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ABSTRACT

Workflow system has become a standard solution for managing a complex business process. How to guarantee its
correctness is a key requirement. Many methods only focus on the control-flow verification, while they neglect
the modeling and checking of data-flows. Although some studies are presented to repair the data-flow errors, they
do not consider the effect of delete operations or weak circulation relations on the repairing results. What’s more,
repairing some data-flow errors may bring in new errors. In order to solve these problems, we use workflow net
with data (WFD-net) systems to model and analyze a workflow system. Based on weak behavioral relations and
order relations in aWFD-net system, we formalize four kinds of data-flow errors. After then, we reveal the relations
between these errors and organize them into a hierarchy. Furthermore, we propose some new methods to repair
data-flow errors in a WFD-net system based on system requirements and repair strategies. Finally, a case study of
campus-card recharging shows the applicability of our methods, and a group of experiments show their advantages
and effectiveness.
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Nomenclature

N Set of Positive Integers
<
> ∈ or /∈
RD Redundant Data
MD Missing Data
LD Lost Data
IND Inconsistent Data

1 Introduction

A business process is considered as “the specific ordering of work activities across time
and place, with a beginning, an end, and clearly identified input and output” [1]. As an
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information technology of process automation, workflow systems have become a standard solution
for managing complex business process models, such as loan approval management [2], supply
chain management [3], and knowledge management [4]. In other words, workflow systems can
be used to automate, manage, and optimize different kinds of business processes. In general, the
design of a workflow system needs to describe control-/data-flows, and then detect their errors [5].
A successful workflow system depends on error-free modeling and analyzing methods. Therefore,
it is necessary to keep the correctness of control-/data-flows in a workflow system. Control-flows
mainly focus on the partial orders of business activities, while data-flows mainly involve data
operations (e.g., read, write, and delete) and guard functions [6–8].

There are many modeling methods that can be used to describe workflow systems, such
as Business Process Modeling Notation (BPMN) [9], Business Process Execution Language
(BPEL) [10], Event-Driven Process Chains (EPCs) [11], UML Activity Diagrams [11], and Work-
flow Net with Data (WFD-net) [12]. Compared with these methods, WFD-nets are much suitable
to describe and analyze control-/data-flows due to their data labeling functions and guards.

In order to guarantee the correctness of workflow systems, some methods are developed to
detect and repair errors. Unfortunately, most of them only focus on the verifications of control-
flows while ignoring the checking of data-flows. In fact, data-flows play an important role in
workflow design. This is because routing constraints in a workflow are usually based on data
operations and guard functions. Moreover, data-flow errors (e.g., redundant data, missing data,
lost data, and inconsistent data) may arise even if control-flows are correct [5,13]. Once a workflow
model suffers from missing data, it may need high costs to repair unexpected process interruptions.
To repair data-flow errors in workflow systems, many studies are done. Awad et al. [9] presented a
method to repair missing data in BPMN. After then, Song et al. [10] provided some methods to
preserve data-flow correctness in BPEL. Later on, Sharma et al. [14] presented a method to repair
data-flow errors in workflows. However, these methods do not consider data-flow errors caused
by delete operations, and their workflow models are usually simple (e.g., no loop structures). In
order to remove a kind of data-flow error, they may bring in another one. Therefore, they need
multiple attempts to repair these errors. What’s worse, they may get an incorrect workflow model.

In this paper, we use WFD-net systems to analyze the correctness of control-/data-flows
in workflow systems. It is assumed that our control-flows in WFD-net systems are sound (i.e.,
no deadlocks [9,15,16] or livelocks [17–19]), without taking data operations into consideration
[12,20,21]. The aim of this paper is to detect and repair four kinds of data-flow errors (i.e.,
redundant data, missing data, lost data, and inconsistent data) in WFD-net systems.

The contributions of this paper are given as follows:

1) Based on weak behavioral relations (i.e., weak sequence relation, weak exclusiveness rela-
tion, weak circulation relation, and weak concurrency relation) and order relation, we
formalize four kinds of data-flow errors in WFD-net systems.

2) We reveal the relations between different kinds of data-flow errors, and further organize
them into a hierarchy, which can contribute to correctly repairing data-flow errors without
repeated work.

3) We present some methods to repair data-flow errors in WFD-net systems according to
several system requirements and repair strategies.

The rest of this paper is organized as follows. In Section 2, we present some related work
about data-flow errors. Then, we introduce workflow system modeling and a motivation example
in Section 3. In Section 4, we formalize data-flow errors in WFD-net systems, and provide some
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new methods to repair them. In Section 5, a case study of campus-card recharging is conducted.
In Section 6, we do a group of experiments to show the effectiveness of our methods. Finally,
conclusion and future work are given in Section 7.

2 Related Work

2.1 Detecting Methods for Data-Flow Errors
There have been many methods to detect data-flow errors. Sun et al. [2] provided three basic

