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ABSTRACT

Concrete exterior quality is one of the important metrics in evaluating construction project quality. Among the
defects affecting concrete exterior quality, bughole is one of the most common imperfections, thus detecting
concrete bughole accurately is significant for improving concrete exterior quality and consequently the quality
of the whole project. This paper presents a deep learning-based method for detecting concrete surface bugholes
in a more objective and automatic way. The bugholes are identified in concrete surface images by Mask R-CNN.
An evaluation metric is developed to indicate the scale of concrete bughole. The proposed approach can detect
bugholes in an instance level automatically and output the mask of each bughole, based on which the bughole area
ratio is automatically calculated and the quality grade of the concrete surfaces is assessed. For demonstration, a
total of 273 raw concrete surface images taken by mobile phone cameras are collected as a dataset. The test results
show that the average precision (AP) of bughole masks is 90.8%.
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1 Introduction

Concrete is the most widely used material in civil engineering structures. When the surface of
a building is mainly composed of concrete, a high-quality exterior becomes an important factor
of construction quality. Among the defects affecting the exterior quality, bughole is the most
typical one [1]. A recent questionnaire indicates that the exterior of concrete is as important as
cost-performance attributes and workability [2]. Moreover, the consequences of bugholes could
be serious if the concrete surfaces are to be painted or the damaged area reaches a certain
threshold [3,4]. Related investigations have shown that bugholes on concrete surfaces affect the
subsequent painting construction because these defects need to be filled before painting, which
causes additional workload and cost [5]. Therefore, bugholes should be minimized during the
construction process to improve the flatness and aesthetics of the concrete structure. Traditional
detection methods rely on manual inspection [6,7], which is considered time-consuming and
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impractical [8,9]. An improved method of bughole rating recommended by both the Concrete
International Board (CIB) and American Concrete Institute (ACI) suggests comparing the con-
crete surfaces with reference bughole photo samples. The scales of reference bughole photo
samples are illustrated in Fig. 1. However, the effectiveness of this method is affected by both the
printed scales of reference samples and the subjectivity of human inspectors [10,11]. In addition,
one surface may have several types of imperfections, hence the effectiveness of reference samples
is limited.

Figure 1: The scales of reference bughole photo samples

With the development of image processing technology [8–11], image processing methods
have been used in many areas including concrete bridge inspection [12], classification of radar
images [13], and so on. To enable the inspectors to use the reference bughole photo samples
more objectively, some other studies have proposed image processing techniques to detect and
evaluate the distribution of bugholes on concrete surfaces [10,14]. However, some argue that the
accuracy of image processing methods is affected by noise such as illumination, shadows, and
combinations of several different surface defects [15,16]. In recent years, algorithms based on deep
learning have achieved excellent progress in the challenge of object detection [17]. Deep learning
is a sub-field of machine learning. It uses many levels of non-linear information processing
and abstraction for supervised or unsupervised feature learning and representation, classification,
and pattern recognition [18]. Compared with traditional machine learning, deep learning aims
to automatically extract multi-layer feature representations from data. Its core idea is to use a
series of non-linear transformations in a data-driven way to extract features from the original data
from low-level to high-level, from specific to abstract, and from general to specific semantics. That
is, deep learning has powerful capabilities and flexibility in supporting computer systems to be
improved from experience and data. Some researchers have applied deep learning-based models
in the construction industry. Related research focuses on the application of deep learning-based
object detection algorithms to identify, classify, and locate damages on structural surfaces, such as
crack detection [19–24], concrete spalling detection [25,26], and corrosion detection [27]. Among
these research, most studies focus on the use of Convolutional Neural Networks (CNNs) to realize
the classification and localization of defects. However, insufficient attention has been paid to the
evaluation of concrete surfaces [28].

In line with the above research backgrounds, this paper proposes a deep learning-based
method using Mask R-CNN [29] to detect bugholes in concrete surface images and support
decision-making for quality improvement. The proposed approach can recognize bugholes at an
instance level and output the pixel of each bughole. Moreover, the area ratio of bugholes is
automatically calculated to evaluate concrete surfaces.
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2 Methodology

The overall framework of the proposed bughole detection method is given in Fig. 2. The
framework is composed of three stages: 1) database (DB) establishment; 2) establishment of net-
work architecture; 3) bughole detection using trained Mask R-CNN. In the first stage, the camera
of a mobile phone is used to acquire images from a fair-faced concrete building under different
lighting conditions at distances of 0.1–1.0 m. In the second stage, the instance segmentation
framework Mask R-CNN is modified to build an end-to-end bughole recognition model. In the
third stage, the performance of the trained Mask R-CNN model is evaluated by the test set, and
the recognition results are compared with the CIB reference scale to evaluate the bughole rating
on the concrete surface. The detailed implementations are described in this section.

