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ABSTRACT

In this work, we modeled the brittle fracture of shell structure in the framework of Peridynamics Mindlin-Reissener
shell theory, in which the shell is described by material points in the mean-plane with its drilling rotation neglected
in kinematic assumption. To improve the numerical accuracy, the stress-point method is utilized to eliminate
the numerical instability induced by the zero-energy mode and rank-deficiency. The crack surface is represented
explicitly by stress points, and a novel general crack criterion is proposed based on that. Instead of the critical stretch
used in common peridynamic solid, it is convenient to describe the material failure by using the classic constitutive
model in continuum mechanics. In this work, a concise crack simulation algorithm is also provided to describe the
crack path and its development, in order to simulate the brittle fracture of the shell structure. Numerical examples
are presented to validate and demonstrate our proposed model. Results reveal that our model has good accuracy
and capability to represent crack propagation and branch spontaneously.
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1 Introduction

Dynamic damage and failure process of shell structure is very challenging in the computa-
tional community for its special geometric features which requires the numerical method to be
capable of representing material characteristics and discontinuity in finite deformation and large
rigid rotations [1]. Because the intrinsic nature of the discontinuities emerges from the damage
area of interest, numerical approaches based on classical continuum mechanics have to handle
the discontinued displacement field and the singularity in stress field at the crack tip, where
partial-differential equations become unsolvable. Instead, the peridynamic theory provides a uni-
form description of both continuities and discontinuities, which reform continuum mechanics by
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providing a non-local integral representation of continuum material and structure responses [2].
There is no requirement for the continuity of the displacement field since the domain is discretized
in terms of material points and described by the integral equation of motion. The cracking
and failure can thus be captured and represented naturally and spontaneously without artificial
treatment or additional criterion.

Peridynamic theory has been proposed by Silling in 2000 and it has been successfully applied
to solve problems in engineering and industry with material damage and fracture involved [3–
5]. Chu et al. then proposed a modified bond-based peridynamic model which considers the
softening plasticity in compression and strain-rate effect of ceramics [6]. Chen et al. developed
a peridynamic fiber-reinforced concrete model based on the bond-based peridynamic model with
rotation effect [7]. Bazazzadeh et al. study fatigue crack propagation in structural materials by
developing a new computational tools which is based on peridynamic theory [8,9]. Zhao et al.
presented a state-based peridynamic contact damage model for glass by introducing a contact
force function [10].

However, when it is extended to plate or shell structures, it is very hard to achieve reasonable
results with high accuracy since the system have to use very fine discretizations to satisfy the
precision requirement along the thickness direction. To address this issue, several peridynamics
membrane approaches have been proposed based on various kinematic assumptions to improve
the computational efficiency [11–13]. A new notion of curved bonds is exploited to cater for force
transfer between the peridynamic particles describing the shell structures firstly by Chowdhury, et
al. [14]. Recently, a PD model for 3D shell structures with six degrees of freedom to predict the
damage and crack growth developed by Nguyen et al. [15]. Hu et al. present a methodology for
the simulation of ductile fracture in steel plates based on non-ordinary state-based peridynamics
[16], which also provide a novel algorithm of crack approximation. Yolum reduces the number of
peridynamic interactions by idealizing the plate structures with mindlin plate theory [17], obtained
a peridynamic solution for elastic deformations and failure prediction of pre-cracked plates. In
fact, the possibility to model these structures with a single layer of nodes is very attractive. The
same conclusion was drawn concerning other meshfree particle methods for ages. In 2000, Li et
al. presented an meshfree simulations of large deformation of thin shell structures by constructing
highly smoothed shape functions for three-dimensional meshfree discretization [18], while avoiding
ill-conditioning as well as stiffening in numerical computations. A method relies on an entirely
meshless based on the Smoothed Particle Hydrodynamics method (SPH) presented by Maurel
et al. [19], and discussed the simulation of a plasticity model of the thin shell and its fracture
analysis. Lin et al. modified the Smoothed Particle Hydrodynamics method (SPH) to deal with
shell-like structures with only one layer of particles to represent the shell mid-surface [20], while
keeping a very good level of validity and efficiency. Peng et al. developed the Reproducing Kernel
Particle method (RKPM) to the simulation of the large deformation of a curved shell in the
Mindlin-Reissner shell theory [21], which can address large deformations without mesh distortion.
By using this method, the dynamic response of the ship cabin and real ship structure under
impact load are numerically predicted [22]. Zhang et al. derived the local form of nonlocal balance
laws for nonlocal continuum and developed a nonlocal geometrically-exact shell theory. The finite
deformation and fractures are simulated by that model [23]. Yang et al. used Lagrange’s equation
and Taylor expansion to update the motion equation and develop the new state-based peridynamic
formulation for functionally graded Euler-Bernoulli beams with four different boundary conditions
considered [24]. Shen et al. present new peridynamic beam and shell models with the effect if
transverse shear deformation based on the micro-beam bond and the Timoshenko beam theory
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[25] and the crack propagation in double-torsion test of a rectangular brittle plate has been
simulated [26].

This paper is organized as follows. In Section 2, we first recall the Mindlin-Reissener shell
theory, and we introduce the numerical instability control to eliminate the zero-energy mode and
rank-deficiency. Then the details of brittle fracture modeling and crack criterion are proposed.
After that, some elastic numerical examples will be provided to illustrate the capabilities of this
theory. In Section 3, numerical examples are carried out to validate the accuracy, investigate the
convergence, and demonstrate the capability of proposed model on brittle fracture modeling.
studies the damage theory and the crack simulation algorithm. Finally, the accuracy, convergence,
and stability of this work will be discussed in the last section.

