
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2022.018596

ARTICLE

Isogeometric Analysis with Local Adaptivity for Vibration of
Kirchhoff Plate

Peng Yu, Weijing Yun, Junlei Tang and Sheng He*

College of Civil Engineering and Architecture,Key Laboratory of Disaster Prevention and Structural Safety ofMinistry of Education,

Guangxi Key Laboratory of Disaster Prevention and Structural Safety, Guangxi University, Nanning, 530000, China
*Corresponding Author: Sheng He. Email: hesheng@gxu.edu.cn

Received: 10 August 2021 Accepted: 30 August 2021

ABSTRACT

Based on our proposed adaptivity strategy for the vibration of Reissner–Mindlin plate, we develop it to apply for the
vibration of Kirchhoff plate. The adaptive algorithm is based on the Geometry-Independent Field approximaTion
(GIFT), generalized from Iso-Geometric Analysis (IGA), and it can characterize the geometry of the structure
with NURBS (Non-Uniform Rational B-Splines), and independently apply PHT-splines (Polynomial splines over
Hierarchical T-meshes) to achieve local refinement in the solution field. The MAC (Modal AssuranceCriterion) is
improved to locate unique, as well as multiple, modal correspondence between different meshes, in order to deal
with error estimation. Local adaptivity is carried out by sweeping modes from low to high frequency. Numerical
examples show that a proper choice of the spline space in solution field (with GIFT) can deliver better accuracy than
using NURBS solution field. In addition, for vibration of heterogeneous Kirchhoff plates, our proposed method
indicates that the adaptive local h-refinement achieves a better solution accuracy than the uniform h-refinement.
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1 Introduction

Isogeometric analysis (IGA) was proposed in [1] to assemble analysis in Computer Aided
Engineering (CAE) and Computer Aided Design (CAD). Due to high continuity of NURBS
basic functions [1,2], NURBS-based IGA is widely used in the field of engineering structure, such
as shape optimization of structure [3–5], vibration of plates, including Kirchoff plate [6–9] and
Reissner–Mindlin plate [10–13]. These studies have shown that IGA results are often better than
traditional finite element method (FEM) based approaches. Since for d ≥ 2, NURBS are defined
with tensor product form, the refinement is constrained by the global structured grid (see Fig. 1a).
Unfortunately, this leads to extra computational costs as the mesh is refined for the solution field.
Moreover, the tensor product based refinement does not facilitate local refinement to capture local
phenomenon, e.g., sharp gradients or boundary layer.
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(a) (b)

Figure 1: (a) NURBS global refinement and (b) expected local refinement

To address this problem, two approaches have been used in the literature. In [14], authors con-
sider NURBS local prolongation operators which are based on multigrid principles. However, this
approach needs to construct an operator by marking some extra elements for refinement, thereby,
the resulting adaptive mesh is not the most efficient one. This situation can be partially alleviated
by the use of hierarchical refinements of NURBS [15]. Another approach is to use splines with
local refinement properties [14–19]. In authors’ opinion, the most commonly used splines with
local refinement possibility are (truncated) hierarchical B-splines [20–23], T-splines [16,17], and
PHT-splines (polynomial splines over hierarchical T-meshes) [18]. Because of a convenient local
cross insertion and removal algorithm, we use PHT-splines in this study. PHT-splines have been
used to solve static elastic solid issues. Numerical results show that the adaptive PHT refinement
enjoys a higher convergence rate than uniform NURBS refinement [24]. However, since PHT-
splines are polynomial functions, they are not able to exactly represent the geometry of shapes
with conic sections, e.g., circles, ellipsoids, and spheres, which typically arise in engineering design
and analysis. To tackle with this limitation, rational splines over hierarchical T-meshes (RHT-
splines) have been recently introduced in [25]. Nevertheless, the continuity of RHT-splines is
limited to only C1. Though the continuity of C1 is sufficient for the analysis of many engineering
problems, for the description of geometry requiring higher continuity, RHT-splines will suffer
from the geometry inexactness. To weaker this tight coupling between geometry and simulation, a
new approach called Geometry-Independent Field approximaTion (GIFT) has been proposed [26].
This approach utilizes spline spaces for solution field independently of that for the geometry
representation, and thus, offers the advantages of both the worlds. For instance, NURBS is used
for the geometry representation (taken directly from the CAD model), and PHT-splines are use
for the solution field. Thereby, the geometry information is preserved, and the local refinement
is (independently) performed only on solution field. There are three main contributions of this
article. (1) The GIFT method is employed to investigate the structural vibration based on the
Kirchhoff plate theory. (2) In case of vibration, the advantage of GIFT is demonstrated with a
feasible selection of spline domain of physical field. (3) Based on our established adaptive method
for the vibration of thick plate problem [27], we extend to the adaptivity for thin plate vibration
by sweeping the mode driven by a-posteriori error estimation, with the help of MAC method to
recognize the correspondence between two different mesh spaces.
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The organization of this paper is as follows. In Section 2, the variational form of linear
elasto-dynamics, based on Kirchhoff plate theory, is set up. The weak form, based on IGA and
GIFT framework, is introduced in Section 3. In Section 4, a-posteriori error estimation and the
hierarchical local refinement process is developed. In Section 5, the a-posteriori error estimates
and hierarchical local refinement of proposed in Section 4 is combined with MAC for modal
analysis, and the resulting error-driven local adaptivity for vibration is presented. In Section 6,
several numerical examples are presented. These results using GIFT approach show two major
achievements: (1) Despite a poor geometric parameterization, an accurate numerical approxima-
tion can be obtained by adopting an appropriate parameterization in solution field. (2) When
structural vibration is localized, the proposed adaptive refinement delivers a better convergence
rate than the uniform refinement.

