transform and theWavelet transforms to provide
the best noise reduction. The second step is a simultaneous reconstruction of the axial slices using the 3DOrdered
Subset Expectation Maximization (OSEM) algorithm. The last step is post-processing of the reconstructed axial
slices using one of the newest anisotropic diffusionmodels named Partial Differential Equation (PDE). Themethod
is tested on two digital phantoms and clinical bone SPECT images. A comparative study with four algorithms
reviewed on state of the art proves the significance of the proposedmethod. In simulated data, experimental results
show that the plot profile of the proposed model keeps close to the original one compared to the other algorithms.
Furthermore, it presents a notable gain in terms of contrast to noise ratio (CNR) and execution time. The proposed
model shows better results in the computation of contrast metric with a value of 0.68± 7.2 and the highest signal
to noise ratio (SNR) with a value of 78.56 ± 6.4 in real data. The experimental results prove that the proposed
algorithm is more accurate and robust in reconstructing SPECT images than the other algorithms. It could be
considered a valuable candidate to correct the resolution of bone in the SPECT images.
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1 Introduction

Single-Photon Emission Computed Tomography (SPECT) is an emission imaging modality
based on the administration of radiopharmaceuticals to patients. A gamma photon detector
rotates around the patient to register multiple projections of the radioactive concentration at
different angles. A computer must reconstruct these projections to obtain a 3D volume of the
object. Tomographic reconstruction aims to extract axial, coronal and sagittal slices of the object
from its finite number of projections. This reconstruction reflects the functional information about
metabolic activity and lets the doctors effectively diagnose the radiopharmaceutical distribution in
anybody slice [1]. Historically, reconstruction is carried out slice by slice, all the reconstruction
algorithms have reduced the 3D-image reconstruction to a 2D-image reconstruction by converting
a 2D-projection plan into a 1D-sinogram (profile) to generate axial slice images of the object.
These algorithms are called 2D-reconstruction algorithms [2]. Recently, due to the growth in the
speed of the processor’s modern computer and the availability of the capacity memory chips, a
3D-image reconstruction algorithm has appeared. These algorithms enable the simultaneous and
complete reconstruction of projection data. The 3D-image reconstruction algorithms convert the
input sequence of image projection to a 3D matrix, then allow a simultaneously 3D axial slice
image reconstruction and not successively in the interactive calculation which is the case of 2D-
reconstruction. These algorithms need a large matrix to consider photons detected in the out of
projection plan [3]. Two classes of reconstruction algorithms are developed: analytic reconstruction
and iterative reconstruction. Therefore, due to the radioactivity disintegration, to the acquisition
and the reconstruction algorithms procedure, the reconstructed SPECT image suffers from poor
spatial resolution, bad contrast and an important noise level which makes it difficult to detect
the bone lesions and allows an inaccurate diagnosis. The analytic reconstruction, such as Filtered
Back-Projection (FBP) [4], generated significant artifacts and induced more noise because of the
limited number of acquiring projections [5]. On the other side, the iterative method improves
the reconstructed image quality and decreases the produced artifacts [6]. Maximum Likelihood
Expectation Maximization (MLEM) is the most common iterative algorithm, which was proposed
by Bruyant [2] and afterward enhanced in acceleration using the Ordered Subset Expectation
Maximization (OSEM) algorithm [7–9]. However, the quality of the produced image with the last
technique becomes noisier by increasing the number of iterations and subsets [1,10]. Poisson noise
is highly dependent on the signal. Therefore, it is difficult to separate the signal from the noise [11].
Then, to improve the quality of the reconstructed images, several studies based on the standard
reconstruction methods have been published. Single scale filtering, such as Stationary Filtering
operations, either linear or nonlinear, are commonly used. Because of its limited consideration
of count distributions and noise level, these filters decrease noise variance but degrade image
contrast and detail [12]. Adaptive and nonstationary filters have also improved the reconstructed
SPECT image quality [13–16]. These filters are characterized by the selection criteria used for
smoothing regularization. Besides, this approach provides filtered image textures, different from
those of the original image. In [17], a comparison has been made between FBP, OSEM with
adaptive filter (Metz) and OSEM with non-adaptive filter (Butterworth). Different combinations
have been applied to bone SPECT images of the spine with and without scatter correction.
This work showed that the OSEM reconstruction combined with Metz filter or Butterworth filter
gives a good result in homogenous regions. Still, it blurred the edges and degraded the image
resolution. To overcome these limitations, multi-scale denoising approaches have been suggested
for image denoising in SPECT reconstruction. Contrary to the single-scale filtering approach,
multi-scale methods separate the signal of interest from the noise components and analyze each
component into different sub-band coefficients with the adaptive denoising algorithm. Especially,
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Wavelet transform [18–22] has been proposed. In their work, Wen et al. [18] showed that the
SPECT reconstruction algorithm based on Wavelets transform reduces the noise in the recon-
structed SPECT image. However, because of the signal-dependent Poisson noise in the acquired
projection, this approach does not provide a good representation of the anisotropic elements in
the reconstructed SPECT images. Other families of multi-scale approaches were proposed for
the reconstructed SPECT image denoising, such as the Curvelet multi-scale method [23]. The
Curvelet transform is based on the anisotropic graduation principle, which is quite different from
isotropic wavelet scaling. These characteristics are beneficial for the development of denoising
SPECT image algorithms. Low density characterizes very high signals that have line, curve and
hyperlink singularities [24].

