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ABSTRACT

Cell migration plays a significant role in many biological activities, yet the physical mechanisms of cell migration
are still not well understood. In this study, a continuum physics-based epithelial monolayer model including the
intercellular interaction was employed to study the cell migration behavior in a confluent epithelial monolayer
at constant cell density. The epithelial cell was modeled as isotropic elastic material. Through finite element
simulation, the results revealed that themotile cell was subjected to higher stress than the other jammed cells during
the migration process. Cell stiffness was implied to play a significant role in epithelial cell migration behavior.
Higher stiffness results in smaller displacement and lower migration speed.
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1 Introduction

Many biological activities such as embryogenesis [1–4], wound healing [5–7] and cancer metas-
tasis [8–11] require collective cell migration in a coordinated way within a tissue [8,12–14]. Cells
in these tissues are often densely packed together, and the motion of a cell is often strongly
constrained by its neighbors [15]. When cellular movements are comparatively small, cellular
rearrangements rarely happen, and cells are trapped by their immediate neighbors. Park et al. [16]
performed a statistical analysis of these quasi-static collective cell motions which described such a
cell layer to be solid-like and jammed. However, when cell movements are comparatively large in a
cooperative way and swirling pattern, such a layer is described to be fluid-like and unjammed. The
jammed to unjammed transition has been found in cancer metastasis, organogenesis, bronchial
asthma, etc. [17]. Initiation of some biological processes such as tissue remodeling and wound
repair require the quiescent cell layer to transit from jammed state to unjammed state via collective
migration. During the cell migration process, the individual cell of the unjammed collective
cells interacts with its neighbors cooperatively through chemical and mechanical cues. The cell
jamming/unjamming transition is superficially similar to the epithelial-to-mesenchymal transition
(EMT) which has also been shown to occur in wound healing. Although their distinctions
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have been investigated [18], still little is known on unjammed-to-jammed transition for the
densely packed cells.

Collective cell migration has received growing attention in recent studies which show that
the cell migration behavior is governed by a set of parameters. Active motility, cell density, cell-
cell interaction, cell shape, cell stiffness and applied stress are believed to be potential factors
that can affect the collective cell migration behavior [19]. Experimental studies [16,20–22] have
found that during collective cell migration, not only the leader cell may play an important role,
but cell-cell adhesion forces may also influence the migratory behavior. By using the Monolayer
Stress Microscopy, Park et al. [16] found that the jamming/unjamming transition in asthma is
linked to cell shape change. As the layer becomes more unjammed, the cell shape changes from
regular hexagonal to more elongated and more variable shape-like. It also showed the intercellular
stresses are higher in unjammed bronchial epithelial cells from asthmatic donors compared with
those in jammed cells from non-asthmatic donors. By studying the developing monolayers of
human bronchial epithelial cells, Garcia et al. [23] found cell-cell contacts and cell-substrate
contacts maturate with time, resulting in higher friction between cells that may influence the cell
jamming/unjamming transition. Experiments have identified that intercellular adhesion force is
regulated by proteins that resist and transmit forces at cell-cell junctions [12,24]. Studies have also
shown that cell stiffness may also influence cell motility during the migration process [25–27].

On the other hand, researchers have used numerical tools of various complexity to investigate
the collective cell migration behavior. The cellular Potts model (CPM) [28,29] was one of the
early successful models. In the CPM [30,31], cells are considered as several sets of pixels that
are updated by certain probabilistic rules. Different particle models [32–34] have been developed
to study the collective cell motion in an epithelial sheet. It is found that both polarity-velocity
alignment and locomotion interactions can affect the collective motion. Bi et al. [35,36] used
a vertex model to describe the epithelial junctional and cortical tension rigidity transition in
biological tissues. It was found that the onset of rigidity transition between liquid and solid was
governed by a model parameter in confluent tissues. The self-propelled Voronoi (SPV) model
was used to study the coherent motions in confluent cell monolayer sheets [37–39]. A cell-based
FE model [40,41] was adopted to study the wound healing process. In this model, the cell-cell
adhesion was represented by the tension force tangent to the cell edge. The simulation studies
implied that either cell crawling or purse-string contraction can lead to wound closure. Lin
et al. [42] proposed an interfacial interaction model to study the collective epithelial cell migration
behavior. Through the simulation, it reveals that the direction of cell movement is better aligned
with the local principal stress direction at the higher maximum shear stress region.