types of data-flow errors in UML activity diagram, namely missing data, conflicting data, and
redundant data. Sundari et al. [22] presented a graph traversal algorithm called GT to detect
data-flow errors in workflows. It systematically traversed every workflow route to detect errors like
redundant data, missing data, and lost data. Based on the work provided in [2], Sun et al. [23]
analyzed the dependencies among different transitions based on the input and output data of
activities in a workflow model. Meda et al. [24] provided missing data, inconsistent data, lost
data, and redundant data. They also presented a graph traversal algorithm to detect the data-flow
errors in unstructured and nested workflows. Sidorova et al. [25] defined the may/must-soundness
of a WFD-net system. Haddar et al. [26] provided a data-centric method to manage business
processes. Dolean et al. [27] presented a survey of researches on modeling data-flows of business
processes, and pointed out that the control-flows cannot be executed without data operations.
Kabbaj et al. [5] pointed out that the role of data in a workflow is very important because
routing constraints are closely related to data elements. Therefore, a workflow easily leads to an
interruption once it contains data-flow errors. In order to solve this problem, they provided a
method to detect redundant data, missing data, and lost data (or conflict data). Xiang et al. [6]
proposed Petri Net with Data Operations (PN-DO), such as read, write, and delete operations.
They formalized redundant data, missing data, lost data, and inconsistent data. Dramski [28]
presented missing data in event logs and gave some ways to make some data recovery. Trcka
et al. [29,30] put forward six kinds of data-flow errors in WFD-nets, namely missing data, strongly
redundant data, weakly redundant data, strongly lost data, weakly lost data, and inconsistent data.
von Stackelberg et al. [31] proposed a method to detect strongly redundant data, weakly redundant
data, missing data, strongly lost data, weakly lost data, and inconsistent data in BPMN 2.0. Song
et al. [32] utilized supervised learning algorithms to predict data-flow errors in an unseen BPEL
process. Moreover, they provided an empirical study on data-flow errors in BPEL processes. Mülle
et al. [33] considered that the correctness of data-flows in BPMN 2.0 is a challenge. As for the
above studies, they did not consider the relations between different kinds of data-flow errors.

2.2 Repairing Methods for Data-Flow Errors
There are many studies on repairing data-flow errors. Awad et al. [9] presented a method to

repair missing data. Song et al. [10] provided preserve data-flow correctness in process adaptation.
They proposed three criteria to make the process free of missing data, redundant data, and lost
data. Technically, they assumed that each activity has 0/1 output. Later on, Sharma et al. [14]
presented methods to repair redundant data, missing data, lost data, and inconsistent data in
workflows. After then, Jovanovikj et al. [34] provided methods to compare and merge two different
models with different data operations. The methods are activity inserted, activity deletion, data
object creation, data object to read, data object updated, and data object deletion. These methods
can contribute to providing possible ways for the designer to repair data-flow errors in a WFD-
net system. As mentioned above, these studies did not consider data-flow errors caused by delete
operations, and their workflow models are usually without loop structures. What’s more, repairing
some kinds of data-flow errors may bring in new data-flow errors. In order to solve these
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problems, we propose some new methods to repair different kinds of data-flow errors according
to several system requirements in this paper.

3 Preliminaries

3.1 Workflow System Modeling
A Petri net is a 3-tuple N = (P,T ,F), where P is a limited non-empty set of places, T is a

limited non-empty set of transitions, P∩T =∅, and F ⊆ (P×T)∪ (T ×P) is the flow relationship
in N [35–38]. A Petri net system is a net N = (P,T ,F) with an initial marking M0. A marking
function of a net is a mapping M : P→ N1, where N1 is the set of non-negative integers. Given
a node x ∈ P∪T , its pre-set and post-set are denoted by ·x = {y|(y ∈ P∪T) ∧ (y,x) ∈ F} and
x· = {y|(y ∈ P∪T)∧ (x,y) ∈ F}, respectively [39]. If x is a source place, then ·x=∅; If x is a sink
place, then x· = ∅. Given a set of nodes X ⊆P∪T , and x ∈X , its pre-set and post-set are denoted
by ·X = {Y |(Y ⊆P∪T) ∧ (y ∈Y ) ∧ (y,x) ∈ F} and X · = {Y |(Y ⊆P∪T) ∧ (y ∈Y) ∧ (x,y) ∈ F},
respectively. For the example of Fig. 1, if X = {t2, t3}, then we have ·X = ·t2∪ ·t3 = {p2,p3},
and X · = t·2∪ t·3 = {p3,p4}. Furthermore, we use k to denote the pre-set number for convenience.

Therefore, we have (·)1t3 = ·t3 = {p3}, (·)3t3 = ·( · ( ·t3)) = {p2}, (·)5t3 = ·( ·( ·( ·( ·t3)))) = {p1,p4},
and (·)1t3∪ (·)3t3∪ (·)5t3 = {p1,p2,p3,p4}, where k = 1, 3, 5, respectively. With respect to the set of
post-sets, it is defined analogously. A Petri net N is called a safe Petri net if all places are marked
at most one token. In this paper, our Petri nets are safe by default.

Figure 1: A WFD-net system of campus-card recharging

We model the control-flows of a workflow system as a dedicated class of Petri nets, thereby
modeling activities by transitions, conditions by places, and cases as tokens. A typical workflow
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has a well-defined starting point, and a well-defined ending point imposes syntactic restrictions on
Petri nets that result in the following definition of a workflow net (WF-net).

Definition 1 (WF-net [40,41]) A Petri net N = (P,T ,F) is a workflow net (WF-net) if it
satisfies:

(1) There is only one source place pI ∈P and only one sink place po ∈P in N; and
(2) ∀x ∈P∪T : (pI ,x) ∈ F∗ and (x,po) ∈ F∗, where F∗ is the reflexive-transitive closure of F .

A WF-net is used as a basic description of control-flows in a workflow process. A WF-net
system (N,M0) is a WF-net extended with an initial marking M0. In order to model the actual
process (including control-/data-flows) of workflow systems, we define a workflow net with data
(WFD-net) [29,30] as follows.

Definition 2 (WFD-net [29,30]) A Petri net ND= (P,T ,F ,D,Guard,R,W ,De,Gd) is a WF-net
with data (WFD-net) iff:

(1) (P,T ,F) is a WF-net;
(2) D is a set of data items;
(3) Guard is a set of guards over D;
(4) R :T → 2D is a labeling function of reading data;
(5) W :T → 2D is a labeling function of writing data;
(6) De :T → 2D is a labeling function of deleting data; and
(7) Gd :T→Guard is a function of assigning guards to transitions.