On another side, the cascaded hybrid framework has been proposed for improving the quality
of SPECT image reconstruction. In their work, Tiwari et al. [25] proposed a model composed
of two iterative algorithms and an edge-preserving function in the iterative denoising step, which
is the anisotropic diffusion (AD). This study shows that the proposed model can deblur the
reconstructed image SPECT in lower computational time. Recently, Machine learning (ML) has
been implemented for various medical imaging modalities such as Magnetic Resonance Imag-
ing [26], Computed Tomography [27], Positron Emission Tomography [28] and SPECT [29–31].
Several studies proved the efficiency of this technique to produce high image quality with a
substantial reduction of noise and blurring artifacts. However, one of the principal drawbacks
of these methods is that the resulting neural network is not a feed-forward formulation. Hence,
their utilization can be more likely in applications where high precision exceeds the reconstruction
time [32]. In this work and based on the prior results, we propose a new algorithm for improving
the reconstructed bone SPECT image quality. The proposed method is based on a new combi-
nation of multi-scale denoising, fast 3D-OSEM reconstruction algorithm and one of the newest
anisotropic diffusion models. Two simulated phantoms and preclinical bone exam data were used
to evaluate the performance of the proposed approach. A comparative study is performed between
the proposed algorithm and four states of the art techniques for SPECT image reconstruction:
MLEM, 2D-OSEM, 2D-OSEM + Metz filter and CNNR algorithms.

This paper is organized as follows:Section 2 discusses the proposed method. The obtained
results are presented and analyzed in Section 3. Section 4 illustrates the conclusion and future
directions.

2 Materials and Methods

2.1 Reconstruction Algorithms
Tomographic reconstruction aims to estimate an explored region from a finite number of

acquired projections. The reconstruction algorithms present the region to be explored in multidi-
rectional slice images. This reconstruction reflects functional information of metabolic activity in
any slice of this region. There are two types of reconstruction, analytic and iterative.

2.1.1 Analytic Reconstruction
Two classes of the analytic algorithm are developed, simple back-projection (SBP) and filtered

back-projection (FBP) [4]. FBP reconstruction combines two steps: filtering the data and back-
projection of the filtered data using the direct inversion of the radon transform. FBP is the most
widely used because of its simplicity and speed. However, due to thelimited amount of projection
data, it can generate significant artifacts and induce more noise [5].



884 CMES, 2022, vol.131, no.2

2.1.2 Iterative Reconstruction
The iterative algorithm consists of linking numerous forwarding projections and back-

projection operations since initial data. The initial image is an estimated image created arbitrarily.
The successive estimate stopped when the projection of the reconstructed image similar to the
measured projections. These methods reduce the significant artifacts and enhance the reconstructed
image quality.

• The principle of some iterative algorithms (ML-EM OS-EM)

The (ML-EM) algorithm is the standard iterative reconstruction method which consists of two
alternating steps: an E-step creates a function for computing the expectation of the log-likelihood
which evaluates the similarity between simulated and measured sinograms, and an M-step which
finds the next estimate image by maximizing the expected log-likelihood found on E-step while
taking into account the fact that the first estimate image is positive and that a noisy Poisson
attains the measured sinograms. The MLEM algorithm is presented in Fig. 1.
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Figure 1: MLEM algorithm

The OSEM algorithm [6–8] is composed of ordered subsets ported to the MLEM algorithm
which allows a much faster convergence, compared to the original convex algorithm, and an easy
parallelization. The principle of this algorithm is based on the division of the acquired projections
into ordered subsets for the calculation of iteration. Subsequently, the MLEM algorithm is applied
to each subset in turn. The update of the estimated images with the OSEM method is done with
the corresponding subset. The operation is repeated until the last chosen subset.