Although the collective cell migratory behaviors in confluent tissues have been studied, the
mechanisms of coordinated motion in cells are still unclear and controversial due to the following
attributes: First, there are limitations in experimental studies to identify individual contribu-
tion factor in the collective cell migration behavior; Second, the lack of advanced continuum
physics-based computational tools also make it difficult to uncover the collective cell migration
mechanism. Models such as the vertex model and particle model are advanced models. However,
they are not real continuum physics-based models. How the mechanical clues will influence the
collective cell migration behavior is not very clear. The model could not capture essential features
of cell mechancial property and the intercellular interaction at cell-cell junction between adjacent
cells. So it is necessary to develop continuum physics-based collective cell model to bridge the
knowledge gap between cell biology and cell biomechanics in a confluent monolayer. In this study,
a collective cell model considering intercellular adhesion, cell-substrate adhesion and cell stiffness,



CMES, 2022, vol.131, no.2 553

is used to study the cell migration mechanism. An advanced computational model and finite
element based simulation tool was developed to investigate how intercellular interaction and cell
stiffness may affect the cell migration behavior.

2 Models and Materials

2.1 Geometric Model of the Epithelial Monolayer and Boundary Conditions
The epithelial monolayer is reported to be a thin layer of 3–15 μm in thickness [43,44].

For simplification, a 2D plane stress model of the epithelial monolayer was created using the
Voronoi tessellation method to represent the monolayer sheet [35,45,46]. Generally, polygon-shaped
epithelial cells were first generated within a square region using the Centroidal Voronoi tessellation
method. Then, cell-cell interfacial zone was generated to characterise the intercelluar interaction
between adjacent cells. In this study, sixty-four (64) densely packed epithelial cells were created
and the average cell size was set to be around 30 μm, which is in the size range (10–36 μm) of
epithelial cells [47]. The cell junction size was set to be 10 nm throughout the model, which was
reported in literatures [48,49]. Fig. 1 illustrates the geometric configuration of the two-dimensional
epithelial monolayer. The 64 cells in the simulation model are confined in the square box region,
and the simulation box is fixed during the simulation. During the cell migration, the position of
the centroid for each cell is updated, and thus the edges for each cell get updated. All cells are
moving inside of the confined box.

Figure 1: Geometry model of the epithelial monolayer sheet

2.2 Interaction Force Modeling
2.2.1 Intercellular Interaction Modeling at Cell-Cell Junction

The transmission of mechanical forces is broadly recognized to play a significant role during
cell migration processes. While the motile cells move, they will interact with their neighboring
cells, and the interaction force will be transmitted through cell-cell junctions [50]. Mechanical
stresses exerted at cell-cell junctions have been studied in experiments with different measurements
[51–54]. In experimental studies, the intercellular adhesion within a migrating monolayer can be
decomposed into normal traction that is perpendicular to the cell-cell junction and shear traction
that is tangential to the cell-cell junction as shown in Fig. 2.
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Figure 2: Intercellular interaction at cell-cell junction

Some computational frameworks such as the vertex model and cellular potts model have been
developed to study the collective cell migration processes [29,35]. These models incorporate the
contribution of the intercellular adhesion, however, they are pure mathematical models that could
not capture the mechanical behavior of the cell tissue. In this study, the intercellular interactions
at cell-cell junctions were modeled using an interfacial interaction model which was proposed by
Lin et al. [42] to investigate the collective epithelial cell migration, and it takes the following forms:
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The traction-separation laws used to model the intercellular interaction is illustrated in Fig. 3.
This model has been employed to describe intercellular interactions in collective cell migration and
in other biological material modelings [42,55].

The critical intercellular interaction distance in both normal and tangential directions, δdn and
δdt in our model, were estimated as 1 μm. The interaction cutoff distance in normal and tangential
directions, δfn and δft, were set as 2 μm. The intercellular adhesion strength in both normal and

tangential directions, σc−c and τc−c, were approximated as 2 nN/μm2 since the cell-cell adhesive
traction were in a range of 1∼ 8 nN/μm2 measured by Liu et al. [56]. The qn and qt describe the
exponential behavior in the normal and tangential direction respectively, and were set to be one
for simplificity. The pn and pt describe a type of linear detachment progression between adjacent
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cells when the intercellular separation dn or dt exceeds δdn and δdt in the normal and tangential
direction, respectively. The pn and pt were set to be one for simplificity in current study.