2 Problem Statement

Let � ⊂ Rd represent the spatial domain of an elastic plate, and let (x, y, z) denote the
Cartesian coordinate system. Moreover, let (u, v, w) denote the deflections of the plate in the
(x, y, z) directions, respectively, and h denote the thickness of the plate in the z direction. Based
on the Kirchhoff plate theory, see e.g., [28], the displacement components u and v, at a distance
z from the neutral surface, can be expressed as

u=−z∂w
∂x

, v=−z∂w
∂y

,

where w is the deflection of the neutral plane of the plate in the z-direction. Thereby, w is the
only independent variable, and we obtain a simple relationship

u := {u, v,w}T =
{
−z ∂

∂x
,−z ∂

∂y
, 1
}T

w. (1)

Moreover, the relationship between the three components of strain and the deflection is given
by

ε := {εxx, εyy,γxy}T = z
{
− ∂2

∂x2
,− ∂2

∂y2
,−2 ∂2

∂x∂y

}T
w. (2)

By introducing the differential matrices

H :=
{
−z ∂

∂x
,−z ∂

∂y
, 1
}T

, E :=
{
− ∂2

∂x2
,− ∂2

∂y2
,−2 ∂2

∂x∂y

}T
, (3)

the relations (1) and (2) can be written as

u=Hw, ε= zEw. (4)

Let C be the matrix of material stiffness constants. The in-plane (normal and shear) stresses
σxx, σyy, and σxy can then be obtained, by substituting the value of ε into the constitutive relation
σ =Cε, as follows:

σ = zCEw. (5)



952 CMES, 2022, vol.131, no.2

To evaluate the strain at the neutral plane of the plate, hence independent of the coordinate
z, we introduce the pseudostrain εp, which is defined as

εp =Ew. (6)

Let the parameter D=Eh312(1 −ν2) denote the bending stiffness of the plate, where E is the
Young’s modulus, and ν is the Poisson’s ratio. Furthermore, let Mxx, Myy, and Mxy denote the
bending moments, and twisting moments, respectively, which are defined as

Mxx =−D
(

∂2w
∂x2
+ ν

∂2w
∂y2

)
, Myy =−D

(
ν
∂2w
∂x2
+ ∂2w

∂y2

)
, Mxy =−D(1− ν)

∂2w
∂x∂y

. (7)

These three components of the moments then define the pseudostress as

σp= {Mxx,Myy,Mxy}T . (8)

Let D denote the constant matrix of the material property and the plate thickness, which is
defined as

D=D

⎡
⎢⎣
1 ν 0
ν 1 0

0 0
1− ν

2

⎤
⎥⎦ . (9)

For a thin plate, the generalized Hooke’s law then gives the relation of pseudostress and
pseudostrain as

σp=Dεp. (10)

Now let Vxz and Vyz denote the shear forces. Considering the moment equilibrium of the
plate cell with respect to the x- (and y-) axis, and neglecting the second order small terms, leads
to a relation in terms of moments

Vxz = ∂Mxx

∂x
+ ∂Mxy

∂y
, Vyz = ∂Mxy

∂x
+ ∂Myy

∂y
. (11)

Let ρ denote the mass density of the plate material. The plate cell is then subjected to the
inertial force ρhẅ. In deriving the system equilibrium equations, now consider the equilibrium of
the small plate cell in the z direction, which can be written as

dVxzdy+ dVyzdx+ (bz−ρhẅ)dxdy= 0,

where bz is the external force. Using d Vxz = ∂ Vxz∂ x dx, and d Vyz = ∂ Vyz∂ y dy, we get

∂Vxz
∂x
+ ∂Vyz

∂y
+ bz = ρhẅ.

Substituting the relations of shear forces from (11), and the moments from (7), we get the
following equation for homogeneous and isotropic plates

D

(
∂4w
∂x4
+ 2

∂4w
∂x2∂y2

+ ∂4w
∂y4

)
+ρhẅ= bz. (12)
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For free vibration analysis, with bz = 0, we get

D

(
∂4w
∂x4
+ 2

∂4w
∂x2∂y2

+ ∂4w
∂y4

)
+ρhẅ= 0. (13)

We consider the clamped boundary conditions on all side, i.e.,

w= ∂w
∂n
= 0, on ∂�. (14)

We now introduce the function space V0 = {v ∈ H2(ω) : v = ∂ v∂ n = 0 on γ }. Then the
elasto-dynamic vibration problem in variational form reads [7,28]∫

�

ρũT üd�+
∫

�

ε̃Tp σd�= 0, (15)

where u is the displacement field, ũ is the virtual displacement, and ε̃ is the virtual strain. Then,
using the relation of pseudostress and pseudostrain (10), the weak form (15) can be rewritten as∫