The iterative reconstruction algorithms improve the reconstructed image quality and reduce
the generated streaking artifacts [5]. However, these algorithms still suffer from the slowness of
convergence and the quality of the produced image which becomes noisier with the increase in
iterations and subsets.
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2.2 Proposed Method
In this section, we present the proposed algorithm to improve the quality of reconstructed

bone SPECT images. We start with a global introduction of the proposed model. Then, we detail
each step. Fig. 2 presents an overview of our method, which is clearly illustrated in Fig. 3. In our
work, we used three SPECT databases. Each database is composed of a SPECT image. This image
is a sequence of 128 projections. These projections were acquired according to 128 projection
angles. Each input projection is a 128 * 128 size matrix. After the projection sequence of the
denoising step, a sequence of filtered sinograms was assembled then reconstructed with a Fast
3D-OSEM reconstruction. An optimization step was carried out to obtain the best quality of
axial slices. Finally, we extract a sequence of coronal slices and a sequence of sagittal slices from
the sequence of the improved axial slices.

3D bone SPECT image Load (sequence of 128 projection 
images)

• 128 projection images

Sinogram of transverse slices assemblage from the filtred 
projections

• 128 filtred sinograms

Fast reconstruction of a sequence of axial slices from the 
filtred sinograms

• 128 axial slices 

Axial slices sequence enhancement

• 128 enhanced axial slices 

Storing the axial, sagittal and coronal slices in a specific 
folder

Extraction of the coronal and sagittal slices sequences from the 
enhanced axial slices

Display the desired slices according to the choice of the user 
using the graphic user interface

• 128 axial slices sequence, 128 coronal slices sequence and 
128 sagittal slices sequence

. 128 filtred projection images

Projection image denoising

Figure 2: Diagram of the main work for 3D bone SPECT image reconstruction
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Figure 3: Proposed method
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In the following, we will introduce our methodology in subtleties by concentrating on the next
steps.

2.2.1 Projection Denoising
To reduce the noise efficiently in the projection image as much as possible with preserving

the image details, we explore the benefits from the complementary properties of both the Wavelet
transform and Curvelet transform. During the first step, we exploited the ability of Wavelet
transform to detect the edges. Indeed, we applied the Curvelet transform on the residual image.
The later image is the result of subtracting the original image from the filtered image. The filtered
image is composed of fine details, structure and noise.

Wavelet transforms (DWT)

The DWT is a powerful multi-scale transform for denoising because of its ability to separate
noise from signal [1,33]. It decomposes the SPECT origin projections by filter banks into a set
of frequency band images. This transform uses low pass filters and high pass filters to extract
the significant wavelet coefficients called approximation and remove the non-significant wavelet
coefficients called details. In this work, we used the Daubechies Wavelet transform with 5 scales
because, by set learning, we found that this algorithm provides the best performance of bone
SPECT denoising.

Curvelet transforms (CWT)

To analyze the anisotropic features of projections, we used the second generation of Curvelet
transform (Candes, 2006) [34], which is considered as one of the most important directional
representation systems [35]. It is a multi-scale and multidirectional transform with frame elements
indexed by the scale, location and directional parameters, with the frame’s shape localized in the
spatial and frequency domains. It showed higher levels of directionality and anisotropy. As the
construction of this transform is done in the Fourier domain; the generating Curvelet ωj,0,0 at
scale 2−j is defined via:

Ŵj,0,0

(
reiθ

)
= 2−

3j
4 .A

(
2−jr

)
.B

(
2

j
2+1

π
θ

)
(1)

where α = reiθ are the polar coordinates. A and B are respectively the radial window and the
angular window. They have to satisfy proper admissibility conditions.

At scale 2–j, the Curvelet’s family
{
Ŵj,k,l

}
j,k,l

is constructed by translation and rotation of the

generating Curvelet Wj,0,0, their expression is defined via:
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θj,k denote the scale-dependent rotation angles and Sj,kl denote the scale-dependent locations
which are expressed by:

θj,k = k.π2−(j/2)−1,−2
(
j
2

)
+1 ≤ l≤ 2

(
j
2

)
+1

; (3)

Sj,kl =R−1
θj,k

(
l1
2j
,
l2
2j/2

)
, l= (l1, l2)εZ

2 (4)

The refraction coefficient of each unknown function f is expanded in term of curvelet via:

f =
∑〈

Wj,k,l, f
〉
Wj,k,l (5)

where j is the scale parameter, l is the location parameter and k is the location parameter that
corresponds to directional features of f.