A WFD-net system (ND,M0) = (P,T ,F ,M0,D,Guard,R,W ,De,Gd) is a WFD-net with a
marking M0 in the source place. The function Type :D→{Cons,Vari} denotes the value type of
data items. That is, if d ∈ D is a constant, then we have Type(d) = Cons (resp. if d ∈ D is a
variable, then we have Type(d)=Vari). A guard function is a boolean expression related to data
items. In this paper, we suppose that guard functions in each branch are related to the same
data items. For the sake of readability, when saying “data item d is read”, it means “data item
d is read or used for the evaluation of a guard function” [30]. Therefore, a guard function can
be considered as read operations on a transition. For example, we have Gd(t4) =< high(d3) >,
Gd(t5)=<middle(d3) >, Gd(t6)=< low(d3) >, Gd(t9)=< high(d6) >, Gd(t10)=<middle(d6) >, and
Gd(t11)=< low(d6) > in Fig. 1. The data item d3 (resp. d6) can be considered as read operations
on transitions t4, t5, and t6 (resp. t9, t10, and t11).

3.2 Motivation Example
This part introduces a campus-card recharging process as a motivation example. As shown

in Fig. 1, there are 14 places, 16 transitions, 8 data items, 34 data operations (including 19 read
operations, 12 write operations, and 3 delete operations), and 6 guard functions. Table 1 illustrates
the transitions and data items.
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Table 1: Transitions and data items

Transition Name Transition Name Data item Name

t1 Log into the system t9 Choose bank card d1 ID
t2 Click on application t10 Choose wechat d2 Login password
t3 Click on campus wallet t11 Choose alipay d3 Balance of account
t4 Recharge card t12 Submit orders d4 Card information
t5 Pay the electricity t13 Pay d5 Payment ID
t6 Go back t14 Enter account number d6 Transaction amount
t7 Submit orders t15 Enter payment password d7 Merchant name
t8 Choose payment method t16 Close the deal d8 Payment succeeds

Fig. 1 describes a WFD-net system as follows. Firstly, users log into the system, and produce
two data items, i.e., ID and Login Password. Then, they click on the application and campus
wallet. After these operations, there are three transitions in weak exclusiveness relations. If the
balance of the account is high, users can recharge the campus smart cart. If the balance of the
account is middle, they can pay the electricity. Otherwise, they go back to the application. Then,
they need to submit orders. After submitting orders, users can choose payment methods, e.g.,
bank card, Wechat, or Alipay. If the payment amount is high, they can choose bank cards. If
the payment amount is middle, they can choose Wechat. Otherwise, they only choose Alipay.
After then, they submit and pay for orders. Users need to input account numbers and payment
passwords. Finally, they close this deal.

There are some data-flow errors in Fig. 1. For example, the data item d4 on the write
operation of t3 is weakly redundant, and the data item d1 on the read operation of t3 is strongly
missing. More details about data-flow errors are given in Sections 4 and 5.

Although some methods are used to repair these errors, e.g., Criteria 1−3 [10] and Cor-
rDF [14], they have some limitations. The method of Criteria 1−3 can repair data-flow errors with
transition pairs in weak sequence relations. Each transition reads/writes 0/1 data item. The method
of CorrDF can repair data-flow errors caused by incorrect read and write operations in process
models with transition pairs in weak sequence relations, weak exclusiveness relations, and weak
concurrency relations (Section 4). Unfortunately, they cannot repair data-flow errors caused by
delete operations, and their workflow models are usually simple (e.g., no loop structures). What’s
more, repairing one error may bring in some new kinds of errors. For the example of Fig. 4h,
when we repair the error of missing data, we may bring in some redundant data. Therefore, we
need to reveal the scope of different kinds of data-flow errors, and present new methods to check
and repair data-flow errors according to the real system requirements.

4 Data-flow Errors Checking and Repairing Methods

In this section, we first define enabled conditions of WFD-net systems, and their weak
behavioral relations. Then, we present some methods to check and repair data-flow errors.

4.1 Firing Transitions and Weak Behavioral Relations
Definition 3 (Enabled Conditions) Given a WFD-net system (ND,M0)= (P,T ,F ,M0,D,Guard,

R,W ,De,Gd), t ∈ T is enabled at a marking M if it satisfies the following conditions:

(1) t is control-enabled at M such that ∀p ∈ ·t :M(p)≥ 1, denoted by M[ct>; and
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(2) t is data-enabled at M such that each data item read by t must be defined and its guards
are evaluated to true, which is denoted by M[dt>.

The firing of an enabled transition t (i.e., control-enabled [42] and data-enabled) at a marking
M does not only affect the values of data items and guard functions but also yields a new
marking M ′ [25], which is denoted by M[t>M ′. That is,

M′(p)=
⎧⎨
⎩
M(p)+ 1, if p ∈ t· − ·t,
M(p)− 1, if p ∈ ·t− t·
M(p), otherwise.

,

A new marking Mk is reachable from the initial marking M0, if and only if there exists a
firing sequence σk = t1t2 · · · tk such that M0[t1 >M1[t2 >M2 · · ·Mk−1[tk >Mk.

Notice that if a transition t ∈T is control-enabled at M, we say it is weakly enabled, and its
related firing sequence is a weak firing sequence.

Due to the fact that the modeling of a workflow system is process-oriented in reality, we need
to analyze its weak order relation [43].

Definition 4 (Weak Order Relation [43]) Let (ND,M0)= (P,T ,F ,M0,D,Guard,R,W ,De,Gd) be
a WFD-net system. The weak order relation c ⊆ T ×T contains all pairs of transitions (tα, tβ),
such that there exists a weak firing sequence (without taking the data operations and guard
functions into consideration) σx = t1t2 · · · tx satisfying (ND,M0)[σx >, α ∈ {1, · · · ,x− 1}, α < β ≤ x,
and x− 1 ∈ N.

In this paper, the set of all weak firing subsequences is denoted by T∗, and T∗ =
{σ(1)}∪{σ(2)}∪ · · ·∪{σ(ε)}, where σ(ε) = ta1ta2 · · · taε , and ta1 , ta2, · · · , taε ∈T .

Based on the weak order relation, we define weak behavioral relations as follows.