Image acquisition

Database establishment

Training set Validation set Testing set

Bughole Intact surface

CONV RPN

Mask branch

Trained Mask R-CNN modelTesting image Bughole detection

CONV RPN

Mask branch

Establishment of network architecture

Figure 2: Overall framework of the proposed method

2.1 Database Establishment
A mobile phone camera captures images in this study. A total of 273 concrete surface images

with a resolution of 3,024× 3,024 pixels are collected. To create a database to train and test
the Mask R-CNN-based detection model introduced in this study, the original images with a
resolution of 3,024× 3,024 pixels are cropped to 256× 256 pixels, and a total of 3,215 images
containing bughole are selected to create the datasets. The number of images in the training set is
2,572, and the number of images in the validation set is 643, according to the ratio of the training
set:validation set = 4:1 [24]. Image annotation is the core of semantic object image segmentation in
computer vision [30]. This study uses the image annotation tool “labelme” to annotate the labels
and masks of objects (bugholes) [31]. Examples of annotated images are shown in Fig. 3.
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Figure 3: Examples of annotated images

A good model requires a lot of data to train, but it is time-consuming and costly to get new
data. To overcome this obstacle, data augmentation is a way to increase the amount of data by
random scale, crop, flip, shift, noise, and rotation of existing data. Related studies have shown
that data augmentation can improve the generalization ability and robustness of the model [20].
In this study, a rotation approach is adopted to augment data. 500 randomly selected images are
preprocessed by rotation before the training process. Fig. 4 shows examples of image modification
for data augmentation.

Figure 4: Examples of data augmentation: (a) original image; (b) rotation 90◦ clockwise; (c) flip
horizontally; (d) blur; (e) shift; (f) color conversion

2.2 Establishment of Network Architecture
Mask R-CNN is an instance segmentation algorithm. It is a more elaborate segmentation

process for similar objects based on semantic segmentation. In this study, the Mask R-CNN
algorithm framework performs the task of detecting and evaluating bugholes on concrete surface
images. The Residual Network (ResNet) [32] with 101 layers and the Feature Pyramid Network
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(FPN) [33] are selected as the feature extraction network. The reason for using ResNet is to
enrich feature extraction by increasing network depth while addressing the degradation problem.
FPN can increase the resolution and high-level semantic information of the feature map, thereby
improving the object detection performance of the network. The Region Proposal Network (RPN)
selects the candidate Region of Interest (RoI) according to different scales, lengths, and widths,
and then distinguishes and initially locates multiple RoIs generated on the feature map. The classic
object detection algorithm Faster R-CNN [34] classifies individual bugholes and locates each
of them by a bounding box. The classical semantic segmentation algorithm fully convolutional
network (FCN) [35] generates the corresponding mask branch, which can distinguish each bughole
at the instance level. The overall network architecture of the Mask R-CNN framework is shown
in Fig. 5. The specifications of Mask R-CNN without RPN are shown in Table 1. The detailed
specification of Conv and identity block with depth (64/64/256) are shown in Table 2.

RPN

Feature map

RoIAlign layer Mask branch

Fully connected layers

ResNet101+FPN

Convolutional backbone

FCN
Input

Mask

Box regression

Classification

proposals

Figure 5: The architecture of Mask R-CNN

Table 1: The specification of Mask R-CNN without RPN

Layer Type Depth Filter size Stride

C1 Zeros padding 3
C1 Conv+BN+ReLU 64 7× 7 2
C1 Max pooling 64 3× 3 2
C2 Conv Block 64/64/256 3× 3 2
C2 Identity Block(×2) 64/64/256 3× 3 1
C3 Conv Block 128/128/512 3× 3 2
C3 Identity Block(×3) 128/128/512 3× 3 1
C4 Conv Block 256/256/1024 3× 3 2
C4 Identity Block(×22) 256/256/1024 3× 3 1
C5 Conv Block 512/512/2048 3× 3 2
C5 Identity Block(×2) 512/512/2048 3× 3 1

(Continued)
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Table 1 (continued)

Layer Type Depth Filter size Stride

FPN Conv+Up/Downsample (C1∼C5) 256 1× 1/3× 3 1
RoI align 256 7× 7/14× 14
Classifier and Bbox head FC+ReLU 1024

FC+ReLU 1024
Softmax/Regressor NC/4 × NC

Mask head Conv+BN+ReLU(×4) 256 3× 3 1
Deconv 256 2× 2 2
Sigmoid NC 1× 1 1

Note: NC: Number of classes.