Combined denoising step

As explained previously, WT and CT present complementary behaviors; the number of direc-
tional elements in the wavelets is fixed independently from the scale. Therefore, the WT does not
perfectly restore the anisotropic element like the outlines and the edges. While the CT presents
high directional anisotropy elements, this transform does not handle small isotropic elements prop-
erly. So, we exploited both transforms in the same model to improve the denoising methodology
of acquired projections.

The combined denoising scheme is illustrated in Fig. 4. We applied the Curvelet transform
on the residual image. The residual image is the result of subtracting the filtered image from the
original image. This residual image contains structures, noise and details. This is clearly illustrated
in Fig. 5. By applying the CT denoising to the residual image, we detect the structures and
features lost during the WT’s denoising in the first step. The filtered residual image by the CT
will be fused with the initial noisy image processed by WT.

f=input image
For p:=1 to number of projection images
Do

End
For p:=1 to number of projection images
Do

End
For p:=1 to number of projection images
Do

End
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Rc

Wavelet denoising

Compute the residual 
image

Edge recovering by
Curvelet denoising

Generate the final image

R=f-fw
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fF=fw+Rc

fF=fw+Rc
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Figure 4: Projection images denoising
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Figure 5: Different results of the proposed algorithm at bone level images
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2.2.2 Fast 3D-OSEM Reconstruction
To reduce the image reconstruction time, we used the 3D-OSEM reconstruction algorithm

which allows a simultaneous reconstruction of all axial slices. In the first step, the sequence of
projection data is converted into a 3D matrix. Therefore, a 3D-sinogram is assembled simultane-
ously from the projection image matrix. Then and in the second step, a 3D image of axial slices
is reconstructed simultaneously from the 3D matrix of sinograms and not successively which is
the case of 2D OSEM reconstruction (slice-by-slice) [36,37]. For N iterations and M subsets, the
3D-OSEM resulted image is computed using the following equation [38]:

fs+1
k (St)= fsk

1∑
kεSt p

3−D
kj

∑
kεSt

p3−D
kj

Ck∑K
k=1 pkjf

s
k

(6)

where: f sk and f s+1
k are the estimated images at voxel j and sub-iteration s and s + 1, respectively,

with 1< k<K, K is the total number of voxels along ray j.

Ck: is the measured projection at projection bin k.

pkj is the transfer matrix which presents the probability that a photon emitted from the voxel
image j is detected in projection bin k.

2.2.3 Optimized Axial Slice Sequence Enhancement
Slices reconstructed with the 3D-OSEM technique are still noisy with attenuated details which

agree with the researchers’ results [9,10]. Therefore, the image must be processed to enhance and
sharpen different details of the slice image. We applied a new modified anisotropic diffusion
model called Partial Differential Equation (PDE) on the reconstructed slices to perform this
operation. This model has been used as an adaptive edge-preserving smoothing technique for edge
detection [39], denoising, enhancement [40] and segmentation [41–43] of image. This is a nonlinear
(PDE) based on a diffusion process. This model is a modification of Perona and Malik’s (1990)
equation and is expressed as follows:

∂f(m,n)

j (Sm)(x, y)

∂t
= div[ct (x, y) .∇f(m,n)

j (Sm)(x, y)] (7)

where f(m,n)

j (Sm)(x, y) is the gray level at coordinates (x, y) of the image at iteration step t, div is

the divergence operator, ∇f(m,n)

j (Sm)(x, y) is the local image gradient and ct (x, y) is the diffusion

coefficient introduced which aims to remove noise without blurring or dislocating the useful edge
information of the images.

The PDE is an anisotropic diffusion model [44]. It is based on a developed stop edge function.
This diffusion method allows smoothing the background and sharpening intra-region even in low
contrast regions contrary to the Perona-Malik model [45], which returns small values in regions
with significant variations in intensity and large values in regions few or no intensity fluctuations.
This developed diffusion model is based on modifying the classical diffusion rule using a nonlinear
sigmoidal function to generate various degrees of edge sharpness.