Definition 5 (Weak Behavioral Relations) Given a WFD-net system (ND,M0)= (P,T ,F ,M0,D,

Guard,R,W ,De,Gd), the transition pair (tα, tβ) is in one of the following weak behavioral
relations, where k ∈ {1, 3, · · · ,n}, n= 2m+ 1, and m+ 1 ∈ N:

(1) tα and tβ are in weak sequence relation, which is denoted by tα→ctβ , iff (tαctβ) ∧
(tβ �ctα);

(2) tα and tβ are in weak exclusiveness relation, which is denoted by tα⊗ctβ , iff (tα �ctβ) ∧
(tβ �ctα);

(3) tα and tβ are in weak circulation relation, which is denoted by tα↔ctβ , iff (tαctβ) ∧
(tβctα)∧ (t·α ∩ (∪nk=1

(·)ktβ) �= ∅)∧ (t·β ∩ (∪nk=1
(·)ktα) �= ∅); or

(4) tα and tβ are in weak concurrency relation, which is denoted by tα⊕ctβ , iff (tαctβ) ∧
(tβctα)∧ ((t·α ∩ (∪nk=1

(·)ktβ)=∅)∨ (t·β ∩ (∪nk=1
(·)ktα)=∅)).

Generally speaking, tα→ctβ represents the transition tβ cannot execute before tα in any traces.
tα⊗ctβ means the transitions tα and tβ execute exclusively in any traces. tα↔ctβ illustrates the
transitions tα and tβ are in a loop structure. tα⊕ctβ denotes the transitions tα and tβ can execute
in different orders. Obviously, these four kinds of weak behavioral relations are mutually exclusive.
If tα and tβ are in weak sequence relation and they are in the same branch (i.e., (tα→ctβ) ∧
(t·α = (·)k1 tβ)∧ (|t·α | = | (·)k1 tβ | = 1), where k1 ∈ {1, 3, · · · ,n1}, n1 = 2m1+1, and m1+1 ∈N), then we
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denote it as tα�ctβ . For the example of Fig. 1, we have t1→ct2, t4⊗ct5, t3↔ct6, t12�ct13, and
t14⊕ct15, respectively.

Definition 6 (ConcurrencyRelation) Given a WFD-net system (ND,M0)= (P,T ,F ,M0,D,Guard,

R,W ,De,Gd), the transitions tα and tβ are in concurrency relation, which is denoted by tα⊕cdtβ ,
iff:

(1) tα⊕ctβ ; and
(2) The guard functions related to tα and tβ are satisfied at the same time.

For the example of Fig. 2a, we can find that tα⊕cdtβ if Gd(tα) and Gd(tβ) are evaluated to
TRUE at the same time.

Figure 2: Two WFD-net systems. (a) The behavioral relation of tα and tβ depends on their guard
functions; (b) tα and tβ are in weak circulation relation (i.e., tα↔ctβ )

Definition 7 (Distance of Transitions in Weak Circulation Relation) Given a WFD-net system

(ND,M0) = (P,T ,F ,M0,D,Guard,R,W ,De,Gd), ∃tα,tβ ∈ T : tα↔ctβ , tα ∈ t(·)k1 , and tβ ∈ t(·)k2 ,
where t is a transition outside the weak circulation relation, k1 and k2 are the minimum number
of post-sets, such that k1,k2 ∈ {2, 4, · · · , 2m}, and m ∈N. The distance between tα and tβ is defined
as δ(tβ , tα)= |k2 − k1|.

Based on the definitions of weak behavioral relations, concurrency relation, and distance of
transitions in weak circulation relation, we further formalize the order relation of transition pairs
in a WFD-net system.

Definition 8 (OrderRelation) Given a WFD-net system (ND,M0)= (P,T ,F ,M0,D,Guard,R,W ,

De,Gd), the order relation tα  tβ contains all pairs of transitions (tα, tβ), and they satisfy one of
the following conditions:

(1) tα→ctβ ;
(2) tα⊕cdtβ ; or
(3) (tα↔ctβ)∧ (k2 ≥ k1).

For the example of Fig. 2b, we have t→ctα, t→ctβ , tα↔ctβ , and δ(tβ , tα)= |k2− k1| = 2.

4.2 Four Kinds of Data-Flow Errors
Based on order relation, we formalize redundant data, missing data, lost data, and inconsistent

data. Before we define these errors, we use A<
>B to denote A ∈B or A /∈B.
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Definition 9 (RedundantData,RD) Given a WFD-net system (ND,M0)= (P,T ,F ,M0,D,Guard,

R,W ,De,Gd), T∗ is the set of all weak firing subsequences, and ∃σ ∈ T∗, ∃to ∈ σ : po ∈
t·o. A data item d ∈ D is redundant if it satisfies ∃t ∈ T , ∀t′ ∈ σ : (t t′) ∧ (d ∈W(t)) ∧[(
d<

>De(t)
)∨ (

d<
>W(t′)∪De(t′))]∧ (d /∈R(t′)), which is denoted by d <·RD.

Notice that if there exist t, t′ ∈ T such that ( t t′) ∧ [d ∈W(t)∩R(t′)] ∧ (d /∈De(t)) ∧[
d<

>W(t′)∪De(t′)], then d may be redundant. For the example of Fig. 3e, we have ( t1  t2) ∧
[d ∈W(t1)∩R(t2)]∧ (d /∈De(t1))∧ [d /∈W(t2)∪De(t2)], and d <·RD.

Figure 3: The data item d is redundant, where Type(d) = Cons or Type(d) = Vari. (a)–(c)
d <· SRD; (d)–(f) d <·WRD

A data item d is strongly redundant data (SRD) if the written values of d in all possible
execution paths are never read before it is deleted, or the workflow process is completed. A data
item d is weakly redundant data (WRD) if there exist some execution paths in which it is written
but never read afterward, i.e., before it is deleted, or the workflow process is completed [30]. SRD
and WRD belong to redundant data (RD). As shown in Fig. 3, the data item d is redundant,
where (a)–(c) suffer from strongly redundant data, and (d)–(f) suffer from weakly redundant data.