�

ρ(Hw̃)T (Hẅ)d�+
∫

�

(Ew̃)TD(Ew)d�= 0, ∀w̃∈V0. (16)

3 The Discrete Form Using GIFT

Let P be the parametric domain. The physical domain ω is parametrized on P by a
geometrical mapping F

F :P→�, x= F(ξ), x ∈�, ξ ∈P . (17)

We assume that the domain ω may consist sub-domains such that �=∪Ni=1�i. Typically, the
geometrical map F is given by a set of basis functions Ni1, i2, . . ., id(ε) and a set of control
points P i1, i2, . . ., id as

F(ξ)=
n1∑
i1=1

n2∑
i2=1

. . .

nd∑
id=1

Pi1,i2,...,idNi1,i2,...,id (ξ), (18)

where Ni1, i2, . . ., id(ε) can be a d-dimensional tensor product of NURBS, B-splines, T-splines,
PHT-splines, etc. For brevity reasons, we introduce two sets of multi-indices (i1, i2, . . ., id) of
NURBS basis functions by

I= {(i1, i2, . . . , id) : i1 ∈ {1, . . . ,n1}, . . . , id ∈ {1, . . . ,nd}} (19a)

J= {(i1, i2, . . . , id) : i1 ∈ {1, . . . ,m1}, . . . , id ∈ {1, . . . ,md}}. (19b)

Moreover, wherever suitable, for multi-index (i1, i2, . . ., id) we will interchangeably use the
collapsed notation k Thence, Eqs. (17) and (18) are written as

x(ξ)=
∑
k∈I

PkNk(ξ). (20)
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In what follows, we will refer to the set {Nk( )}k∈I as the geometry basis. For change of
variables, we will also need the Jacobian matrix J(ε) of the mapping F , which is given by

Jij(ξ)= ∂xi
∂ξj

(ξ)=
∑
k∈I

Pki
∂Nk(ξ)

∂ξj
. (21)

The GIFT method is presented in detail by Atroshchenko et al. [26]. In IGA, the solution
field uI is represented through the same spline functions which are used for the geometry

uI(ξ)=
∑
k∈I

Nk(ξ)UI
k, (22)

where UI
k are unknown control variables. In GIFT, we depart from classical IGA by choosing a

solution basis {Mk( )}k∈J , which is possibly different from the geometry basis. As with {Nk( )}k∈J ,
the basis {Mk( )}k∈J , can also be a tensor product of NURBS, B-splines, T-splines, PHT-splines,
etc. Thereby, we look for the solution u G, possibly independent of geometry, as follows:

uG(ξ)=
∑
k∈J

Mk(ξ)UG
k , (23)

where UG
k are unknown control variables. Note that, if basis functions are chosen as {Ml(ε)}k∈J =

{Nk(ε)}k∈I , then the framework is based on IGA. To approximate the unknown variable in the
physical space, we introduce the spline space VG as follows

VG = {uh : uh ∈ span{Mk(ξ) ◦F−1}}. (24)

Now, using the basis functions Mk ( ), we approximate the deflection w in Eq. (16) as

w=
∑
k∈J

Mk(ξ)wk (25)

where Mk (ε) are basis functions, and wk are unknown control variables. Substituting (25) in (16),
we obtain the discrete form of the dynamical equation as follows:

w̃T(Kw+Mẅ)= 0, (26)

where w denotes the vector of deflections at the control points, and K and M respectively denote
the stiffness and mass matrices, which are defined as follows

K=
∫

�

(EMx)TD(EMx)d�, (27a)

M=
∫

�

ρ(HMx)Tm(HMx)d�, (27b)

where Mx denotes the basis functions from the space VG, and the matrix m the mass matrix

m=

⎡
⎢⎢⎢⎢⎣
h3

12
0 0

0
h3

12
0

0 0 h

⎤
⎥⎥⎥⎥⎦ . (28)
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The general solution of the free vibration Eq. (26) can be expressed as

w(t)= φ exp(iλt), (29)

where i is the imaginary unit, is the eigenvector, and λ is the natural frequency. Substituting
(29) into (26), and ignoring the virtual quantity, the natural frequency λ of thin plates can be
calculated by solving the following generalized eigenproblem:

(K−λ2M)φ = 0. (30)

3.1 Boundary Conditions
As eigenproblem (30) does not include the essential boundary conditions, it is necessary to

find a proper way to impose essential boundary conditions. Some of the methods proposed in the
literature to impose essential boundary conditions, e.g., [29,30] can be extended to the isogeometric
framework. However, for efficiency reasons, we prefer another approach [31].

In this approach, simply supported boundary condition can be imposed through fixing the
z-component of the first row of control variables for the respective boundary. Clamped boundary
conditions can be imposed by fixing the z-component of the first two rows of control variables
for the respective boundary.

In the next section, we introduce the error in the energy norm, and then define the hierarchical
local refinement process. Unless otherwise stated, in what follows, we only compute the energy
norm of the variables.