Table 2: The specification of Conv and identity block

Block Type Depth Filter size Stride

Identity Block Conv+BN+ReLU 64 1 × 1 1
Conv+BN+ReLU 64 3 × 3 1
Conv+BN 256 3 × 3 1
(Add shortcut+ ReLU) – – –

Conv Block Conv+BN+ReLU 64 1 × 1 2
Conv+BN+ReLU 64 3 × 3 2
Conv+BN 256 1 × 1 2
(Conv+BN) 256 1 × 1 2
(Add shortcut + ReLU) – – –

Since the added Mask branch needs to extract a finer spatial layout of the object, thus it
exposes the pixel deviation problem of RoI Pooling in the Faster R-CNN algorithm. To solve
the problem, the corresponding RoI alignment strategy is proposed. RoI alignment cancels the
quantization operation, calculates four regular sampling points in each bin, calculates the values of
these four positions by bilinear interpolation, and then performs the maximum pooling operation
so that the pixel mask generated by FCN can retain accurate spatial location, as shown in Fig. 6.
The solid-line grid represents the feature map. The orange blocks represent the RoI. RoI alignment
operation does not perform quantization on any coordinates involved in the RoI, bins, or sampling
points, thus avoiding the misalignment between the RoI and the extracted features caused by
quantization [29].

Figure 6: Operation of RoI alignment
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In the RoI regression process, to make the predicted object window closer to the ground
truth box, bounding-box regression is often used for fine-tuning. For windows, a four-dimensional
vector (x, y, w, h) is generally used to represent the center point coordinates, width, and height
of the window. As shown in Fig. 7, the blue dashed window P represents the original proposal,
and the red window G represents the ground truth of the object. The goal of RoI regression is
to find a relationship that maps the input original window P to a regression window G̃ closer to
the ground truth window G.

Figure 7: Computation graph of bounding box regression

That is: given P = (Px, Py, Pw, Ph, ), find a mapping f such that: f (Px, Py, Pw, Ph) =
(G̃x, G̃y, G̃w, G̃h)≈ (Gx, Gy, Gw, Gh).

The transformation of bounding-box regression is as follows:

1) Translate the original proposal window (Δx,Δy), where Δx = pwdx(p) and Δy = phdy(p),
then Eqs. (1) and (2) are obtained:

G̃x = pwdx(p)+ px (1)

G̃y = phdy(p)+ py (2)

2) Scale the original proposal window (Sw, Sh), where Sw = pwdw(p) and Sh = phdh(p), then
Eqs. (3) and (4) are obtained:

G̃w = pwedw(p) (3)

G̃h = phedh(p) (4)

From the above four equations, the translation and scaling required by the predicted proposal
are (dx(p), dy(p), dw(p), dh(p)), where (dx(p), dy(p), dw(p), dh(p)) should be equal to (tx, ty, tw, th)

which is translation and scaling required between ground truth window G and original proposal
window P, as shown in Eqs. (5) to (8):

dx(p)= tx = (Gx − px)

pw
(5)
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dy(p)= ty = (Gy − py)

ph
(6)

dw(p)= tw = log
Gw

pw
(7)

dh(p)= th = log
Gh

ph
(8)

Therefore, the objective function can be expressed as d∗(p) = wT∗ Φ(p), where Φ(p) is the
eigenvector of the input proposal; wT∗ is the parameter to be learned; * represents x, y, w, and
h, the objective function corresponding to each transformation; d∗(p) represents the coordinates
of the prediction window. To minimize the deviation between the prediction window and ground
truth window, the loss function is defined in Eq. (9):

Loss =
N∑

i

(ti
∗ −wT

∗ Φ(pi))
2

(9)

2.3 Mask R-CNN Model Training
The Mask R-CNN in this study is trained using a joint training strategy. A total of 100

epochs are trained, in which the entire network is trained with 40 epochs, the feature extraction
network module uses 40 epochs for training, and 20 epochs are used to fine-tune the network
heads. After the network training is completed, the test set and other original images are used to
assess the detection performance of the trained Mask R-CNN. The learning curves of training
and validation processes are shown in Fig. 8. The GPU and CPU training modes are used to
train the network. The specific configuration of the system environment is shown in Table 3.