Definition 10 (Missing Data,MD) Given a WFD-net system (ND,M0)= (P,T ,F ,M0,D,Guard,

R,W ,De,Gd), T∗ is the set of all weak firing subsequences, ∃σ ∈ T∗, and ∃ti ∈ σ : pI∈·ti . A data
item d ∈D is missing if it satisfies one of the following conditions:

(1) ∃t′ ∈T , ∀t ∈ σ : (t t′)∧ [((d /∈W(t))∧ (d ∈De(t)∪R(t′)))∨ ((d /∈W(t)∪W(t′))∧ (d ∈
De(t′)))], which is denoted by d <·MD; or

(2) ∃t ∈ σ , ∃t′′ ∈ T ,∀t′ ∈T : (t t′′)∧ (t t′)∧ (t′  t′′)∧ [d ∈W(t)∩ (De(t)∪De(t′))∩ (R(t′′)

∪De(t′′)) ]∧ (
d<

>R(t′)
)∧[

d /∈W(t′)∪W(t′′)], which is denoted by d <·MD.

Notice that if there exist t, t′ ∈ T such that ( t t′) ∧ [d ∈W(t)∩ (R(t′)∪De(t′))] ∧
[d /∈De(t)∪W(t′)], then d may be missing, e.g., Figs. 4c, 4d and 4f .
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Figure 4: The data item d is missing, where Type(d)=Cons or Type(d)= Vari. (a)–(c) d <· SMD;
(d)–(h) d <·WMD

A data item d is strongly missing data (SMD) if the read or deleted values of d in all possible
execution paths are never written before. A data item d is weakly missing data (WMD) if there
exist some execution paths where it is read or deleted but never written before [30]. SMD and
WMD belong to the missing data (MD). It is a terminal error for the execution of workflow
systems [24]. For example, the data item d is strongly missing in Figs. 4a–4c, and it is weakly
missing in Figs. 4d–4h.

Definition 11 (LostData,LD) Given a WFD-net system (ND,M0)= (P,T ,F ,M0,D,Guard,R,W ,

De,Gd), a data item d ∈D is lost if it satisfies one of the following conditions:

(1) ∃t,t′ ∈T , t· ∩ ·t′ �= ∅ : [d ∈W(t)∩W(t′)]∧ [d /∈De(t)∪R(t′)], which is denoted by d <·LD; or
(2) ∃t,t′′ ∈T ,∀t′ ∈T : (t t′′)∧(t t′)∧(t′  t′′)∧ [d ∈W(t)∩W(t′′)]∧ [d /∈De(t)∪R(t′)∪W(t′)∪

De(t′)∪R(t′′)], which is denoted by d <·LD.

A data item d is strongly lost data (SLD) if the written values of d in all possible execution
paths are overwritten without being read or deleted first. A data item d is weakly lost data (WLD)
if there is an execution path where it is overwritten without being read or deleted first [30]. The
SLD and WLD all belong to the lost data (LD). In Figs. 5a–5c, the data item d is strongly lost
and strongly redundant. Sometimes, weakly redundant in weak circulation relation can lead to
weakly lost, as shown in Fig. 5d. In Fig. 5e, the data item d is weakly lost and weakly redundant.
In fact, if d <·LD, then d <·RD [24]. The lost data is also called conflicting data [2].
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(a) (b) (c) (d) (e)

Figure 5: The data item d is lost, where Type(d)=Cons or Type(d)=Vari. (a)–(c) d <· SLD; (d)–
(e) d <·WLD

Definition 12 (Inconsistent Data, IND) Given a WFD-net system (ND,M0)= (P,T ,F ,M0,D,

Guard,R,W ,De,Gd), a data item d ∈ D is inconsistent if it satisfies ∃t, t′ ∈ T : (t⊕cdt′) ∧
(Type(d)=Vari)∧ [d ∈ (R(t)∪W(t)∪De(t))∩ (W(t′)∪De(t′))], which is denoted by d <· IND.

In Fig. 6, the data item d is inconsistent when Type(d) = Vari. Meanwhile, the data item
d is weakly lost and strongly redundant in Figs. 6a and 6c, and d is also strongly lost and
strongly redundant in Fig. 6b. The error of inconsistent data comes up when a transition accesses
a data item while its concurrent transitions write or delete the same data item (there is no locking
mechanism [19]). Notice that, if Type(d)=Cons, there is no inconsistent data on the data item d .

(a) (b) (c) (d) (e)

Figure 6: The data item d is inconsistent, where Type(d)=Vari.(a)− (e) d <· IND

A data item written by one transition may belong to several kinds of data-flow errors. The
errors of inconsistent data sometimes lead to redundant, missing, or lost data. Lost data causes
redundant data. In order to distinguish their relations, we reveal their scopes, as shown in Fig. 7a.
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Figure 7: Four kinds of data-flow errors, i.e., redundant data (RD), missing data (MD), lost data
(LD), and inconsistent data (IND). (a) The scopes of data-flow errors; (b) The hierarchy of these
errors

According to the scopes of data-flow errors, we propose Algorithm 1 to detect them. This
algorithm is an iterative procedure, and it consists of seven conditions. It can be used as a road
map for implementing data-flow errors detection in a WFD-net system [2].