4 Hierarchical Local Refinement

For the complex cases, it is difficult to obtain the analytical solution for generalized eigen-
problem (30). Therefore, to compute the errors in our numerical solution, we compute the solution
on a refined mesh. This mesh is called the refined mesh, and the solution on it is called the better
solution. Let ū denote the better solution, and u h denote the numerical solution at a mesh with
characteristic mesh size h. Then, the error in the numerical solution can be written as e= ū− uh.
Note that the refined mesh elements are created by dividing each element of the current mesh into
Ne = 2d ·Le elements, where d is the dimension of the problem, and Le is the level of refinement,
which is set by the user. The element-wise error in the energy norm for the ith element �e

i is then
defined as

||e||2
�e
i
=
∫

�ei

(ε̄− εh)TD(ε̄− εh)d�e
i . (31)

Now Let N denote the total number of elements in the domain. Then, the energy norm of
error in the whole domain is defined as

||e||2 =
N∑
i=1
||e||2

�e
i
. (32)

Let η denote the error tolerance, i.e., if the error in any element is above this threshold, then
the element is marked for refinement. For element marking, we employ the mean-value strategy
with some simple modification. To be specific, we first select the elements for which the error
satisfies ||e||2

�e
i
> τ ||e||2, where τ is certain percentage (chosen as 20% in this article). Let us assume

that the number of such selected elements be N̄. Out of these elements, let the number of elements
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with largest error ||e||2
�e
i
be NL, then remove these NL elements, and subsequently take mean value

of error for the rest of the elements, and compute the new tolerance η as follows

η= 1

N̄−NL

N̄−NL∑
i=1
||e||2

�e
i
. (33)

Thence, we mark the elements where ||e||2
�e
i
> η, and refine them into Ne elements. The process

of adaptive local refinement has been summarized in Algorithm 1. For the 2D case, with Le = 1,
the adaptive process of Algorithm 1 is presented in Fig. 2.

Algorithm 1: Adaptive hierarchical local refinement strategy

Input: solution uh and ũ
Output: Mesh domain ω after adaptivity
1. Compute the error e= ũ− uh

2. Loop over elements i= = =1, 2. . .N in current mesh domain �

(a) Compute the local error indicator ‖e‖2
�e
i

(b) if ‖e‖2
�e
i
> η, mark element i to be refined

3. End loop over elements
4. Refine marked elements in current mesh domain � to generate a new finer mesh �*
5. Replace � with �*

5 Error-Driven Local Adaptivity for Vibration

In this section, error-driven local adaptivity based on the Algorithm 1 combined with MAC
for vibration is presented. The purpose of our adaptive local refinement method for vibration is

to get more accurate solution by less computing resources. Supposed that eλi and eφi is the error
indicator of natural frequency and eigenvector, respectively, at ith mode defined by

eλi =
∣∣∣∣∣ λ̃ĩ−λhi

λ̃ĩ

∣∣∣∣∣ , eφi = ‖φ̃ ĩ−φhi ‖
‖φ̃ ĩ‖

, (34)

wherein λ̃ĩ means natural frequency at ĩth mode in refined mesh and λi is natural frequency at ith
mode in the current mesh. An issue that has to be taken into consideration is how to construct
the relationship between i and ĩ, that is to say, if λi in current mesh is expected to be optimized,
how could we find the related λ̃ĩ in the refined mesh to compute eλi . In order to resolve this
problem, MAC is introduced in the following section.
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Level 0

Level 1

Reference mesh

Level 2

Level 3 .................

Level n

Mark element

Refine

...
...

...

...
...

..

Figure 2: Adaptive refinement process of Algorithm 1 in 2D
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5.1 Modal Assurance Criterion
Modal Assurance Criterion (MAC) is a statistical indicator originally proposed for orthog-

onality check [32] and has been developed as one of the most well-known method to compare
modal vectors quantitatively [33]. In this paper, it is utilized for assistance for error estimation
between two different mesh systems. The value of MAC is computed as the scalar product of
the two sets of normalized eigenvectors φhi and φ̃ĩ, where φh

ĩ
the is eigenvector at the ĩth mode

in the refined mesh, and φhi is the eigenvector at the ith mode in current mesh. Note that, unless
otherwise stated, the eigenvectors are normalized. The outcome will be assembled into MAC
matrix M using the formula

Mĩ,i(φ̃ĩ,φ
h
i )=

∫
�

φ̃T
ĩ
mφhi d�

‖φĩ‖2m‖φhi ‖2m
, (35)

where ||·||m is the mass norm and defined by

‖ · ‖m :=
[∫

�

(·)Tm(·)d�

] 1
2

, (36)

and m is the mass matrix defined in Eq. (28). The values of the MAC matrix are located
in the interval [0, 1], where 0 means no consistent resemblance whereas 1 means a consistent
correspondence. Generally, it is accepted that large values denote relatively consistent correlation
whilst smaller value represents poor association of the two modal vectors. For instance, an
example of MAC matrix M are illustrated in Table 1 with 3D view in Fig. 3a. For the first
three modes, it is obvious that φh1, φh2, φh3 are correlated to φ̃1, φ̃2, φ̃3 respectively but orthogonal
to those in rest modes. However, when it comes to the 4th and 5th modes, we can see the
resemblance are not unique any more. Instead, it is exhibited as a block made up with 4 bars
marked with red circle in Fig. 3a. That is because 4th and 5th modes in both current and refined
domains are multiple modes that φh4, φh5 and φ̃4, φ̃5 separately represent one pair of basis for
eigenvector space for current and refined mesh. The method to tackle with the multiple modes is
introduced in our work [27], and after the measurement, it can be seen that the block of MAC
matrix shown in red circle in Fig. 3a are merged into a bar in red circle in Fig. 3b, namely,[M4,4, M4,5
M5,4, M5,5

]
→M∗

4−5,4−5. Accordingly, the conversion is also made in Table 2. MAC helps

to construct correlation of modal vectors between current and refined domain. Combined with
scheme of error estimation and hierarchical refinement proposed in Algorithm 1, strategy of
adaptive local refinement for vibration would be developed in the following section.