2 Modeling Brittle Fracture in Mindlin-Reissner Shell

2.1 Non-Ordinary State-Based Peridynamic Theory
The Non-Ordinary State-Based Peridynamic Theory is a non-local continuum theory that was

proposed by Silling [27], in which the interactions between material points are measured in terms
of force states. Each pair of interactions between material points are arbitrarily oriented and
magnituded. The governing equations of the linear momentum of the system is expressed as

ρ0ü(x, t)=
∫

Hx

(T[x, t]〈x′ − x〉−T[x′, t]〈x− x′〉)dVx′ + b (1)

where ρ0 is the mass density at the initial configuration, x denotes the position of the material
point in the body, u(x, t) is the displacement of x at time t, b is the body force density, and
T[x, t]〈x′ − x〉 is the force state that denotes the force of x′ exerting on x at time t. The integral
is performed on the family of all material points that stand within certain distance from x which
is denoted by Hx, or horizon of material point x.

Eq. (1) could be seen as an non-local form of the equation of linear momentum in continuum
mechanics, which is

ρ0ü =∇X ·P+ b (2)

where P is the first Piola-Kirchhoff (PK-1) stress tensor, and ∇X is the divergence operator
with respect to the initial configuration. In non-ordinary state-based Peridynamics, the force state
T[x, t]〈x′ − x〉 could be related with PK-1 stress and obtained by

T[x, t]〈x′ − x〉 =ω〈ξξξ 〉PK−1ξξξ (3)

in which ω〈|ξξξ |〉 is the scalar weight function which is positive defined in the horizon of x, and K
is a shape tensor defined by

K =
∫

Hx

ω〈|ξξξ |〉ξξξ ij ⊗ξξξ ijdVx′ (4)

where ξij = Xj −Xi, and Xi is the position vector of point i in the reference configuration.

2.2 Peridynamic Formulation of Mindlin-Reissner Shell
2.2.1 Kinematic

According to the Mindlin-Reissner’s thick shell theory, the shell is modeled using a single
layer of particles that having three degrees of freedom in translation and two additional rotational
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degrees of freedom θ1 and θ2 in the plane tangent to the shell. Drilling rotation is not considered
in this context for simplicity.

In Fig. 1, the kinematic interpretation of arbitrary shell is presented. The position vector of
any point located at a distance η from the mean plane in the reference configuration can be
expressed as

X =ϕϕϕ0(ξ1, ξ2)+ ηT(ξ1, ξ2) (ξ1, ξ2) ∈A, and η ∈ [
h
2

−
,

h
2

+
] (5)

where A ⊂ R
2 is the compact parametric space or tangent space with boundary ∂A, and h =

h/2+− h/2− is the thickness of the shell, and ϕϕϕ0 is the linear mapping of the mean surface from
the parametric space to the reference configuration space A ⊂ R

2 → R
3, which defines the mid-

surface of the shell at the initial or reference configuration. T is the pseudo normal vector of the
shell in the initial configuration, that can be defined by T ⊂R

3 and ‖T‖ = 1.

Figure 1: Kinematic description of Mindlin-Reissner shell

At the mean plane of the shell, any point that belongs to the parametric space A can be
denoted by

ξξξ = ξ1E1 + ξ2E2 (6)

where E1 and E2 are the basis vector in the parametric space. To better describe the motion of
the shell, we define the convected basis vectors G in the reference configuration as

Gα = ϕ0(ξ1, ξ2),α + ηT, α = 1, 2 and G3 = T (7)
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in which T is the pseudo normal vector, which is also referred as “fiber” in many literatures [28].
In Mindlin-Reissner shell theory, the shear deformations through the thickness of the plate is con-
sidered comparing to Kirchhoff-Love theory. The fiber or pseudo normal of the shell represents
the normal of the mid-surface, and it will keep straight but not necessarily perpendicular to the
mid-surface after deformation. For any point on the mean plane of the shell, one can always find
a local coordinates system described by G1, G2, and G3. In the following context, we assume that
by adopting appropriate basis Eα in the parametric space the local coordinates at X can be made
orthogonal.

Now we consider the position of a point in the current configuration with a motion χ respect
to the reference configuration. The position vector of any point can be expressed as

x =ϕϕϕ(ξ1, ξ2)+ ηt(ξ1, ξ2) (ξ1, ξ2) ∈A, and η ∈ [h−, h+] (8)

where t(ξ1, ξ2) indicates the pseudo normal vector in current configuration that is mapped from
parametric space, and ϕϕϕ(ξ1, ξ2) defines the mid-plane of the shell in current configuration.

Similarly, we defined the convected basis vectors g in current configuration are defined as

gα =ϕϕϕ(ξ1, ξ2),α + ηt, α = 1, 2 and g3 = t (9)

where t denotes the pseudo normal vector along the fiber direction at current configuration. One
may readily get the displacement of each point by

u = u(ξ1, ξ2)+ η(t−T)= u(ξ1, ξ2)+ η(�t) and �t = t−T (10)

where u(ξ1, ξ2) is the displacement of point on the mean plane of the shell in the current
configuration. Given the above definition we note that T(ξ 1, ξ2) and t(ξ1, ξ2) is the mapping from
position of point we interested in the parametric space to the pseudo normal vector in initial
or reference configuration, which is A ⊂ R

2 → T ⊂ R
3, where T is the assemble of the pseudo

normal vector in the real vector space.

To further simplify the computational process and clarify the constitutive updating objectivity,
we introduce the rotation matrix R0 which transfer the position vector in the initial/reference
configuration from the global coordinates X to the local coordinates Xl, such that

Xl = R0 ·X (11)

If the mean plane of the shell is flat and lies on the XOY plane in the initial/reference
configuration, one can simply set R0 = I. Since fiber is initially perpendicular to the mean plane
of the shell, one could find Xl

3 = T.