Figure 8: The learning curves of training and validation processes

Table 3: The specific configuration of the system environment

Configuration Description

RAM DDR4 16 GB (8G×2)
CPU Intel(R) Core i7–7700K CPU @4.5 GHz
GPU MSI Geforce RTX 2080
Operating system Ubuntu
DL Framework Keras 2.2.4 and tensorFlow 1.12
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Before starting training, some parameters need to be specified according to the characteristics
of the network architecture and training images, such as batch size, learning rate, momentum,
and weight decay. The parameters are specified in Table 4. The training time in GPU mode is
much shorter than that in CPU mode. It has been estimated that the total training duration in
multi-GPU mode is about 0.67 h, while the total training time in CPU mode is more than 12 h.
For the same original image with a resolution of 3024× 3024 pixels, the detection time in GPU
mode is 3 s, and the detection time in CPU mode is 60 s.

Table 4: The specific parameters

Parameters Description

Batch size 120
Learning rate 0.001
Momentum 0.90
Weight decay 0.0001

3 Experiment

3.1 Evaluation of the Trained Model
The detection performance of the trained Mask R-CNN model is assessed by Pascal VOC’s

metric. The average precision (AP) of both bounding boxes and masks of the test set is tested in
the case where Intersection-over-Union (IoU) is set to 0.5 and 0.75, respectively. Fig. 9 illustrates
the precision-recall curves of bounding boxes and masks.

Figure 9: The precision-recall curves (a) bounding-box (b) mask

As can be seen from Fig. 9, different IoU settings affect the average precision of detection.
The larger the IoU, the lower the average precision. Conversely, the smaller the IoU, the higher
the average precision. In this study, when IoU = 0.5, the average precision of bounding boxes and
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masks are 0.900 and 0.908, respectively. When IoU = 0.75, the average precision of bounding boxes
and masks are 0.675 and 0.647, respectively.

3.2 Testing with New Images
A total of 43 raw images (3,024× 3,024 pixel resolutions) are used for evaluating the bughole

detection performance of the proposed method. The AP of bounding boxes and masks for these
raw images is recorded and the mean AP (mAP) is computed, as shown in Figs. 10 and 11.

Figure 10: The AP and mAP of bounding boxes

Figure 11: The AP and mAP of masks

As shown in Figs. 10 and 11, Image 17 has the highest mAP of 97.5% and 94.0% for
bounding box and mask, respectively. The bounding box of Image 21 has the lowest AP of 76.9%.
The mask of Image 23 has the lowest AP of 61.1%. The AP of both bounding boxes and masks
of these 43 images at IoU = 0.5 and IoU = 0.75 are listed in Appendix A. Fig. 12 illustrates the
results of bughole detection on concrete surface images by the proposed method. The input is
a cropped image with a resolution of 256× 256 pixels, and the output is the bughole detection
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result. The first number in the label of the output image represents the probability, and the second
number represents the pixel. The bughole recognition results of the sample image in Fig. 12 are
listed in Table 5.

Input Output

32

64

96

128

160

192

224

256

32 64 96 128 160 192 224 256

seulavlexi
P

Figure 12: The input and output images

Table 5: Bughole recognition information

Detected bughole No. 1 No. 2 No. 3

Probability 0.95 0.98 1.00
Pixels 190.81 330.73 148.93

3.3 Evaluation of Bugholes on Concrete Surfaces
Inspired by the CIB bughole rating method, by calculating the percentage of bughole area in

the concrete surface image, the surface bugholes of concrete are divided into seven levels. With
the aid of the image processing tool, the analysis result of the CIB bughole scale is shown in
Fig. 13.