Table 1: An example of MAC matrix M with multiple eigenvectors (in highlights) before projec-
tion. Row number is for ĩ mode and column number is for i mode

Mode 1 2 3 4 5 . . .

1 0.9927 0.0000 0.0000 0.0000 0.0000 . . .

2 0.0000 0.9770 0.0000 0.0000 0.0000 . . .

3 0.0000 0.0028 0.9893 0.0000 0.0000 . . .

4 0.0000 0.0000 0.0000 0.4593 0.4263 . . .

(Continued)
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Table 1 (Continued)

Mode 1 2 3 4 5 . . .

5 0.0000 0.0000 0.0000 0.6280 0.2284 . . .

6 0.0000 0.0000 0.0000 0.0000 0.0000 . . .

7 0.0000 0.0001 0.0005 0.0000 0.0000 . . .
...

...
...

...
...

... . . .

Figure 3: An example of 3D view for MAC values. (a) MAC matrix with multiple eigenvectors
(in red circle) before projection; (b) MAC matrix after projection of multiple eigenvectors (in red
circle)

Table 2: An example of MAC matrix M after projection of multiple eigenvectors (in box). Row
number is for ĩ mode and column number for i mode

Mode 1 2 3 4–5 . . .

1 0.9927 0.0000 0.0000 0.0000 . . .

2 0.0000 0.9770 0.0000 0.0000 . . .

3 0.0000 0.0028 0.9893 0.0000 . . .

4–5 0.0000 0.0000 0.0000 0.8702 . . .

6 0.0000 0.0000 0.0000 0.0000 . . .

7 0.0000 0.0001 0.0005 0.0000 . . .
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5.2 Adaptive Local Refinement for Vibration
As we know, mode shapes of structural vibration are often different from modes to modes.

One may pay attention to the mode shapes around specific range of frequency according to
engineering problems. For general applications, in this paper, the adaptive refinement is carried out
via sweeping modes from low to high frequency. The procedure is summarized in Algorithm 2.

Algorithm 2: Adaptivity by sweeping modes for vibration
for i← 1 to n modes in current mesh do

for ĩ← 1 ñ modes in refined mesh Compute do
Compute Mĩ,i and Mĩ+1,i.
if ηminM < [Mĩ,i,Mĩ+1,i]< ηmaxM and |λĩ+1− λ̃ĩ|/λ̃ĩ < ηλthen

Identify (ĩ, ĩ+1) modes and (i, i+ 1) modes are correlated double eigenmodes.
Call the algorithm [27] to deal with the multi-eigenmodes to obtain equivalent

φhi ,φ̃ĩ.
else

Identify i mode is an unique mode.
end
Pick up Mmax

ĩ,i
=Max{M1,i, . . . ,Mñ,i} and mark ĩ.

Compute eλi and eφi with (ĩ, i).
if Mmax

ĩ,i
> η̄M or eλi > ηλ or eφi > ηφ then

Call Algorithm 4(Let uh = φhi ,u= φ̃ĩ).
else

Move to mode i + 1 or i + 2 (multiple modes).
end

end
end
In this paper, we set tolerannce that

ηminM = 0.05, ηmaxM = 0.9, η̄M = 0.95, ηλ = 0.1%, ηφ = 0.5%.

6 Numerical Tests

Four numerical examples are carried out for the following purposes. Example in Section 6.1
is the vibration investigation of circular plate to show that GIFT method has the merit of flexi-
bility to choose spline space in solution field independently from that of geometry, which would
yield better solution compared to IGA on condition that control points describing geometry are
distributed unreasonably. Examples in Sections 6.2–6.4 employ GIFT, with NURBS representing
geometry and PHT describing solution field, to study vibration problem for heterogeneous plate
with different shapes, especially, analysis of multiple modes is presented in example in Section 6.2.
These heterogeneous plate perform obvious concentrated local response where PHT is able to
show the advantage of local refinement. Noted that in instances of Sections 6.2–6.4, due to lack
of theoretical solution for the problems, we adopt the computational result from the very fine
uniform mesh as the approximation of analytical solution.
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6.1 Circular Plate
The geometric and material parameters for circular plate are listed in Table 3, with radius

R, thickness h, Young’s modulus E, and density ρ. On assumption that the geometry of circular
plate is established by cubic NURBS basis functions with irregularly distributed control points
24 × 24, shown in Fig. 4a. In IGA scheme, the solution space in Fig. 4b is imposed to be the
same as geometric space. However, GIFT is free to pick up the solution space so that the uniform
one in Fig. 4c is preferred here. For better comparing with theoretical results [34], the normalized
natural frequency related parameter λ̄N is defined