Likewise, we also define a rotation matrix R which evolves with time that transfer the position
vector in the current configuration from the global coordinates x to the local coordinates xl, such
that

xl = R · x (12)

2.3 Deformation Gradient
The motion χ from the initial configuration to current configuration could be seen as the

combination of two motions, i.e., from the parametric configuration to the reference configura-
tion �0, and from the reference configuration to current configuration �. Then we can write
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deformation gradient for χ as

Fχ = ∂x
∂X

=∇X� (13)

Using chain rule, following relation could be reached

Fχ =∇ξ� · (∇ξ�
0)−1 = F� · (F0

�)
−1

(14)

where ∇ξ� and ∇ξ�
0 is the deformation gradient of motion � and �0 relative to the parametric

configuration, respectively. Recall the equivalent non-local material differential operator defined as
follows

∇X ⊗
(

f
)
=

[∫
H

ω〈∣∣ξij
∣∣〉(�f

)
⊗ ξijdVj

]
K−1 and �f = fij = fj − fi (15)

where H denotes the horizon of the point, that defined on the parametric space H ⊂ A ⊂ R
2.

The nonlocal convective gradient operator with respect to the parametric configuration then reads

∇ξ�
0 =

[∫
H

ω〈∣∣ξξξ ij
∣∣〉�0

ij ⊗ξξξ ijdSj

]
K−1 (16)

∇ξ�=
[∫

H
ω〈∣∣ξij

∣∣〉�ij ⊗ξξξ ijdSj

]
K−1 (17)

where

K =
∫

H
ω〈∣∣ξξξ ij

∣∣〉ξξξ ij ⊗ξξξ ijdSj (18)

Note the deformation gradient motion of � and �0 in terms of the convective coordinates
are given by

∇ξ�=∇α�+ t⊗E3 = ϕ,α ⊗Eα + t⊗E3, α = 1, 2 (19)

∇ξ�
0 =∇α�0 +T⊗E3 = ϕ0

,α ⊗Eα +T⊗E3, α = 1, 2 (20)

The deformation gradient for three motions �, �0, and χ can then be written in matrix form
as follows:

F� =

⎡
⎢⎢⎣

∂�1
∂ξ1

∂�1
∂ξ2

t1

∂�2
∂ξ1

∂�2
∂ξ2

t2

∂�3
∂ξ1

∂�3
∂ξ2

t3

⎤
⎥⎥⎦ (21)

F0
� =

⎡
⎢⎢⎢⎢⎣

∂�0
1

∂ξ1

∂�0
1

∂ξ2
T1

∂�0
2

∂ξ1

∂�0
2

∂ξ2
T2

∂�0
3

∂ξ1

∂�0
3

∂ξ2
T3

⎤
⎥⎥⎥⎥⎦ (22)
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and,

Fχ =

⎡
⎢⎢⎣

∂�1
∂ξ1

∂�1
∂ξ2

t1

∂�2
∂ξ1

∂�2
∂ξ2

t2

∂�3
∂ξ1

∂�3
∂ξ2

t3

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

∂�0
1

∂ξ1

∂�0
1

∂ξ2
T1

∂�0
2

∂ξ1

∂�0
2

∂ξ2
T2

∂�0
3

∂ξ1

∂�0
3

∂ξ2
T3

⎤
⎥⎥⎥⎥⎦

−1

(23)

in which ξξξα = ξξξα,α = 1, 2.

The in-plane tangent convected vector gα could be updated by

gα =∇ξ� ·Eα, α = 1, 2 (24)

Also, one can readily have

Gα =∇ξ�
0 ·Eα, α = 1, 2 (25)

which implies that the pseudo normal vector in the mean plane of the shell at current configura-
tion could be updated by the following relation:

gα =∇ξ�
(
∇ξξξ�

0
)−1

Gα = FχGα, α = 1, 2 (26)

and,

g3 = t �= g1 × g2

‖g1 × g2‖ (27)

which may not parallel to the normal to the tangent plane of the mid-surface.

2.4 The Pseudo Normal Vector Updating
In this work, we use the Euler-Rodrigues rotation formula to update the direction of fibers.

The pseudo normal vector t is related to its initial state T under assumption of a smooth motion
by

t = RT (28)

where R is the rotation matrix which could be evaluated in each time integration.

R = I+ sin |θ |
|θ | �+ 1− cos |θ |

|θ |2 �2 (29)

in which I is the identity matrix, and θ is the magnitude of rotation vector |θθθ |,

θ =
√

θ2
1 + θ2

2 + θ2
3 (30)

and,

=
⎡
⎣ 0 −θ3 θ2

θ3 0 −θ1
−θ2 θ1 0

⎤
⎦ (31)
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Taking time derivative of Eq. (28), consider that T in referene configuration is independent
with time, we can obtain

ṫ = ṘT = ṘR−1t =�t =ω× t (32)

where ωωω is the angular velocity, which is an axial vector correlated with the skew-symmetric tensor
��� which satisfy

�=
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

⎤
⎦ , ω =

⎡
⎣ω1

ω2
ω3

⎤
⎦= d

dt

⎡
⎣θ1

θ2
θ3

⎤
⎦ (33)

2.5 Constitutive Model
One could obtain the strain based on the deformation gradient under finite deformation and

rotation. The spatial velocity gradient could be obtained by using the following relationship:

�= ḞF−1 (34)

where

Ḟ = Ḟ� ·F0
�

−1
(35)

in which Ḟ� is the rate of deformation gradient corresponding to the motion ��� from parametric
space to current configuration,

Ḟ� =

⎡
⎢⎢⎢⎣

∂�̇1
∂ξ1

∂�̇1
∂ξ2

t1

∂�̇2
∂ξ1

∂�̇2
∂ξ2

t2

∂�̇3
∂ξ1

∂�̇3
∂ξ2

t3

⎤
⎥⎥⎥⎦ (36)

where we have used the nonlocal convective gradient operator again,

∇ξ �̇=
[∫

H
ω〈∣∣ξij

∣∣〉�̇ij ⊗ ξijdSj

]
K−1 (37)

Then the spatial velocity gradient could be decomposed into stretch and skew part

d = (�+ �T )/2 (38)

ω = (�− �T )/2 (39)

where d and ω are the rate of stretch and rotation tensor, respectively.