In this model, a median filter is applied to the gradient of the image. The PDE algorithm is
given as follows:

∇∗f(m,n)

j (x, y)=median(∇f(m,n)

j (x, y) (8)



CMES, 2022, vol.131, no.2 891

Compute the gradient and the diffusion function.

Compute the sharpening diffusion coefficient.

υ(∇f(m,n)

j (x, y))]=α[1− g(∇f(m,n)

j (x, y))] (9)

Then a refining function is added to the edge-stopping rule. The proposed formula is given
by Eq. (10)

g
(
∇∗f(m,n)

j (x, y)
)
= 1[

1+
(∇∗f(m,n)

j (x,y)
K

)2
][− 1

1+ exp
(
−p∗

(
∇∗f(m,n)

j (x,y)
K

)] (10)

where
1⎡

⎣1+
(

∇∗f(m,n)
j (x,y)

K

)2⎤⎦
is the edge stopping rule proposed by Perona and Malik

1

1+exp

(
−p∗

(
∇∗f (m,n)j (x,y)

K

) is the refining function

where K is the thresholding and α is the weight of the sharpening coefficient function.

2.3 Coronal and Sagittal Slice Extraction
We extracted a sequence of coronal slices and a sequence of sagittal slices from enhanced

axial slices. Each slice has a thickness equal to 1 pixel, displayed respectively from posterior to
anterior and right to left, allowing the doctors to perform a diagnostic in any slice of the object.

To choose the best combination of parameters for the proposed algorithm, we applied our
algorithm on 31 abnormal bone SPECT images, and each image contains hyperfixation in the
bone. Then, we calculatedthe means contrast, the means contrast to noise ratio (CNR) and the
means signal to noise ratio (SNR) of the resulted slices as described in the following equations:

Contrast=
∣∣∣∣μs −μb

μb

∣∣∣∣ (11)

CNR=
∣∣∣∣μs−μb

σ

∣∣∣∣ (12)

SNR= μs−μb

μbb
(13)

where μs is the maximum count in normal bone, μb is the maximum count in hyperfunctionning
bone, μbb is the minimum count in background and σ is the standard deviation in background.

We performed the Jarque-Bera test to test whether the series were usually distributed. From
the statistics, Jarque-Bera normality, the assumption can accept some values during our study.
Performing the One-Way ANOVA-test, the optimum combination of parameters for the proposed
method has the highest value of contrast, CNR and SNR. Numerical results of all patient data
revealed that maximum contrast, CNR and SNR could be obtained using the Curvelet transform
with a threshold value equal to 0.01, the Wavelet transform with an order equal to 4, a PDE
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model with K = 0.2 and α = 0.01, combined with an OSEM3D algorithm with 4 subsets and 8
iterations.

3 Results and Discussion

This section presents a description of phantoms and bone SPECT database obtained from
the nuclear medicine department of the National Oncology Institute “Salah AZAIZE” of TUNIS.
Then, we present the different results and performance analyses of the proposed method.

3.1 Database Description
The proposed method was tested on two different SPECT phantoms: Shepp-Logan phantom

and Jaszczak phantom, and our bone SPECT database.

3D-Shepp–Logan phantom

To evaluate the robustness of our reconstruction algorithm, we used a tomographic digital
Shepp–Logan phantom. The distribution of projection data is assumed to be generated by 128
angular views (distributed in the range of 180 degrees). Fig. 6 presents the Shepp-Logan phantom
image at projection 64.

Figure 6: Shepp-Logan phantom (Projection 64)

Four objective criteria were used to evaluate the performance of the reconstructed axial slices.
They are the Mean Square Error (MSE) [23], Mean Absolute Error (MAE), Structural Similarity
Index (SSIM) [46], the Pearson Correlation Coefficient (PCC) [47] and execution time.

3D Jaszczak phantom

To evaluate the accuracy of our reconstruction algorithm, we used a Data Spectrum Corpora-
tion Jaszczak phantom composed of bars and six cold spheres of diameter: 31.8, 25.4, 19.1, 15.9,
12.7, 9.5 mm. The Jaszczak phantom was filled with a radioactive solution containing 2 mCi of a
uniform 99mTc solution. The acquisition of the Jaszczak phantom image was affected using 180◦
non-circular orbit for each detector, with 96 projection angles, a 128 * 128 matrix size, and an
electronic zoom of 1/1 provided a pixel size of 4.795 mm. Fig. 7 presents the Jaszczak phantom
image at projection 76.
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Figure 7: Jaszczak phantom (Projection 76)

The tomographic Jaszczak phantom image reconstruction using the proposed method was
performed using 8 iterations and 4 subsets, combined with a Curvelet denoising wavelet with a
threshold value equal to 0.01 and an EDP thresholding value K = 3 and weight of sharpening
coefficient function α = 0.5.