λ̄N =
(

λR2

√
D
ρh

) 1
2

, (37)

where λ is natural frequency and D is flexural stiffness. Consequently, supposed that λ̄hN is
computational natural frequency related parameter, the relative error eN can be written as

eN =
|λ̄N − λ̄hN |

λ̄N
. (38)

Table 3: Geometric and material constants for circular plate

R (m) 1
h (m) 0.05
E (GPa) 200
ν 0.3
ρ (kg/m3) 8000

(a) (b) (c)

Figure 4: The same geometry parameterization and different spline spaces in solution field of IGA
and GIFT for circular plate. Cubic NURBS for both IGA and GIFT. (a) Geometry with 24 ×
24 control points; (b) Geometry with 24 × 24 control points; (c) Geometry with 24 × 24 control
points
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In this example, IGA and GIFT method is compared with exact solution in simply supported
boundary condition and clamped boundary condition separately, where the difference of these two
boundary conditions has been clarified in Section 3.1. The results are illustrated in Tables 4, 5
and Fig. 5. It is observed that GIFT shows a better accuracy than IGA with increasing of modes.
This example inspires us that when the geometric space of structure is not good enough, we can
count on GIFT to re-construct the solution space to achieve a better precision.

Table 4: Comparison of eN for simply supported circular plate

Mode Exact [34] IGA GIFT

1 2.2309 2.2221 2.2209
3 3.7336 3.7371 3.7252
5 5.0646 5.0775 5.0541
6 5.4553 5.444 5.4431
10 6.9649 7.0221 6.9453
14 8.375 8.6684 8.3444
15 8.6139 8.8073 8.5792
23 10.139 10.6233 10.0865
29 11.5901 12.1548 11.5167
30 11.7618 12.2041 11.6833
40 13.2981 14.2604 13.2205
50 14.7729 16.113 14.6544

Table 5: Comparison of eN for clamped circular plate

Mode Exact [34] IGA GIFT

1 3.1962 3.2022 3.1951
3 4.6109 4.6221 4.6069
5 5.9059 5.9393 5.8969
6 6.3064 6.3133 6.2957
8 7.1442 7.2203 7.1275
10 7.7987 7.8446 7.7785
12 8.3466 8.579 8.3208
14 9.1967 9.4859 9.1633
15 9.4395 9.621 9.4026
17 9.5257 9.8583 9.4873
19 10.5361 10.7998 10.4853
21 10.687 11.2829 10.6333
23 10.9581 11.7038 10.9007
25 11.8345 12.2973 11.7626
27 11.8367 12.8335 11.7651
29 12.402 13.3706 12.3243
30 12.5771 13.4963 12.4924
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Figure 5: Comparison of eN between IGA (729 control points) and GIFT (576 control points) in
solution field (Cubic NURBS, cpts control points). (a) Simply support; (b) clamped

6.2 Heterogeneous L-Shape Plate
In this test, a heterogeneous L-shape structure is built with 3 Patches where relevant geometric

parameters and material constants are displayed in Fig. 6a. The whole domain boundary is simply
supported. Density ρ is 2700, and thickness h is 0.01 and Poisson’s rate ν is 0.3. The Young’s
modulus of 3 Patches is E2 = E = 107, E1 = E3= 1000E2 respectively so that it is evident the
vibration would be concentrated in the Patch 2 as the material is softest in this area. As explicitly
discussed on the principle in Section 5, the adaptivity starts with an initial mesh in Fig. 7a
from the 1th mode and afterwards sweeps from low to high frequency. Here we would like to

emphasize that firstly, the error indicators of both natural frequency eλ1 and eigenvector eφ1 at 1th
are compared in the situation that the refined mesh is generated with refinement level Le = 1, 2,
3, respectively. Seen from Figs. 9a and 10a, the three plots perform the almost same convergence
rate, which symbolizes the refinement level Le = 1 we select for error estimation is reasonable. In
addition, the adaptive performance in different modes is able to be fairly understood from Figs. 7,
9b and 10b. Particularly, from Fig. 9b, we can see the local refinement is conducted at 1th, 2–3th,
5–6th, 9–10th modes. While there is no refinement for 4th, 7–8th, 11th, 12–13th, 14–15th since
the solutions by mesh state which they inherit from the previous modes are underneath the error
indicator, namely, it does not meet the condition at Step (h) in Algorithm 5.2 and then move
to Step (i). Similarly, this state can be also observed in Fig. 7 that 2–3th mode share the mesh
with 4th mode, and 5–6th mode share the mesh with 7–8th mode, etc. Furthermore, it is noted
that in some situation that eλi �ελ in Fig. 9b, though, it still has to be refined. That is because

condition eφi �εφ is unsatisfied. Obviously, from Figs. 9b and 10b, compared with eλi , the decrease

of eφi is more tough to achieve. Besides, the contrast of relative error in energy norm is made
between adaptive refinement eadp and uniform refinement euni, where the errors are calculated by
comparing to the approximation of exact solution û that

eadp=
‖û− uhadp‖
‖û‖ , euni =

‖û− uhuni‖
‖û‖ , (39)
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where uhadp is computational variable for adaptive refinement, which could be considered as natural

frequency uhadp = λhi,adp or eigenvector uhadp = φhi,adp at any ith mode. Here, we take i = 1 as 1th

mode shows most apparent adaptivity. The approximation û is generated through the same GIFT
method within a very fine PHT uniform mesh in solution field with 199,176 degree of freedom
(dof) in this example. It is manifest adaptive solution owns a better convergence rate than uniform
one, seen in Figs. 9c and 10c. That is due to the fact that response of vibration concentrates in
Patch 2, shown in Fig. 8, which lead to the local adaptive refinements focus on Patch 2 as well.
Observed in Fig. 8, the symmetry of the structure causes symmetric modal shapes, which results
in numerous sets of multiple modal vectors.