From the non-local deformation gradient, one can obtain the Green-Lagrangian strain tensor
by

E = 1
2
(C− I) (40)

where C is the right Cauchy-Green deformation tensor with C = FT F.
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The the Eulerian-Almansi finite strain is given by

e = 1
2
(I− c) (41)

where c is the finger tensor defined by c = F−T F−1

The Eulerian-Almansi strain could be transfered from the Green-Lagrangian strain by

e = F−T ·E ·F−1 (42)

To further facilitate the plane stress hypothesis, the constitutive equation is evaluated in the
local coordinate system. The Eulerian-Almansi strain is first transformed into the local system by
an orthogonal tensor Q

εεεl = Q · e ·QT (43)

Using Voigt’s notation, the Almansi strain tensor in local system and the Cauchy stress tensor
in local system could be expressed in vector form by

εl
v =

[
εl

11 εl
22 εl

33 εl
23 εl

13 εl
12

]T
(44)

σ l
v =

[
σ l

11 σ l
22 σ l

33 σ l
23 σ l

13 σ l
12

]T
(45)

Utilizing the plane stress hypothesis, the component along the direction of plane thickness is
zero, which yields

εl
v =

[
εl

11 εl
22 εl

12 εl
13 εl

23

]T
(46)

σ l
v =

[
σ l

11 σ l
22 σ l

12 σ l
13 σ l

23

]T
(47)

If the material is assumed to be elastic, reduced constitutive equation proposed by Hughes
[29] is adopted to obtain stress state from strain,⎡
⎢⎢⎢⎢⎣

σ l
11

σ l
22

σ l
12

σ l
13

σ l
23

⎤
⎥⎥⎥⎥⎦= E

1− ν2

⎡
⎢⎢⎢⎢⎣

1 ν 0 0 0
1 0 0 0

1−ν
2 0 0

sym. κ(1−ν)
2 0

κ(1−ν)
2

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

εl
11

εl
22

εl
12

εl
13

εl
23

⎤
⎥⎥⎥⎥⎦ (48)

where E is the Young’s modulus, ν is the Poisson’s ratio, and κ is the shear correction factor.
If the thickness variation is considered, ε33 should be calculated within the constitutive model to
satisfy the zero normal stress condition σ33 = 0. Once the Cauchy stress being obtained in the
local coordinate system, we transform it into global coordinate

σ = QT · σ l ·Q (49)

where σ l is recovered from local Cauchy stress vector in Voigt’s notation. The first Piola-Kirchhoff
stress in total Lagrangian formulation can be obtained in the global coordinate system,

P =J σ−T and J = det(F) (50)
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2.6 Governing Equations for Linear Momentum and Angular Momentum
In current work, the balance laws and nonlocal governing equations for Peridynamic shells

proposed by Zhang et al. [30] are adopted to describe the material in the system. The linear
momentum of the Minlin-Reissner shell in non-local form at the mean plane satisfies the following
governing equation:

ρ0hϕ̈ =
∫

Hx

(
T̃[ξ i, t]〈Xj −Xi〉− T̃[ξξξ j, t]〈Xi −Xj〉

)
dSj + ρ0b̃ (51)

in which h is the initial thickness of the shell, ϕϕϕ is the motion of the point at the mean plane at
time t, Xi is the spatial position vector of particle i in the parameter space, b̃ is the integral of
body force density over the shell, which characterize the external force exerted at point x,

b̃ =
∫ h

2

− h
2

ρ0J0bdη, J0 = det(F0
�) (52)

and, T̃ is the force state which is expressed as

T̃[ξ i, t]〈Xj −Xi〉 =ω〈∣∣ξ ij
∣∣〉�K−1ξ ij (53)

where � is the stress resultant that is expressed as

� =
∫ h

2

− h
2

P̂◦dη, and P̂◦ =
⎡
⎣P̂11 P̂12

P̂21 P̂22

P̂31 P̂32

⎤
⎦ (54)

where P̂ =J0P · (F0
�

)−1
, and P is the first Piola-Kirchhoff stress in Eq. (50).

The angular momentum balance of equation of the shell is governed by

J ω̇ =
∫

Hx

t×
(

M̃[Xi, t]〈Xj −Xi〉− M̃[Xj, t]〈Xi −Xj〉
)

dSj +ϕ,α ×
(∫ h

2

− h
2

PEαdη

)
+ t× ρ0hb̃ (55)

where t is the pseudo normal of the orientation of the fiber at current configuration, and

J =
∫ h

2

− h
2

ρ0η
2dη (56)

and,

M̃[ξξξ i, t]〈Xj −Xi〉 =ω〈|ξξξ |ij〉���iK−1
i ξξξ ij (57)

where i is the momentum stress resultant as expressed as

i =
∫ h

2

− h
2

ηP̂◦dη (58)
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2.7 Numerical Instability Control
In non-ordinary state-based peridynamic theory, one may expect the so-called zero-energy

mode, in which multiple deformation states could be related to the same unique deformation
gradient, caused by the averaging of the kinematic information of all neighboring particles around
one material point. It will introduce spurious nonphysical oscillations of stress, strain, and dis-
placement field in the domain, which consequently may lead to system instability and inaccurate
predictions, especially for transient and finite deformation problems.

Many pioneer work have been reported to try to address this problem from different aspect. In
classic Finite Element Method, Hughes and Liu tried to eliminate the appearance of zero-energy
in-plane rotational modes by using “Heterosis elements” [28], in which more gauss point was used
to evaluate the bending of the plate. For Smooth Particle Hydrodynamics (SPH) implementation
of Mindlin-Reissner shell, similar treatment was reported and practiced by Maurel and Combes-
cure [19]. For Peridynamics, Littlewood proposed a penalty approach to mitigate the zero-energy
modes [31], where a hourglass force is added to help eliminating spurious solutions. Breitenfeld
considered three methods of zero-energy mode control [32], including supplemental interconnected
springs, average displacement state, and penalty approach. Stability method is then suggested by
Silling [33] and extended by Li et al. [34,35], where additional term is added to the strain energy
density that resists zero-energy mode of deformation. Other treatment includes sub-horizon or
bond-associated deformation gradient [36,37], stress-point method [38,39], etc.