Area ratio= 0.08% 0.21% 0.53% 1.19% 2.28% 4.16% 6.15%

Figure 13: The result of the CIB bughole scale obtained by image processing
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The relationship between the area ratio of surface bugholes and the CIB bughole scale is
obtained and shown in Fig. 14. The regression analysis equation of the area ratio and CIB
bughole scale is shown in Eq. (10):

Bughole rating = 1.3436In(Ab)+ 10.28 R2 = 0.9817 (10)

where Ab is the percentage of surface bugholes in the image to be rated and R represents the
regression coefficient.

Figure 14: Relation between area ratio of surface bugholes and CIB bughole scale

According to the CIB classification and the regression analysis equation of the area ratio and
CIB bughole scale, the recommended rating of bughole in this study is shown in Table 6.

Table 6: Recommended rating of bughole

Bughole rating 1 2 3 4 5 6 7

Area ratio (0%, 0.15%] (0.15%, 0.3%] (0.3%, 0.7%] (0.7%, 1.6%] (1.6%, 3%] (3%, 6%] (6%, 9%]

The proposed method can output the pixels of each bughole, and the area ratio of surface
bugholes is calculated by dividing the number of pixels in detected bugholes by the total number
of pixels of the image. The final output layer is designed to directly output the calculated area
ratio of the bugholes and a bughole rating by automatically comparing the recommended bughole
scale shown in Table 6. Fig. 15 illustrates some examples of bughole evaluation of concrete
surfaces by the proposed method.
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(a)

Area ration = 0.16% Bughole rating = 2
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(b)

Area ration = 0.61% Bughole rating = 3
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Figure 15: (Continued)



632 CMES, 2022, vol.131, no.2

(c)

(d)

Area ration = 0.98% Bughole rating = 4
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Area ration = 1.83% Bughole rating = 5
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Figure 15: Examples of bughole evaluation of concrete surfaces by the proposed method: (a)
bughole rating is 2; (b) bughole rating is 3; (c) bughole rating is 4; (d) bughole rating is 5

4 Discussion

The above analysis demonstrates that the evaluation method introduced in this study ensures
better accuracy in detecting bugholes of concrete surfaces, which in turn provides better data
for the improvement of concrete quality. The performance of the introduced bughole evaluation
method is compared with that of the other three algorithms, namely Faster R-CNN, Retinanet,
and FCN. The results are shown in Table 7.
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Table 7: Comparison of the detection performance between the proposed Mask R-CNN and the
other three algorithms (Faster R-CNN, Retinanet, and FCN)

Algorithm Bounding-box AP (%) Segmentation AP (%)

IoU = 0.5 IoU = 0.75 IoU = 0.5 IoU = 0.75

Faster R-CNN 87.6 65.4 - -
Retinanet 82.5 62.8 - -
Mask R-CNN 90.0 67.5 90.8 64.7
FCN - - 85.4 61.2

As shown in Table 7, Faster R-CNN has a bounding box AP of 87.6% and 65.4% at IoU
= 0.5 and IoU = 0.75, respectively. Retinanet has a bounding box AP of 82.5% and 62.8% at
IoU = 0.5 and IoU = 0.75, respectively. Mask R-CNN has a bounding box AP of 90.0% and
67.5% at IoU = 0.5 and IoU = 0.75, respectively. To compare with the traditional CNN-based
object detection algorithm, Fig. 16 shows the recognition results of the same bughole image
under different algorithms. As shown in the results, bounding boxes can locate bugholes well,
however, they are unable to identify the contours of the bugholes. Therefore, the surface bughole
detection and evaluation methods based on object detection algorithms are not accurate enough.
In contrast, Mask R-CNN outputs the instance segmentation mask while locating the bughole,
which enables further quantification and evaluation. The test results in Table 7 show that the
segmentation AP of Mask R-CNN at IoU = 0.5 and IoU = 0.75 is 90.8% and 64.7%, respectively.
The segmentation AP of FCN at IoU = 0.5 and IoU = 0.75 is 85.4% and 61.2%, respectively. It is
considered reasonable to choose the Mask R-CNN framework based on the instance segmentation
algorithm for bughole identification and evaluation.