2

1

1

(a) (b)

Patch 3

Patch 2

Patch 1

Figure 6: A simply supported heterogeneous L-shape plate: (a) geometric parameters and (b)
discretization of patches, E2=E, E1=E3 = 1000E2

(a) (d)(b) (c)

Figure 7: (Continued)
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(e)

Figure 7: Adaptive refinement process of 1–15th mode for vibration of L-shape plate. Especially,
2–3th, 5–6th, 7–8th, 9–10th, 12–13th, 14–15th modes are multiple modes. Geometry-NURBS with
order p1= 1, p2= 1; Solution Field-PHT with order q1= 3, q2= 3. (a) Initial mesh; (b) Adaptive
mesh for 1th mode; (c) Adaptive mesh for 2–3, 4th mode; (d) Adaptive mesh for 5–6, 7–8th mode;
(e) Adaptive mesh for 9–10, 11, 12–13, 14–15th mode

6.3 Heterogeneous Plate with a Hole
In this section, a plate with a hole where the boundary simply supported is shown in Fig. 11,

consisting of two material Patches with E1 = E = 109, E2 = 100E1. Density ρ is 2700, and
thickness h is 0.01 and Poisson’s rate ν is 0.3. Consequently, the vibration response and local
adaptive refinement is undoubtedly centralized in the Patch 2 area, seen in Figs. 12 and 13.
Different from L-shape example in Section 6.2, the geometry of the hole is non-linear so that
cross-derivative of the parametrization in Eq. (16) are non-zero, which is a good opportunity
to validate our algorithm is available in terms of non-linear mapping as well. The convergence
rate plot of error indicators in both of Figs. 14a and 15a support the reasonability of adopting
refinement level Le = 1 for reference parametrization in solution field. Without any surprise,
adaptive refinement performs a higher convergence rate than uniform refinement, based on an
approximation of solution by a very fine mesh with 132,870 dof.

Figure 8: (Continued)
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Figure 8: Mode shapes 1–15th of L-shape plate, where λiN is normalized natural frequency at
mode i, calculated by λiN = λi/λ1, i = 1, 2, 3 . . .n. (a) 1th mode, λ1N = 1; (b) 2–3th mode, λ2−3N =
2.50; (c) 4th mode, λ4N = 4.00; (d) 5–6th mode, λ5−6N = 4.99; (e) 7–8th mode, λ7−8N =
6.50; (f) 9–10th mode, λ9−10N = 8.45; (g) 11th mode, λ11N = 9.00; (h) 12–13th mode, λ12−13N =
10.00; (i) 14–15th mode, λ14−15N = 12.50
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Figure 9: (Continued)
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Figure 9: (a) Comparisons of error indicator of natural frequency at 1th mode eλ1 among refine-
ment level of Le= 1, Le = 2, Le = 3; (b) error indicator of natural frequency of 1–15th mode
during adaptive refinement process by sweeping modes; (c) contrast of relative error of natural
frequency in energy norm at 1th mode between adaptive refinement and uniform refinement
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Figure 10: (a) Comparisons of error indicator of eigenvector at 1th mode eφ1 among refinement
level of Le = 1, Le = 2, Le = 3; (b) error indicator of eigenvector of 1–15th mode during adaptive
refinement process by sweeping modes; (c) contrast of relative error of eigenvector in energy norm
between adaptive refinement and uniform refinement
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Figure 11: A simply supported heterogeneous platehole: (a) geometric parameters and (b) dis-
cretization of patches, E1 =E, E2 = 100E1

(a) (b) (c)

(d) (e)

Figure 12: Adaptive refinement process of 1–9th mode for vibration of platehole. Geometry-
NURBS with order p1 = 1, p2 = 2; Solution Field-PHT with order q1= 3, q2= 3
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Figure 13: Mode shapes 1–9th of platehole, where λiN is normalized natural frequency at
mode i, calculated by λiN = λi/λ1, i = 1, 2, 3 . . .n. (a) 1th mode, λ1N = 1; (b) 2th mode, λ2N =
2.03; (c) 3th mode, λ3N = 2.30; (d) 4th mode, λ4N = 3.12; (e) 5th mode, λ5N =
3.52; (f) 6th mode, λ6N = 4.20; (g) 7th mode, λ7N = 5.32; (h) 8th mode, λ8N = 5.45;
(i) 9th mode, λ9N = 6.09
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Figure 14: (a) Comparisons of eλ1 among refinement level of Le = 1, Le = 2, Le = 3; (b) error
indicator of natural frequency of 1–9th mode during adaptive refinement process by sweeping
modes; (c) contrast of relative error of natural frequency in energy norm at 1th mode between
adaptive refinement and uniform refinement
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Figure 15: (Continued)
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Figure 15: (a) Comparisons of eφ1 among refinement level of Le = 1, Le = 2, Le = 3; (b) error
indicator of eigenvector of 1–9th mode during adaptive refinement process by sweeping modes;
(c) contrast of relative error of eigenvector in energy norm between adaptive refinement and
uniform refinement

6.4 Heterogeneous Lshaped-Bracket
The L-shape bracket is such a complex structure that it is divided into 18 Patches in Fig. 16b.