Algorithm 1: Data-flow errors detection algorithm
Require: A WFD-net system (ND,M0), a data item d ∈D
Ensure: Data-flow errors in (ND,M0).
(1) For each d ∈D Do
(2) Traverse the firing subsequences σ ∈T∗ in the state space of (ND,M0);
(3) If there exist t, t′ ∈ T such that (t⊕cdt′) ∧ (Type(d)=Vari) ∧ [d ∈ (R(t)∪W(t)∪De(t)) ∩
(W(t′)∪De(t′))] Then
(4) Print d <· IND;
(5) Else if there exist t′ ∈T and ti ∈ σ satisfying pI∈·ti Then
(6) For each t ∈ σ such that (t t′)∧ [((d /∈W(t))∧ (d ∈De(t)∪R(t′)))∨ ((d /∈W(t)∪W(t′))∧ (d ∈De(t′)))]
Do
(7) Print d <·MD;
(8) End for
(9) Else if there exist ∈ σ , t′′ ∈T , and ti ∈ σ satisfying pI∈·ti Then
(10) For each t′ ∈ T such that (t t′′) ∧ (t t′) ∧ (t′  t′′) ∧ [d ∈ W(t) ∩ (De(t)∪De(t′)) ∩
(R(t′′)∪De(t′′))]∧ (

d<
>R(t′)

)∧ [d /∈W(t′)∪W(t′′)] Do
(11) Print d <·MD;
(12) End for
(13) Else if there exist t, t′ ∈ T , and t· ∩ ·t′ �= ∅ such that [d ∈W(t)∩W(t′)] ∧ [d /∈De(t)∪R(t′)]
Then
(14) Print d <·LD and d <·RD;
(15) Else if there exist t, t′′ ∈ T Then
(16) For each t′ ∈ T such that (t t′′) ∧ (t t′) ∧ (t′  t′′) ∧ [d ∈W(t)∩W(t′′)] ∧ [d /∈
De(t)∪R(t′)∪W(t′)∪De(t′)∪R(t′′)] Do
(17) Print d <·LD and d <·RD;
(18) End for
(19) Else if there exist t ∈T and to ∈ σ satisfying po ∈ t·o Then
(20) For each t′ ∈ σ such that (t t′) ∧ (d ∈W(t)) ∧ [(

d<
>De(t)

)∨ (
d<

>W(t′)∪De(t′))] ∧ (d /∈R(t′))
Do
(21) Print d <·RD;
(22) End for

(Continued)
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Algorithm 1: (Continued)

(23) Else
(24) Print No data-flow errors;
(25) End if
(26) End for

4.3 Repairing Data-flow Errors
In order to guarantee the correctness of WFD-net systems, we should provide effective

methods to repair different kinds of data-flow errors. However, it is unnecessary to delete the read
operation in an original WFD-net system because some transitions can fire only through reading
these data items [10]. More importantly, we should not change the value we need to repair all
kinds of data-flow errors. When a data item in a WFD-net system only consists of a read, write,
or delete operation, we need to add a write operation, remove a write operation, or remove a
delete operation. How to place these read, write, and delete operations means configuring the
data-flow reasonably. In detail, we need to consider the positions of a data item. If the read and
write operations are in inappropriate positions, there may appear new data-flow errors. Therefore,
we give the following repair strategies according to the real system requirements to repair different
kinds of data-flow errors.

System requirements:
(1) Take the value of data items into consideration;
(2) Avoid bringing in any new data-flow errors as far as possible;
(3) Do not lead to any control-flow errors, e.g., deadlock and livelock;
(4) Do not remove the read operation in an original WFD-net system;
(5) Do not bring in more data operations in order to repair the weakly redundant;
(6) Do not repair some kinds of weakly lost data so as to satisfy the non-determinacy of some

read operations afterward;
(7) Avoid some data-flow errors caused by the delete operation; and
(8) Make sure that there is no inconsistent data by taking the locking mechanism.

Repair strategies:
(1) Change the firing sequence of transitions;
(2) Combine several transitions into one transition;
(3) Remove redundant write operations;
(4) Remove some undesirable delete operations;
(5) Divide one transition into several transitions; and
(6) Create new transitions with write operations.

As we know, inconsistent data often exists in concurrent programs. We can adopt the locking
mechanism [18] to block the executions of multiple threads, e.g., a thread runs in a concurrent
program without intervening in other threads. That is, the data item read/deleted by a thread only
comes from the main thread or itself. Therefore, we do not provide related algorithms to repair
this kind of error in this paper. After then, we propose Algorithms 2–4 to repair missing data,
lost data, and redundant data, respectively. In the following algorithms, when we add or remove
a transition, we need to add or remove its related places and arcs.
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4.3.1 Repairing Missing Data (MD)
In order to repair missing data, we need to add a write operation, or remove a delete

operation. It is unnecessary to remove read operations in an actual net as some transitions can
fire only through reading these data items. Therefore, we propose Algorithm 2 to repair this kind
of error. Its basic solutions are to introduce a transition that can write a required data item d at
some point where the error occurs (i.e., Steps (1)–(12) and Steps (23)–(28) in Algorithm 2). Mean-
while, we remove some undesirable d in a delete operation (i.e., Steps (1)–(28) in Algorithm 2),
and put the existing d just before all the branches where the error occurs (i.e., Steps (18)–(22) and
(27)–(36) in Algorithm 2). After Steps (1)–(12), the missing data in Figs. 4a, 4b, 4d, 4e, 4g and
4h can be repaired. As for the errors in Fig. 4c (resp. Fig. 4f), we can take Steps (18)–(22) (resp.
Steps (34)–(36)) to repair them. Fig. 8 shows the repairing results of missing data in Fig. 4.