In current work, we use the stress point method to reduce the rank-insufficient induced
numerical divergence and oscillations. Stress points are added into the domain to help increasing
the stability, as illustrated in Fig. 2.

Figure 2: Illustration of stress point setup



726 CMES, 2022, vol.131, no.2

The four particles points on the middle surface(lamina surface) of the shell form an integral
element. Arrange a stress point in the center of the integral element, shown in Fig. 3. Considering
the integral in the thickness direction of the shell, each integral element corresponds to an integral
cell, in Fig. 3b. In this way, the shell is discretized into integral cells with thickness. The function
value of each stress point can be obtained by integrating the value obtained in the integration
cell. Therefore, the Gaussian points are arranged perpendicular to the centerline of the grid in
the lamina surface and its number can be determined according to the accuracy requirements. For
this work, we choose three Gaussian points for each integral cell.

Figure 3: Gaussian integration domain

In the calculation, the integral value corresponding to the Gauss point is obtained by inte-
grating on the integration plane where the Gauss point is now, and then integrating through the
line distribution of the Gauss point in the normal direction, and the obtained value is used as
the corresponding function value of the stress point.

fg =
∫

Aplane

fdS (59)

fsp =
∫

L⊥
fgdl (60)

Each stress point have its own horizon in which it interacts with its neighboring material
points within a certain range. The deformation gradient at the stress point is obtained by inter-
polation of the deformation gradient on its neighboring material point family. Stress is obtained
from strain and constitutive relationship at the stress points, and then interpolated back to the
material points. The computational scheme of the physical properties on the stress points and the
material points is given as follows:

φs
i =

∑
ωs(|ξ j −φ0s

i |)φj (61)
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Fs
i =

∑
ωs(|ξ i −φ0s

j |)Fj (62)

where φj and Fs
i represent the coordinate and the deformation gradient of material points,

respectively.

2.8 Fracture Modeling
In conventional Peridynamic theory, bond-breaking is mainly driven by the stretch of the

bonding between material points, that when the bond stretch limit was met, the bond will break
spontaneously, which in turn accumulated to shape the crack surfaces. However, if a corre-
spondence material model is utilized to describe the material response, such as plasticity, the
bond-breaking criterion needs to be modified to represent the fracture properties of the material.

2.8.1 Bond-Breaking Criterion
In current work, the Mohr-Coulomb failure criterion is adopted as the principle of bond-

breaking, in which the principle stress state are used to determine the material failure, and
the tension and compression could be treated separately. When such criterion being satisfied at the
stress point in the domain, we treat it as fully damaged, thus any stress points that sharing the
same fiber will be considered as fractured.

Under such consideration, the damage state is assumed to be initialized and propagate at
the stress point of the shell, which means that cracking is realized by nucleating and extending
cracks between damaged stress points. This approach of fracture modeling will surely introduce
additional work to maneuver the initialization, propagation, and branching of the cracks, which
need to book-keep the historic information of the crack surfaces. The Peridynamic bonding
between material points will then be cut by the forming and propagating crack surfaces, which
will then in turn represent the material failure in manner of material points.

2.8.2 Cracking Surface Tracking
The crack surface is composed of segments connected by stress points. Since the shell is

represented by the material points at the mean plane, we only consider cracks running inside the
mid-surface of the shell, and when certain spot of the shell being cracked, the crack go through
the thickness direction which is denoted by the pseudo fiber oriented at the parametric space. In
other words, when stress points that share the same pseudo fiber along the thickness direction get
to a accumulated state of complete damage, the whole shell section where the stress point resides
is considered to fail immediately. A new crack tip will then be generated at the stress point and
thus forming the new crack surface, as illustrated in Fig. 4, in which, new crack tip that created
at stress point B will connect with original crack tip at stress point A to create new crack surface
AB. The new crack surface will cut any connection between stress points and material points
or those between material points, e.g., AB will break the connection between stress point D and
material point C3.
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Figure 4: Crack surface and visibility condition of shell

When the bond-breaking criteria are met, new crack tip will be generated. If there are multiple
spots of the stress points satisfy the criterion, that have the largest magnitude will be chosen as
the new crack tip with other candidates remain intact.If the newly nucleated crack tip is the only
one in the shell, or it does not belongs to any existing crack surface, i.e., it is far away enough
from all cracks in existence, we marked it the nucleation of a new crack surface. Otherwise, we
evaluate the existing crack surfaces and pick one of them, from which the new crack tip has the
nearest distance from. The new crack tip will be added to the surface of the chosen crack path,
which then expands from the old crack tip to the new one. Hence a new crack surface segment is
created. Each time new crack surfaces are developed, we need to do bond-breaking of the material
points by apply crack surfaces to the connections of all the bondings. If by any chance, when new
crack tip being created, we divide material points, if any, that are exactly located on the formed
crack surfaces geometrically, into two. A tiny gap δ(δ << 1) relative to the normal direction n1
of the crack surface will be added to separate the two consequential material points. The normal
direction of the crack can be obtained from the normal direction of the shell at the position of
the stress point at the old crack tip and the relative coordinate vector of the stress point at the
new and old crack tip, as

n1 = e3 × xon

‖e3 × xon‖ (63)

xon = xn − xo (64)

in which e3 is the shell normal direction at the tip of the old crack. And xon is the relative
coordinate vectors of new and old crack tips.

xnew1 = xold − δ · n1 (65)

xnew2 = xold − δ · n1 (66)

The resulting two material points bisect the mass and volume of the original material point,
and inherit all other properties of the original material point, including linear velocity, linear
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acceleration, angular velocity, angular acceleration, translational displacement, and rotation angle.
The newly generated crack surface can be projected back to the parametric space, in which the
crack discontinuity plane in 3D is represented by a planar line. The bond-breaking process is
handled in parametric space, which can take advantage of simplified geometric information.