Patches 1–4 are softer than other Patches that E1−4=E, E5−18 = 100E= 109. Density ρ is 2700,
and thickness h is 0.01 and Poisson’s rate ν is 0.3. The whole boundary including the 4 holes is
imposed to be simply supported except the right edge marked with red colour in Fig. 16a, where
the boundary condition is assumed to be free. It is intended to make the vibration around Patch
4 is more fiercely than other parts. As a consequence, at the first 5 modes (1th–5th), the structural
vibration and adaptive local refinement merge into Patches 1–4. When it comes to the 6th mode,
the mode shape moves to the middle of structure (Patch 9, 10), seen in Fig. 18f. It induces the
rise of the error (proved by plot of Mode 6 in Figs. 19b and 20b, respectively in this district
and certainly the adaptive refinement will locate nearby, seen in Fig. 17e. After that, the modal
shape moves back to Patches 1–4 and the adaptivity keeps going on in that zone. The convergence
rate between adaptive refinement and uniform refinement are computed upon the basis of an
approximate solution with 301,470 dof. Apparently, in Figs. 19c and 20, the convergence rate of
adaptive refinement is much steeper (more than twice) than that of uniform refinement. This
indicates the structural response is much local in this problem.
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Figure 16: A simply supported with right free boundary heterogeneous Lshaped-bracket: (a)
geometric parameters and (b) discretization of patches, E1−4 =E, E5−18= 100E

Figure 17: Adaptive refinement process of 1–9th mode for vibration of Lshaped-bracket.
Geometry-NURBS with order p1 = 1, p2 = 2; Solution Field-PHT with order q1 = 3, q2 = 3.
(a) Initial mesh; (b) Adaptive mesh for 1th mode; (c) Adaptive mesh for 2th mode; (d) Adaptive
mesh for 3, 4, 5th mode; (e) Adaptive mesh for 6, 7th mode; (f) Adaptive mesh for 8, 9th mode
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Figure 18: Mode shapes 1–9th of Lshaped-bracket, where λiN is normalized natural frequency
at mode i, calculated by λiN = λi/λ1, i = 1, 2, 3 . . .n. (a) 1th mode, λ1N = 1; (b) 2th mode, λ2N =
2.79; (c) 3th mode, λ3N = 3.24; (d) 4th mode, λ4N = 3.52; (e) 5th mode, λ5N =
3.77; (f) 6th mode, λ6N = 4.30; (g) 7th mode, λ7N = 5.27; (h) 8th mode, λ8N = 6.23;
(i) 9th mode, λ9N = 6.77
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Figure 19: (a) Comparisons of eλ1 among refinement level of Le = 1, Le = 2, Le = 3; (b) error
indicator of natural frequency of 1–15th mode during adaptive refinement process by sweeping
modes; (c) contrast of relative error of natural frequency in energy norm between adaptive
refinement and uniform refinement
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Figure 20: (a) Comparisons of error indicator of eigenvector at 1th mode eφ1 among refinement
level of Le = 1, Le = 2, Le = 3; (b) error indicator of eigenvector of 1–15th mode during adaptive
refinement process by sweeping modes; (c) contrast of relative error of eigenvector in energy norm
between adaptive refinement and uniform refinement

7 Conclusion

In this article, based on our proposed adaptivity strategy in the framework of GIFT paradigm
utilized for vibration of Reissner–Mindlin plate, it is developed to investigate the error-driven
adaptivity for structural vibration of Kirchhoff plate. GIFT offers us the convenience to choose
solution field independently from geometry so that the good accuracy can be achieved by better
approximation in the solution field even though the geometric parameterization is not fairly
designed as supported by the example in Section 6.1. Furthermore, it allows us to connect
NURBS describing for geometry with PHT represented for solution field to reserve geometric
precision and realize local refinement. Besides, when dealing with error estimation process, MAC
scheme is helpful to locate the correspondence of modal vectors covering multiple eigenvectors
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between two different meshes. Our error indicator is proved to be reasonably chosen and the
proposed adaptive strategy shows a better convergence rate than uniform refinement, supported
by numerical tests in Sections 6.2–6.4.

We believe the proposed algorithm has potential to be practical in engineering problems.
The developed method is available to precisely describe complex geometry of structure and
simultaneously saves computational resource for given accuracy, especially for structures with local
mechanical behaviour. As to the adaptivity of vibration by sweeping modes from low to high
frequency, this adaptive strategy can be started from any mode or used to optimize some specific
modes people are interested in. It would be productive to modal analysis for vibration problem.
In the future, we intend to extend this method to 3D elasto-dynamics including the space-time
problems.
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