Algorithm 2: Repairing missing data (MD) in a WFD-net system
Require: A WFD-net system (ND,M0), a data item d ∈D
Ensure: A WFD-net system without missing data (MD).
(1) For each t ∈ σ , where σ ∈T∗ and ti ∈ σ satisfying pI∈·ti Do
(2) If there exists t′ ∈T such that (t t′)∧ (d /∈W(t))∧ [d ∈De(t)∪R(t′)] Then
(3) Analyze the value type of d;
(4) If there exist t′′ ∈T and d such that (Type(d)=Cons)∧ (t′⊗ct′′)∧ (d ∈R(t′′)) Then
(5) Remove d from De(t) (if it exists), and add a new transition tk into T satisfying
(tk→ct′)∧ (tk→ct′′)∧ (d ∈W(tk));
(6) Else if there exist t′′ ∈T and d such that (Type(d)=Vari)∧ (t′⊗ct′′)∧ (d ∈R(t′′))Then
(7) Remove d from De(t) (if it exists), and add two new transitions tk and tk′ into T satisfying
(tk�ct′) ∧(tk′�ct′′)∧ [d ∈W(tk)∩W(tk′)];
(8) Else
(9) Remove d from De(t) (if it exists), and add a new transition tk into T satisfying
(tk�ct′)∧(d ∈W(tk));
(10) End if
(11) End if
(12) End for
(13) For each t ∈ σ Do
(14) If there exists t′ ∈T such that (t t′)∧ [d /∈W(t)∪W(t′)]∧ (d ∈De(t′)) Then
(15) Remove d from De(t′);
(16) End if
(17) End for
(18) For each t′ ∈ T Do
(19) If there exist t ∈ σ and t′′ ∈ T such that (t t′′) ∧ (t t′) ∧ (t′  t′′) ∧[
d ∈W(t)∩(De(t)∪De(t′))∩(R(t′′)∪De(t′′))]∧ (

d ≤R(t′)
)

∧ [d /∈W(t′)∪W(t′′)] Then
(20) Analyze the value type of d and data operations on t, t′, and t′′;
(21) If (Type(d)=Cons) ∧ [d ∈W(t)∩ (De(t)∪De(t′))∩ (R(t′′)∪De(t′′))] ∧ (

d >R(t′)
) ∧

[d /∈W(t′)∪W(t′′)]Then
(22) Remove d from De(t) and De(t′) (if there exist), and divide t into two transitions
tk and tk′ , such that { tk′ }=(·)x1 t′=(·)x2 t′′, where x1,x2 ∈ {1, 3, · · · ,n1}, n1 = 2m1 − 1, and
m1 ∈N,R(tk)=R(t)−Γ (d),W(tk)=W(t)−{d}, De(tk)=De(t)−Γ (d), R(tk′)= Γ (d), W(tk′)= {d},
and De(tk′)= Γ (d); /*Γ (d) is a set of data items only related to d on t */

(Continued)
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Algorithm 2: (Continued)

(23) Else if (Type(d)=Vari) ∧ [d ∈W(t)∩De(t)∩R(t′)∩ (R(t′′)∪De(t′′))] ∧ (
d<

>De(t′)
) ∧

[d /∈W(t′)∪W(t′′)] Then
(24) Remove d from W(t) and De(t), and add two new transitions tk1 and tk2 into T satisfying
(tk1�ct′) ∧(tk2�ct′′)∧ [d ∈W(tk1)∩W(tk2)] ;
(25) Else if(Type(d)=Vari) ∧ [d ∈W(t)∩ (De(t)∪De(t′))∩ (R(t′′)∪De(t′′))] ∧
[d /∈R(t′)∪W(t′)∪W(t′′)] Then
(26) Remove d from W(t), De(t), and De(t′)(if it exists), and add a new transition tk1 into T
satisfying (tk1�ct′′)∧(d ∈W(tk1));
(27) Else if (Type(d)=Vari) ∧ [d ∈W(t)∩R(t′)∩De(t′)∩ (R(t′′)∪De(t′′))] ∧
[d /∈De(t)∪W(t′)∪W(t′′)] Then
(28) Divide t into two transitions tk and tk′ , and add a new transition tk1 into T , with
tk′�ct′, tk1�ct′′, R(tk) = R(t)− Γ (d), W(tk) =W(t) − {d}, De(tk) =De(t) − Γ (d), R(tk′) = Γ (d),
W(tk′)= {d}, De(tk′)= Γ (d), and d ∈W(tk1);
(29) Else
(30) No missing data;
(31) End if
(32) End if
(33) End for
(34) If there exist t, t′ ∈ T such that (d <·MD) ∧ (t t′) ∧ [d ∈W(t)∩ (R(t′)∪De(t′))] ∧
[d /∈De(t)∪W(t′)] Then
(35) Divide t into two transitions tk and tk′ , with tk′�ct′, R(tk)=R(t)−Γ (d), W(tk)=W(t)−{d},
De(tk)=De(t)−Γ (d), R(tk′)= Γ (d), W(tk′)= {d}, and De(tk′)= Γ (d);
(36) End if

(a) (b) (c) (d)

Figure 8: (Continued)
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(e) (f) (g) (h1) (h2)

Figure 8: The repairing results of Figs. 4a–4g are shown in (a)–(g), and the repairing result of
Fig. 4h is shown in (h1) if Type(d)=Cons (resp. (h2) if Type(d)=Vari)

4.3.2 Repairing Unnecessary Lost Data (LD)
In order to repair lost data, we need to remove a write operation [10]. However, some kinds

of lost data should not be repaired, especially when the type of a data item d is a variable.

If a data item is lost, it must be redundant, but not vice versa. Therefore, we propose
Algorithm 3 to repair lost data before repairing redundant data. Figs. 5a–5e illustrates the cases
of lost data. Its basic solutions are to remove the unnecessary data item in a write operation
(i.e., Steps (1)–(4), (7)–(8), (11)–(15), and (18)–(19) in Algorithm 3) or not repair (i.e., Steps
(5)–(6) and (16)–(17) in Algorithm 3). If a data item d satisfies Type(d)= Cons, the lost data in
Figs. 5a–5e can be repaired after Steps (1)–(4). If a data item d satisfies Type(d)=Vari, the lost
data in Figs. 5a,5c and 5d can be repaired after Steps (7)–(8). However, if a data item d satisfies
Type(d)= Vari, the lost data in Figs. 5b and 5e should not be repaired because the data item d
read by a transition t4 depends on the branch to fire (Steps (5)–(6) in Algorithm 3). Fig. 9 shows
the repairing results of lost data in Fig. 5.