In this work, the crack surfaces will break both the connection between stress points and
material points, and those between material points themselves. The former one we already dis-
cussed in beginning of this section. For the bond-breaking between material points, the problem
is simplified to whether two line segments intersect with each other, as illustrated in Fig. 5. When
the new crack surface being created by connecting the old and new crack tip A and B, the
bond between material points C and D will be broken if the two line segments have point of
intersection, i.e.,

(XCA · n1) · (XDA · n1) < 0 (67)

(XDB · n2) · (XDA · n2) < 0 (68)

in which n1 and n2 are the normal direction of the line segments AB and CD, respectively, that
can be obtained by using Eq. (63). XCA = xA − xC denotes the relative line segment vector in
parametric coordinate space.

Figure 5: Schematic illustration on cracking criterion

2.8.3 Crack Simulation Algorithm
During the calculation, it is first necessary to solve the damage situation of the stress point.

According to the Eqs. (50) and (60), the damage of the stress point needs to be obtained by
integrating the integration domain to which the stress point belongs. The Gaussian points of
the integration domain is complete damage when the stress satisfies the Mohr-Coulomb failure
criterion and Dg = 1.0. The damage of the Gaussian points could be calculated by Dsp =

∫
Dgdl.

Due to the geometric characteristics of the shell, our work does not consider the evolution
of the crack in the thickness direction of the shell, which means the crack always penetrates the
thickness direction of the shell instantaneously. Thus, if the damage of the stress point is larger
than the limited damage Dlimit, the stress point is been a new crack node.

As shown in Fig. 6, if a new crack node appears in a certain range around the crack tip of
an existing crack which is been called the crack domain (Hd), the crack point will replace the
original crack tip to become a new crack tip. The crack domain can take any size. According to
the geometric characteristics of particle discrete, when the crack domain is larger than

√
5 times

the particle spacing, the cracks are allowed to expand in any direction. A crack surface is formed
between the old crack tip and the new crack tip. The crack propagated to the crack point. When
the crack node is located in the crack domain of the crack tip of multiple cracks at the same
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time, the crack node only forms a propagation crack with the crack tip of the shortest one or
more (if the distance is the same and the shortest distance) crack. When there are multiple crack
nodes in the crack tip area on the crack, the original crack propagates from the crack tip to the
closest crack node, and at the same time, new cracks are formed from the crack tip to all the
crack nodes in the domain. The macroscopic appearance of this process is crack bifurcation.

Figure 6: Crack extension

As shown in Fig. 7, if a new crack node appears in the crack domain of any one or more
existing crack nodes on an existing crack, a new crack will be formed from this new crack node
to the existing crack node with the shortest distance from it. The macroscopic manifestation of
this process is the main crack bifurcation.

Figure 7: Crack bifurcation

As shown in Fig. 8, if the new crack node is not in the crack domain of any existing crack,
the crack node is considered to be the starting point of the new crack, but it does not affect the
structure and materials.
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Figure 8: Crack initiation

The formation of new crack surfaces will affect the interaction between particles. This process
is called bond breaking. Similarly, the corresponding relationship between the stress point and the
particle will also be separated by the crack surface, too. It can be judged by the simplified visibility
condition mentioned above. When the relationship between any points A and B is interrupted by
the crack surface, the displacement state of one point will no longer affect the other point. The
relative position between them remains unchanged at the moment the key is broken. Therefore,
as the crack grows, the particles around the crack are affected by the crack, but the neighboring
particles remain unchanged. When solving the shape matrix K, there is no need to update the
neighbors. The pre-crack is set on the geometric model in the initial step of the calculation, and
thereafter, it will always exist in the model as the current crack. The flow chart of the crack
simulation algorithm is illustrated in Fig. 9.

3 Numerical Examples

In this section, several numerical examples are used to validate and demonstrate the validity
of our implementation and capability of the proposed approach. The first two numerical cases
are aimed to verify the validity and the accuracy of our implementation of the Peridynamic shell.
The latter two cases are carried out to explore the capability of our model on representing the
dynamic fracture of the shell.

3.1 Elastic Case 1: Clamped Plate Under Uniform Pressure
In this section, the square clamping plate with side length L = 0.5 m and thickness h = 0.1 m

is numerically modelled before being subjected to a uniform pressure of P = 1 MPa. The material
of the plate is elastic, with mass density ρ = 7850 kg/m3, elastic modulus E = 2.1 × 1011Pa, and
Possion’s ratio ν = 0.3. The pressure is applied at the beginning of the simulation and maintain its
value throughout the computation process. The schematic diagram and the geometric information
of the plate are illustrated in Fig. 10, as well as the material parameters. The dynamic response
of the plate is analyzed to verify the convergence and accuracy of the present method in dynamic
simulation.

Three different numerical discretizations are used to obtain the dynamic responses of the plate,
which are 6 × 6, 11 × 11, and 21 × 21, respectively. The horizon δ is chosen to be the same with
the particle spacing �x. After numerical simulations, the results are compared to those obtained
by commerce FEM software package ABAQUS with a model consisting of 64 × 64 elements to
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validate current Peridynamic implementation. The vertical displacements of the central point of
the shell from both Peridynamic and FEM results are given in Fig. 11. One can find that the
numerical solution by the current Peridynamic model converges to FEM solution quickly as the
discretization increases. The time sequence of the deflection of the plate is illustrated in Fig. 12,
in which the deflection has been vertically amplified 10 times to show the deformation, and the
material points are colored by the vertical displacement. We can find that the material points
are smoothly distributed with no instability, which indicates that the rank deficiency is eliminated
effectively with the stress point technic.