Figure 3: Intercellular interactions at cell-cell junction: (a) Normal direction, (b) Tangential
direction

2.2.2 Cell-Substrate Adhesion Modeling
Cell movement also invloves cell-substrate adhesion which is the attachement of a cell to

the underlying substrate through mechanosensitive focal adhesion complexes of the integrin
family [57]. It enables cell activity in the extracellular matrix to affect the cell shape and move-
ment. There have been many efforts on the modeling of cell–substrate interactions [58–61]. An
exponential cohesive zone model [62] was employed to represent the cell–substrate interfacial
behavior [60]. The normal traction of the cell–substrate adhesion can be ignored according to
previous analysis [63]. Therefore, we only consider the cell–substrate adhesive traction in xy plane
for simplification in this study, and it takes the following form:
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In the above equation, τc−s represents the maximum cell-substrate adhesion strength. In this
study, τc−s was set to be 5 Pa according to the previous experimental measurement [63]. The du is
the separation distance between the cell and the substrate. The critical interaction distance δdu is
the distance between the cell and the substrate when cell-substrate adhesion reaches its maximum
value, which was set to be 25 nm according to previous study [60]. The detachment distance δf is
estimated as 60 nm according to the reported measurements [64,65].

2.2.3 Protrusion Force Modeling
In the protrusion-based cell migration, actin polymerization leads to the formation of pro-

trusions that adhere to the surrounding extracellular matrix (ECM). Then the formed protrusions
retract, resulting in cell movement along the cell path [66,67]. Cell migration is a dynamic process
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that is highly regulated by complex biological cues [68]. The formation of protrusion generates
protrusion forces at the leading edge of the motile cell that could empower cell movement. The
value of traction force on leading edge ranges from 0.25 to 3 nN according to the previous
experimental studies depending on different measurement methods [69,70]. In addition, it is shown
that each cell in an advancing epithelial monolayer was also involved in a global tug-of-war [63].
Therefore, in this study, one cell located at far left of the box was selected as the motile cell
(Fig. 1), and a 2 nN protrusion force was applied on the motile cell along the x-axis direction.
The protrusion forces on edges of all other cells were applied along random directions in the
range of 0–0.3 nN.

2.3 Material Properties
In this study, the epithelial cell was assumed as an isotropic elastic material and the Young’s

modulus was set at different values between 0.3 and 30 KPa, and Poisson’s ratio ν = 0.45 accord-
ing to the measurements reported in previous experiments [71,72]. The mass density was set to be
2× 10−3 ng/μm3 for individual epithelial cell according to the previous measurements [73,74]. In
the curent cell modeling, we did not model the detailed cell internal microstructures.

3 Finite Element Implementation

In this study, a displacement-based finite element formulation was developed. The Galerkin
weak formulation of the compuational model that neglects the body force during the deformation
can be represented by the following terms:

∫
�

ρü · δud�= ∫
Sext

Tp · δudS+ ∫
Sc−c

Tc−c · δΔdS+ ∫
Sc−s

Tc−s · δudS−∫
�

P: δFd� (4)

where ρ is the material density of the cell, � is the volume, Sext is the cell external surface, Sc−c
is the cell-cell junction surface, Sc−s is the cell-substrate surface. Tp is the protrusion traction
vector, Tc−c and Tc−s are the intercellular interaction traction vector and cell-substrate interaction
traction vector, respectively, P is the first Piola-Kirchhoff stress tensor, and P: δF = PijδFji. The
descrete equations of motion can be expressed by following forms:

Mü= Fext− Fint (5)

Fext = Fp+ Fc−c+Fc−s (6)

In the above equations, M is the mass matrix, Fext is external force which is consitituted of
protrusion force Fp, intercellular interaction force Fc−c and cell-substrate adhesion force Fc−s. Fint
represent the internal force resulting from the epithelial cell deformation.

4 Simulation Results

Numerical simulations were performed to investigate the cell migration behavior in a confluent
epithelial monolayer. All simulations were conducted by using a custom-designed finite element
package using Fortran, which was developed by Lin et al. [42].

4.1 Stress Distribution in Epithelial Monolayer Sheet
In the finite element simulation, each cell in the monolayer sheet was discretized into linear

triangle elements to perform the computation. At each nodal point, the maximum and minimum
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principal stresses were calculated according to the following formulation:
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Then the average local normal stress is computed as σave = (σmax+ σmin)/2 and the maximum
shear stress is computed as τmax= (σmax− σmin)/2. Fig. 4 shows the contours of the average local
normal stress and the maximum shear stress while the motile cell migrates from the left to right
with cell stiffness of 0.3 KPa. It can be seen that the value of the average local normal stress is
greater than the value of the maximum shear stress in the motile cell. These observations were
consistent with experimental studies [54,75], some other studies reported comparable amount of
shear stress obtained through experiments [51,63]. To visualize the entire migration process, one
cell located at far left of the box was selected as the motile cell. The motile cell migration in the
monolayer can be seen in movie S1. All other cells are migrating with very small displacement
compared to the motile cell since the protrusion force applied on the motile cell is larger than the
rest of the cells. In our current study, the cell extrusion is not considered. When the maximum
stress in the cell monolayer reached a predefined threshold value, cell remodeling will start and
cells will change their shapes during the migration process. Cells may change their neighbors after
cell remodeling. The cell density is maintained during the collective cell migration process.