Figure 16: Recognition results of Faster R-CNN and Mask R-CNN

The application of the proposed method in detecting bugholes may still misidentify other
surface defects as bugholes (i.e., false-positive results). For example, a spalling is misidentified as
a bughole, as shown in the red box in Fig. 17. Such false-positive results will affect the accuracy
of concrete quality evaluation.
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Figure 17: Detection result of an example image containing bughole and spalling

5 Conclusion

Concrete surface quality control is one of the keys in construction project management. The
detection and evaluation of concrete surface bugholes are among the main tasks in implementing
concrete quality control. Traditionally, project managers and inspectors mainly rely on human
visual methods to evaluate the surface quality of concrete, which is subjective and inefficient. To
mitigate these weaknesses, this paper has introduced a deep learning-based automatic instance-level
evaluation method for detecting concrete surface bugholes more objectively and automatically.

The analysis in the paper suggests that Mask R-CNN-based method prevails over traditional
methods for analyzing concrete quality in several aspects. Firstly, it improves the objectivity of
the evaluation process. The method presented in this paper uses images as the basis for evalua-
tion. A total of 273 concrete surface photos are collected to build a data set, and then image
recognition technology based on deep learning replaces human eyes for detection and evaluation,
which significantly improves the objectivity of evaluation. Secondly, the accuracy of detection is
improved. The bughole detection model based on Mask R-CNN can identify the contours of
bugholes effectively, and output the mask of each bughole instead of a bounding box so that
the actual area of the bughole on the concrete surface can be calculated more accurately. The
test results show that the average precision (AP) of bughole masks reaches 90.8%. Thirdly, the
introduced method can provide better data for improving the quality of concrete. The method
presented in this paper can recognize bugholes at an instance level and output the pixels of each
bughole, and the area ratio of bugholes is automatically calculated, which in turn can provide
better decision-making data about the quality of concrete surfaces.

Despite the excellent performance of the proposed method, it still has limitations in detecting
bugholes due to the interference of other imperfections, such as spalling. It is recommended to
develop detection and quantification methods for multiple damage types based on deep learning
to establish a more comprehensive evaluation model for concrete exterior quality.
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Appendix A: The APs of both bounding box and mask

Image Bounding-box (%) Mask (%)

IoU = 0.5 IoU = 0.75 mAP IoU = 0.5 IoU = 0.75 mAP

1 0.972 0.834 0.903 0.972 0.580 0.776
2 0.927 0.866 0.897 0.927 0.526 0.727
3 0.956 0.849 0.903 0.956 0.696 0.826
4 0.983 0.888 0.936 0.956 0.804 0.880
5 0.858 0.757 0.808 0.858 0.641 0.750
6 0.938 0.800 0.869 0.938 0.664 0.801
7 0.974 0.934 0.954 0.974 0.896 0.935
8 0.958 0.833 0.896 0.958 0.704 0.831
9 0.853 0.764 0.809 0.946 0.667 0.807
10 0.961 0.756 0.859 0.983 0.434 0.709
11 0.946 0.836 0.891 0.906 0.420 0.663
12 0.863 0.750 0.807 0.863 0.407 0.635
13 0.963 0.826 0.895 0.963 0.472 0.718
14 0.889 0.839 0.864 0.889 0.685 0.787
15 0.972 0.799 0.886 0.972 0.799 0.886
16 0.942 0.902 0.922 0.942 0.902 0.922
17 0.985 0.965 0.975 0.985 0.901 0.943
18 0.914 0.829 0.872 0.870 0.440 0.665
19 0.834 0.712 0.773 0.804 0.746 0.775
20 0.968 0.908 0.938 0.968 0.762 0.865
21 0.805 0.732 0.769 0.731 0.586 0.659
22 0.896 0.866 0.881 0.896 0.794 0.845
23 0.876 0.697 0.787 0.876 0.346 0.611
24 0.957 0.917 0.937 0.957 0.897 0.927
25 0.963 0.862 0.913 0.963 0.863 0.913
26 0.968 0.909 0.939 0.988 0.632 0.810
27 0.958 0.898 0.928 0.958 0.771 0.865
28 0.897 0.743 0.820 0.897 0.695 0.796
29 0.859 0.759 0.809 0.759 0.759 0.759
30 0.919 0.735 0.827 0.919 0.383 0.651
31 0.976 0.926 0.951 0.976 0.903 0.940
32 0.916 0.730 0.823 0.916 0.397 0.657
33 0.855 0.815 0.835 0.855 0.805 0.830
34 0.922 0.720 0.821 0.922 0.720 0.821
35 0.933 0.819 0.876 0.933 0.769 0.851
36 0.966 0.770 0.868 0.966 0.765 0.866