Figure 9: Flow chart of crack simulation algorithm

Figure 10: Schematic illustration of the geometry and setup for clamped plate
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Figure 11: Evolution of the vertical displacement compared with results obtained from ABAQUS

Figure 12: Time sequence of the deflection of the clamped plate(×10)

3.2 Elastic Case 2: Scordelis-Lo Roof
In this section, we present a numerical example of the scordelis-Lo roof, a cylindrical segment

under gravity, as shown in Fig. 13. The curved edges are simply supported, and there are no
constrains on the other two edges. Four different numerical discretizations are considered to
investigate the δ convergence of the numerical example. The free edge of each quarter of the
shell are consisted by 5, 10, 12, and 17 material points, respectively. The vertical displacement of
the midpoint of the side edge is measured as the vertical deflection of the shell to evaluate the
accuracy and convergence of the system. It is first normalized by the reference value 0.3024 m
suggested by Scordelis et al. [40] before plotted in Fig. 14. From the comparison with results from
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Belytschko’s [41] and Simo et al. [42], we can find good agreement in aspect of the deflection,
with reasonable spatial convergence rate as we refine the discretization of the system. We also
compare the distribution of the vertical displacement of the roof with the results obtained by
FEM. Reasonable agreement could be found, as illustrated in Fig. 15, in which there are 17
material points of each side for the Peridynamic model and 34 elements for the FEM model.

Figure 13: Schematic illustration of the geometry and setup for Scordelis-Lo roof

Figure 14: Convergence of the normalized deflection

3.3 Fracture Case 1: Crack Predicting and Crack Branching in Brittle Material
In this section, a dynamic fracture of the brittle plate is numerically modeled and simulated.

A rectangular plate with a pre-notch under symmetric tensile loading is considered, as shown
in Fig. 16. A sample with dimensions 10 cm by 4 cm, is used to investigate the effects of
loading conditions. The external loads are suddenly applied and maintained constant afterward.
The mechanical properties of the material are chosen with elastic modulus E = 32 GPa, mass
density ρ = 2450 kg/m3, and Poisson’s ratio μ = 0.22 [43]. In this work, the Mohr-Coulomb



CMES, 2022, vol.131, no.2 735

failure criterion is considered. And the compressive strength and tensile strength are σc = 32 Mpa
and σt = 2.07 Mpa, respectively. The maximum principal stress failure criterion is adopted as
the cracking criteria in this case. A step loading σ = 1.0 MPa is symmetrically applied on the
upper and lower boundaries of the plate at the beginning. A dynamic explicit time integration
scheme is adopted, and the crack propagation process is visualized and plotted in Fig. 19. It
is then compared with experimental data, illustrated in Fig. 17 [44], and the XFEM result by
song et al. [43]. It can be observed that the crack propagates initially along the centerline, and
eventually branches towards the edge of the plate. By the comparing our results with experimental
and numerical references, reasonable agreement could be established between the predicted crack
growth path and the experimental observation, which demonstrates the capability of predicting the
dynamic brittle fracture of shell structures. We need to emphasis that although we are using the
same geometry and loading condition with other numerical investigators [43,45,46], the cracking in
our study is predicted in a 3D thin shell, which have non-negligible difference with other numerical
studies that use 2D model. Nevertheless, the criteria for the crack propagation is distinctive from
the standard peridynamic theory to match up the stress point method, which is believed to be the
reason for the trivial diversity between our crack paths with the references.

Figure 15: Deflection of the Scordeli-Lo roof under gravity(×10)

Figure 16: Initial model of thin plate with pre-notch
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Figure 17: Crack branching in single edge notch specimen reported in experiments [44]

Figure 18: Crack branching in single edge notch specimen reported in experiments [43]

Figure 19: Crack propagation and damage distribution

3.4 Fracture Case 2: Crack Predicting and Crack Branching in Soda-Lime Glass
In this section, we use the same geometric and discretization model as in Section 3.3, and

study the dynamic crack branching affected by the external loading with three different ampli-
tudes. Here we use the material parameters of soda-lime glass, such that the Young’s modulus is
E = 72 GPa, density ρ = 2440 kg/m3, and the Poisson ratio ν = 0.22. In this work, the Mohr-
Coulomb failure criterion is considered. And the compressive strength and tensile strength are
σc = 300 Mpa and σt = 41 Mpa, respectively. Step tensile loading is applied on the upper and
lower boundaries of the specimen. After numerical simulation, the cracking path and the damage
distribution are visualized and illustrated in Fig. 21, in which a1–c1 shows the failure state of
the stress point of the plate that those failed ones are colored in red. Fig. 21 a2–c2 shows the
damage contour of the material points, with the damage index ranging 0 to 1. Good consistency
could be found in two representing methods in terms of the crack path and topology. One can
tell that when the magnitude of loading is σ = 0.2 MPa, a straight crack path is obtained, as
shown in Fig. 21a, that no crack branching is observed. When the loading magnitude increases to
σ = 2.0 MPa, crack branching and sub-cracks are consequently generated as shown in Fig. 21b.
There are several tiny crack branching that occurs before the big one, which propagates first
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along 45◦ and soon turns to the original cracking orientation. For larger loading magnitude
σ = 4.0 MPa, branching distribution has slightly changed, the big branches observed in previous
loading magnitude now remain their cracking orientation after branching. Nevertheless, all the
sub-cracks show high symmetry in terms of the crack propagation against the main crack. Also,
the crack branching happens more intensely. Multiple branching events develop under the stress of
4.0 MPa magnitude applied suddenly on the top and bottom boundaries, less branching happened
later. Continued or cascading branching is the cause of fragmentation. If the energy dissipated
by the formation of the first branching is overcome by the energy stored in the material, the
branching process repeats, eventually leading to fragmentation.

The crack velocity is calculated by tracing the crack tip which is located by searching the
most advanced with damage index higher than a given threshold (for current work, we choose
0.75).