To evaluate the reconstructed image quality, we draw a circular region of interest (ROI)s of
20 cm diameter for each of the 5 jaszczak spheres in the uniform section of the phantom. A
background ROI was also created using five (ROI)s on five central slices.

Contrast is calculated using Eq. (11) and CNR is calculated using Eq. (12).

where μs is the mean activity in a single ROI of a cold sphere, μb is the mean activity in a single
ROI of background and σ is the standard deviation value in a background region.

Patient exams

A bone SPECT dataset is taken from the nuclear medicine department of the National
Oncology Institute “Salah AZAIZE” of TUNIS, which contains 31 bone SPECT exams, 10 males
and 21 females aged between 45 and 75. The acquisitions were made using a Symbia gamma
camera equipped with a parallel collimatorusing 180◦ non-circular orbit for each detector with
128 projection angles, a 128 * 128 matrix size, a pixel size of 4.795 mm. For each methodand
for 31 bone SPECT exams, we calculated the values of contrast defined in Eq. (11), of the SNR
defined in Eq. (13) and of execution time.

3.2 Shepp-Logan/ Jaszczak Phantom Results
The sequence of Shepp-Logan projections was additionally randomized with a Medium Pois-

son noise level. The Poisson noise level was used by scaling the sinogram value to 50%. Then,
we applied the reconstruction methods to the noisy sequence. To present the phases introduced
in Section 2.1, Fig. 8 outlines the different results of the suggested method at a gray level
Shepp-Logan phantom image at frame 64. Various parameters were tried to get the highest
performance.

Fig. 8 shows the robustness and the accuracy of the proposed algorithm in tomographic
reconstruction.

Fig. 9 shows the accuracy of the proposed method during the reconstruction technique.
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Figure 8: The different results of the proposed algorithm from the tomographic Shepp-Logan
Phantom (SLP) image at frame 64. (A) Original (SLP) projection; (B) Noisy (SLP) projection;
(C) Projection (SLP) denoised by the Wavelet; (D) Fusion step for (SLP) projection denoising; (E)
Reconstructed (SLP) slice; (F) Enhanced axial (SLP) slice by EDP; (G) Coronal enhanced (SLP)
slice and (H) Sagittal enhanced (SLP) slice

Figure 9: The different results of the proposed algorithm from the tomographic Jaszczak Phantom
image (JP) at frame 73, (A) Original (JP) projection; (B) Fusion step for (JP) projection denoising;
(C) Reconstructed axial (JP) slice; (D) Reconstructed coronal (JP) slice and (E) Reconstructed
sagittal (JP) slice

3.3 Preclinical Data Results
To present the phases presented in Section 2.1, Fig. 5 illustrates the different results of the

proposed algorithm at bone level images. Line (A) presents the noisy projection images, Line (B)
depicts the results of the projection image denoised by the Wavelet transform, Line (C) illustrates
the results of the residual images, Line (D) illustrates the results of the residual image denoised
by the Curvelet transform, Column (A) presents the reconstructed axial slice, Column (B) the
enhanced axial slice by EDP, Column (C) the coronal enhanced slice and Column (D) the sagittal
enhanced slice.
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3.4 Performance Evaluation
To evaluate the performance of the proposed method of reconstruction, we conducted a

qualitative and quantitative comparison with four other reconstruction approaches available in
the literature which are: MLEM [5], OSEM [6], 2D-OSEM with a 3D post filtering with a Metz
filter [12] and CNNR [29]. First, a comparison is made between different parameters for the same
technique to choose the best one. Then a comparison is performed between the five methods.
The tomographic Shepp-Logan image was reconstructed respectively with MLEM (120 iterations),
2D-OSEM (1024 iterations and 4 subsets) with a three-dimensional post filtering with a Metz filter
(order = 9.5, FWHM = 7.8 mm), CNNR (The encoder composed of 12 convolutional and three
dense layers. The decoder is composed of 17 convolutional layers), and the proposed method are
illustrated in Fig. 10.