Figure 4: (Continued)

https://www.techscience.com/uploads/movies1.avi
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Figure 4: Stress distribution at different time step while the motile cell migrates from left to right:
(a) Contour of average normal stress and (b) Contour of average shear stress at different time
step: t = 100 min, t = 250 min, t = 470 min, t = 660 min, t = 860 min, t = 1060 min

Then we plot the effective stress in the epithelial monolayer sheet in Fig. 5. It can be seen
that the stress in the motile cell is several orders higher than stress in other cells.

Figure 5: Effective stress in the motile cell and the jammed cell
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4.2 Contribution of the Cell Stiffness on Cell Migration Behavior
Cell stiffness has been identified as an important mechanical property that influences cell

motility and cell migration behavior. Many experimental studies have shown that higher cell
motility often relates to lower stiffness, which might favor cell migration, epithelial-mesenchymal
transition in many biological activities [25,26,76–79]. However, some conflicting evidence has been
reported that cancerous cells with higher motility are stiffer than their benign counterparts [80,81]
that makes the relationship between cell stiffness and cell motility still a controversial topic. The
value of epithelial cell stiffness has been reported in a range from 0.1 to 20 KPa depending
on different cell types and measurements [72,82]. To computationally explore the effects of cell
stiffness on the cell migration behavior, in this study, all the parameters were kept the same except
the stiffness was set to be 0.3, 3, 10, 20 KPa respectively for different cases. The displacement of
the motile cell verses time during the migration is plotted in Fig. 6. It can be seen that higher
stiffness results in smaller displacement and lower migration speed. This result is consistent with
previous studies [25,26,76–79] since low cell stiffness often associated with higher ability to deform,
therefore leads to higher motility.
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Figure 6: Displacement of the motile cell during the migration processes with different cell stiffness

Figure 7: (Continued)
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Figure 7: Effective stress vs. time in the motile cell with differnet cell stiffness: (a) E = 0.3 KPa,
(b) E = 3 KPa, (c) E = 10 KPa, (d) E = 20 KPa

Then we plotted the effective stress in the motile cell during the cell migration for all four
cases with different cell stiffness as shown in Fig. 7. One might see that higher stiffness leads to
higher stress in the cell which is consistent with recent experimental studies [27,83,84].

5 Discussions and Conclusions

In this study, a continuum physics-based computational model including the intercellular inter-
action was employed to study the cell migration behavior in a confluent epithelial monolayer. The
epithelial layer was modeled as an isotropic elastic material. Through finite element simulation,
the results revealed that the motile cell was subjected to higher stress than other cells during the
migration process. And our results showed that the normal intercellular interaction dominates over
the tangential intercellular interaction. Cell stiffness was indicated to play a significant role in
cell migration behavior, higher stiffness results in smaller displacement and lower migration speed.
When transiting from the quiescent state to the motile state, the traction force in epithelial cell
may decrease in order to escape from the collective cells. The simulation model-based study may
provide possible explanations and insights on how the mechanical cues affect the cell migration
behavior.

It should be noted that cell migration is a complex biological phenomenon, and there are
several limitations associated with the presented study. Firstly, a 2D plane stress model was
used for simplification in this study, which might not fully represent the 3D cases. Secondly, the
epithelial cells were modelled as the simple isotropic material which does not consider the detailed
cell microstructure and the complex cell material properties. Thirdly, the presented computational
model does not take into account of the factors such as “chemotaxis” or “durotaxis” in cell
movements, so the protrusion force applied may not be realistic in real situation. Only one cell
is selected as motile cell in the current study. In our previous cell migration study, we investigate
how the number of self-propelled monocytes affected the collective migration behavior as a group.
It was found that more self-propelled cells are in the system moving along the same direction,
the faster the collective group migrates toward coordinated direction [85]. In our future study, we
plan to build cell model with internal microstructures by using liquid crystal and liquid crystal
elastomers, and to build a 3D epithelial cell migration model to further investigate the role of
mechanical interaction on the cell migration behaviors.
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