We normalize velocities by the Rayleigh wave speed CVR of the material. For soda-lime glass,
cVR ≈ 3102 m/s as given by [47]. Fig. 20 shows the crack propagation speeds profiles of glass
under the loading amplitude σ = 2.0 MPa. A vertical dash line depicts the time when the first
crack branch was initialized. The crack propagation speed for the branch initiation is 0.5 times
of Rayleigh wave velocity, after branching, the velocity of the cracking keeps fluctuates between
0.38 and 0.66 times of Rayleigh wave velocity. That conforms to the limiting crack speed in
glass reported in experiments, which is depending on the loading conditions, and is lower than
0.66CVR [48].

Figure 20: Crack propagation speed profiles for glass under stress boundary conditions applied on
the boundaries

3.5 Fracture Case 3: A Flat Shell with a Pre-Existing Crack
A flat shell with dimensions L = 1.0m and W = 1.0m, and thickness h = 0.05 m is investigated

as shown in Fig. 22. The flat shell has a pre-existing crack at the middle with the crack length
of a = 0.25 m. The orientation of the initial crack is defined by angle θ as shown in Fig. 22.
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We investigate three cases with different initial crack orientations, which are θ = 0◦, 45◦, 90◦,
respectively. The material of the flat shell has Young’s modulus of E = 32.27 GPa and Poisson’s
ratio ν = 0.33. The Mohr-coulomb failure criterion is used in the current work. The compressive
strength and tensile strength are σc = 36 MPa and σt = 2.7 MPa, respectively. The left edge of the
flat shell is fixed, and a linear incremental load is applied on the right edge, which is increased
by �P = 10 N/m every time step. Three fictitious layers of material points are added on the left
and all degrees of freedom of these fictitious points are fixed to zero.

Figure 21: Damage maps in glass under suddenly applied tensile stress on boundaries with
different amplitudes.a σ = 0.2 MPa. b σ = 2.0 MPa. c σ = 4.0 MPa

Fig. 23 shows the damage evolution process of the flat shell with initial crack orientation
θ = 0◦. As the deflection increases, the crack propagates continuously and maintains the initial
orientation until it runs through the whole shell, as shown in Fig. 23. At the beginning, the crack
is placed in the center of the shell with deflection w = 0, as illustrated in Fig. 23a. As the external
loading increases, the deflection becomes larger correspondingly, which initiates the cracking from
both ends of the initial crack. It can be observed from the figure that, the crack propagates
symmetrically in both orientations, and eventually reaches the edges of the shell, leading to the
fracture of the specimen, as shown in Fig. 23d. Compare with the XFEM numerical simulation
result in Fig. 24, the PD-based crack path can be better verified and in the simulation results of
the two methods, when the crack penetrates, the maximum displacement of the free edge of the
shell is in good agreement.
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Figure 22: A flat shell with a pre-existing crack model

Figure 23: Contours of deflection(×50)
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Figure 24: XFEM numerical simulation result θ = 0◦

Figure 25: Contours of deflection(×20)

Fig. 25 shows the damage evolution process of the flat shell with initial crack orientation
θ = 45◦. The initial crack is illustrated in Fig. 25a. Figs. 25b–25d give the damage evolution
process as the external loading applied increases. As the figures show, the crack starts to propagate
from the very edge near the free edge of the shell where external loading is applied at time
t ≈ 30 ms. As the deflection increases, the propagation goes fast from the initialization point to
the one edge of the shell in a short period time, from t = 30.391 ms to t = 30.512 ms. It is notable
that although the initial orientation of the crack is θ = 45◦, the newly propagated crack path is
almost parallel to the free edge on which the external load is applied. Compare with the XFEM
numerical simulation result in Fig. 26, the PD-based crack path can be better verified and in the
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simulation results of the two methods, when the crack penetrates, the maximum displacement of
the free edge of the shell is in good agreement.

Figure 26: XFEM numerical simulation result θ = 45◦

Fig. 27 shows the damage evolution on the flat shell with initial crack orientation θ = 90◦. As
the deflection increase, the crack extends towards the loading edge first as illustrated in Fig. 27b,
then crack branches to two sub-cracks that are parallel to the free edge where the external load
is applied. At time t = 23.986 ms when the deflection w = 16.39 mm, the sub-cracks runs through
the shell to the both two edges, leading to the fracture, as depicted in Fig. 27d. One can also
observe crack branch initiation from the very end that is near the fixed side of the shell. Compare
with the XFEM numerical simulation result in Fig. 28, the PD-based crack path can be better
verified.

Figure 27: Contours of deflection(×20)
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Figure 28: XFEM numerical simulation result θ = 90◦

Figure 29: Contours of deflection(×20)

We also analyze the damage evolution process of the flat shell with the initial crack notch
at the free edge where the external loading is applied. As shown in Fig. 29, crack branching
generated two sub-cracks that are perpendicular to the original crack, after which they propagate
along with the orientation parallel to the loading edge of the shell. We can see in Fig. 29d, the
crack propagates symmetrically in both positive and negative directions, eventually leading to the
fracture of the shell as the deflection reaches w = 5.618 mm. Compare with the XFEM numerical
simulation result in Fig. 30, the PD-based crack path can be better verified.
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Figure 30: XFEM numerical simulation result

4 Conclusion

In the current work, we present a brittle fracture model of the Reissener-Mindlin shell based
on the non-ordinary state-based Peridynamic shell theory. This model could be used in predicting
the crack initialization and propagation. The validity of the model is validated through both
quasi-static and dynamic analysis, and the accuracy and convergence of the shell model are
also investigated through two numerical examples. Then, we demonstrate the capability of this
model in simulating the crack growth by several numerical examples with preset crack. Comparing
the simulation of current work and the experiment result and the numerical simulation result
of XFEM, our model is convincing in predicting the crack path of brittle material thin shell.
We believe our work provides a practical and reliable approach for thin shell brittle fracture
in engineering computations. This fracture model shows the capability of the brittle fracture in
terms of crack nucleation and branching for both in-plane and out-plane loads. The initiation and
propagation of cracks are formed and developed naturally and spontaneously.
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