Figure 10: Axial slices of the tomographic Shepp-Logan Phantom (SLP) image reconstructed from
noisy projections (projection 64) (A), using the following algorithms: 2D-MLEM (B), 2D-OSEM
(C), 2D-OSEM with 3D-post filtering with a Metz filter (D), CNNR (E), and our proposed
method (F)

Figs. 8 and 10 show that the proposed method allows the preservation of the original struc-
ture during reconstruction by removing noise and conserving contrast and details. Whereas the
iterative method used alone (Figs. 10B and 10C) attenuates the detail by giving a blur effect on
the edges of the areas and making the extraction and the location of the edges difficult. Like-
wise, the other improvement methods (Figs. 10D and 10E) affect the background uniformity.
Subsequently, the image form appeared slightly smooth and noisy.
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Fig. 11 shows the same profile of the Shepp-Logan slice reconstructed by the different recon-
struction methods. The plot of the intensity profile shows that the profile resulting from the
proposed algorithm (curve in pink color) is closer to the original profile (curve in green color) than
the other algorithms. The other approaches provide either a more significant under-estimation or
an over-estimation. This result demonstrates that the proposed method can efficiently recover the
intensity of the original image compared to the other methods. In addition, quantitative analyses
were used to evaluate the reconstruction methods. The optimum method has the lowest value of
MSE, MAE and execution time and the highest value of SSIM and PCC. From Table 1, we note
that the value of these metrics favored the proposed method which provides the highest value of
SSIM (0.987) and PCC (0.975). This result demonstrates that the proposed method reconstructs
a more similar structure than the other algorithms. Furthermore, the proposed method provides
the lowest values of MSE (0.0012), MAE (0.013) and execution time (68.57) compared to other
algorithms. This demonstrates that the proposed reconstruction algorithm preserves the edges and
the quantitative information while removing noise. This method succeeds in keeping the compro-
mise between noise reduction and details preservation. From this result, we can conclude that the
proposed method ensures an accurate reconstruction in lower computational time compared to
another algorithm.

Figure 11: Line profile at row 35 of the noisy projections reconstructed respectively by MLEM,
OSEM, 2D-OSEM with 3D-Metz post filtering, CNNR and proposed method applied

Table 1: Performance parameters for reconstruction technique

Reconstruction method MSE MAE SSIM PCC Time (sec)

Proposed method 0,0012 0,013 0,987 0,975 68.57

(Continued)
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Table 1: (Continued)

Reconstruction method MSE MAE SSIM PCC Time (sec)

CNNR 0,0041 0,029 0,811 0,922 101.53
2D-OSEM + Metz 0,0057 0,037 0,720 0,883 107.23
MLEM 0,0062 0,040 0,719 0,836 278.36
2D-OSEM 0,0085 0,044 0,674 0,801 68,96

Axial slices reconstructed from a SPECT image of a Jaszczak by various reconstruction
methods are shown in Fig. 12.

Figure 12: Axial slices (slice 73) reconstructed from the SPECT image of a Jaszczak phantom. (A)
CT image; (B) Slice reconstructed by MLEM with 10 iterations; (C) Slice reconstructed by OSEM
with (8 iterations and 4 subsets); (D) Slice reconstructed by OSEM with post-filtering by Metz
filter; (E) Slice reconstructed by CNNR and (F) Slice reconstructed by the proposed method

From Fig. 12, it can be seen that the shape of the sphere seems more spherical and the
background less uniform in the reconstructed slice with the proposed method. Whereas in the
reconstructed slice with the other methods, the shape of the sphere seems slightly smoothed
and attenuated, making the extraction and localization of the contours difficult and giving a
much noisier image. This result shows the accuracy and efficiency of our proposed method in
the reconstruction. It allows better preservation of detail and region boundaries than the other
methods.
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Figs. 13 and 14 show the results of CNR and SNR as a function of the Jaszczak phantom’s
sphere diameters in slices reconstructed with the different reconstruction methods.
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Figure 13: CNR according to the spherediameter of the Jaszczak phantom for the proposed
method, OSEM, MLEM, OSEM + Metz and CNNR
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Figure 14: SNR according to the sphere diameter of the Jaszczak phantom for the proposed
method, OSEM, MLEM, OSEM + Metz and CNNR

From Fig. 13, we can conclude that the CNR curves favor the proposed method over the
other reconstruction methods. From Fig. 14, it can be seen that the images reconstructed by the
proposed algorithm give better SNR values for spheres with diameters between 19.1 and 31.8 mm.

These curves illustrate that the proposed algorithm gives a better result for each metric than
the other algorithms. This result shows the efficiency of our proposed algorithm in noisy artifacts
reduction with conservation of contrast, improvement of SNR and image resolution.

The reconstructed bone SPECT image with: MLEM (120 iterations) (A), 2D-OSEM (8 iter-
ations and 4 subsets) (B), 2D-OSEM (8 iterations and 4 subsets) with a 3D-post-filtering with a
Metz filter (order = 9.5, FWHM = 7.8 mm) (C), CNNR (D) and the proposed method (E) are
shown in Fig. 15.
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Figure 15: Axial slices of the clinical SPECT data, reconstructed by the five reconstruction
algorithms

We can note from Fig. 15 that the anomalies and fine details become visible in the slice
reconstructed with the proposed method. Moreover, we can see that the artifacts and undesirable
activity in the background region, which is apparent in Fig. 15B, decreased with the preservation
of image contrast.

For each method and each exam, we calculated the mean values of contrast, SNR and
execution time for 31 bone SPECT exams described in Eqs. (9) and (10). Figs. 16–18 show the
results of mean values of contrast, SNR and the execution time for 31 bone SPECT images.
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Figure 16: Bar plots of the means contrasts values, from different algorithms for 31 thoracic
SPECT images
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Figure 17: Bar plots of the means SNR values from different algorithms for 31 thoracic SPECT
images
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Figure 18: Bar plots of the execution time from different algorithms for 31 thoracic SPECT images
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The qualitative assessment of the various directional feature regions of the bone SPECT
image, illustrated in Fig. 15, shows that the proposed method provides better preservation of the
singularity, the limit of the region, and more accurate detection of the lesion, and the practical
ability of denoising. At the same time, the iterative method used alone attenuates the detail and
makes delicate the extraction and the location of the contours.

For all the 31 thoracic SPECT exams, we can note from Figs. 16–18 that the proposed
algorithm provides the highest values of SNR and contrast. The lowest value in terms of execu-
tion time compared to other methods illustrates the highest result. The execution time value of
the reconstruction by the proposed algorithm is (100 ∓ 8.7 sec) outperform those by the other
algorithms.

Using multi-scale denoising on the acquired bone SPECT projection images allows more con-
siderable noise reduction with accurate radioactivity concentration and quantitative information
measures. This technique is based on localized fine-scale functions, which allow better reconstruc-
tion of various details at multiple scales. Using the novel 3D-OSEM based on parallelization
computation brings the convergence much faster than the traditional 2D-OSEM with robust and
accurate reconstruction. The anisotropic diffusion is based on a nonlinear sigmoidal function,
which generates various degrees of edge sharpening, accentuates and sharpens different details of
the reconstructed thoracic SPECT image without affecting the neighboring regions’ background.
In conclusion, this model allows a fast, robust and accurate reconstruction of thoracic SPECT
exams.

As shown in Fig. 19, we have developed a graphical user interface to facilitate handling and
display the desired slices according to the user’s choice.
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Figure 19: Graphical user interface of SPECT image reconstruction

4 Conclusion

In this paper, we presented a novel 3D algorithm to enhance bone SPECT image recon-
struction. In fact, after applying a new type of filter exploring the possibility of combining
two different multi-scale techniques, Wavelet transform and discrete Curvelet transforms, on 128
projections. One hundred twenty-eight axial slices are reconstructed by the 3D-OSEM algorithm
and enhanced by one of the newest anisotropic diffusion models. The proposed method was tested
on two different SPECT phantoms: Shepp-Logan phantom and Jaszczak phantom, and our bone
SPECT database to demonstrate its accuracy and robustness in reconstruction. Summing up the
results, it can be concluded that the proposed algorithm can improve the quality of thoracic
SPECT images in terms of noise reduction, accuracy and reconstruction robustness. This novel
method provides a notable gain, in contrast, SNR, CNR, MSE, MAE, SSIM, PCC and compu-
tation time compared to other algorithms. In this work, we proposed a user interface graphic for
SPECT image reconstruction that allows the practitioner to correct the spatial resolution of the
bone in SPECT image. A limitation of this study is that the parameters of this algorithm are
chosen according to the statistic study carried out and the database used. Based on the promising
results presented in this article, we propose a combination of this algorithm with a deep learning
method as a possible direction of research in the future to obtain an optimal and innovative
method of bone SPECT image reconstruction.
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