Algorithm 3: Repairing unnecessary lost data (LD) in a WFD-net system
Require: A WFD-net system (ND,M0), and a data item d ∈D
Ensure: A WFD-net system without any unnecessary lost data (LD).
(1) If there exist t, t′ ∈T , and t· ∩ ·t′ �= ∅ satisfying [d ∈W(t)∩W(t′)]∧ [d /∈De(t)∪R(t′)] Then
(2) Analyze the value type of d;
(3) If Type(d)=Cons Then
(4) Remove d from W(t) or W(t′) without bringing in a missing data;
(5) Else if Type(d)=Vari and there exists t′′ ∈T such that (t t′′)∧(t′  t′′), where d ∈W(t)∩R(t′′)
or d ∈W(t′)∩R(t′′) Then
(6) Not repair;
(7) Else
(8) Remove d from W(t);
(9) End if
(10) End if

(Continued)
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(11) For each t′ ∈T Do
(12) If there exist t, t′′ ∈ T such that (t t′′) ∧ (t t′) ∧ (t′  t′′) ∧ [d ∈W(t)∩W(t′′)] ∧
[d /∈De(t)∪R(t′)∪W(t′)∪De(t′)∪R(t′′)] Then
(13) Analyze the value type of d;
(14) If Type(d) = Cons, and there exists t′′′ ∈ T such that (t→ct′′′) ∧ (t′′⊕cdt′′′) ∧
(d ∈R(t′′′)∪De(t′′′)) Then
(15) Remove d from W(t′′);
(16) Else if Type(d) = Vari, and there exists t′′′ ∈ T satisfying (t→ct′′′) ∧ (t′′⊕cdt′′′) ∧
[d ∈R(t′′′)∪De(t′′′)] Then
(17) d <· IND, and we should adopt the locking mechanisms and not repair;
(18) Else
(19) Remove d from W(t);
(20) End if
(21) End if
(22) End for

Figure 9: The repairing results of Figs. 5a–5d, are shown in (a)–(d), and the repairing result of
Fig. 5e is shown in (e1) if Type(d)=Cons (resp. (e2) if Type(d)=Vari)

4.3.3 Repairing Unnecessary Redundant Data (RD)
If a data item d is redundant, it may reduce the efficiency of programs. In order to repair

this error, we need to remove a write operation [10]. However, some kinds of weakly redundant
may make programs consume less memory and time. That is to say, the existence of some weakly
redundant may be more convenient, and a moderate amount of weakly redundant are required,
as shown in Figs. 10a–10b. Notice that we should not change the value we need when we repair
this kind of error, as shown in Fig. 10c. Therefore, the following three kinds of weakly redundant
should not be repaired, as shown in Fig. 10.

(1) A data item d is weakly redundant, but it is also read by more than one branch. We use
n(R) to denote the number of branches that can read d . For the example of Fig. 10a, we
have n(R)= 2 corresponding to the transitions t2 and t3;

(2) The write operation of d is not in a weak circulation relation while the read operation is
in a weak circulation relation. For the example of Fig. 10b, we use ς(W(t1)) to denote the
number of times of transitions like t1 that can write d, and we use ς(R(t2)) to denote the
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number of times of transitions like t2 that can read d . Therefore, we have ς(W(t1)) = 1
and ς(R(t2))≥ 1; and

(3) The data item d satisfies Type(d) = Vari, and the transitions which write and read
d are in weak circulation relation. For the example of Fig. 10c, we have (t2↔ct3) ∧
(d ∈W(t1)∩R(t2)∩W(t2)∩R(t3)) and the value of d may change as d ∈W(t1) ∩W(t2).
If we put the write operation of t2 into the same branch just before t3, we may change
the value of d because t3 may not fire.

Figure 10: Three kinds of weakly redundant shouldn’t be repaired. (a) d ∈W(t1)∩R(t2)∩R(t3);
(b) t1 is not in a weak circulation relation, while t2 is in a weak circulation relation;
(c) Type(d)=Vari

Figs. 3a–3f illustrates the cases of redundant data. We propose Algorithm 4 to repair this
kind of data-flow error. Its basic solutions are to remove some undesirable data item d in a
write operation and delete operation (i.e., Steps (1)–(5) in Algorithm 4). Meanwhile, we divide
the transition that produces d into some branches, the transition with d in a write operation just
before the transition read it (i.e., Steps (6)–(9) in Algorithm 4), or not repair (i.e., Steps (10)–(11)
in Algorithm 4). After Steps (1)–(5), the redundant data in Figs. 3a–3d and 3f can be repaired.
As for the errors in Fig. 3e, we can take Steps (6)–(9) to repair them. Fig. 11 shows the repairing
results of redundant data in Fig. 3.

Algorithm 4: Repairing unnecessary redundant data (RD) in a WFD-net system
Require: A WFD-net system (ND,M0), a data item d ∈D
Ensure: A WFD-net system without any unnecessary redundant data (RD).
(1) For each t′ ∈ σ , where σ ∈T∗ and to ∈ σ satisfying po ∈ t·o Do
(2) If there exists t ∈T satisfying (t t′)∧(d ∈W(t))∧[(

d<
>De(t)

)∨ (
d<

>W(t′)∪De(t′))]∧(d /∈R(t′))
Then
(3) Remove d from W(t), De(t), and W(t′)∪De(t′) if there exist;
(4) End if
(5) End for

(Continued)
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(6) If there exist t, t′ ∈ T such that (d <·RD) ∧ (t t′) ∧ [d ∈W(t)∩R(t′)] ∧ (d /∈De(t)) ∧[
d<

>W(t′)∪De(t′)] Then
(7) Analyze d, n(R), ς(W(t)), and ς(R(t′));
(8) If (n(R)= 1) ∧ [(Type(d)=Cons)∨ ((Type(d)=Vari)∧ ((t→ct′)∨ (t⊕cd t′)))] ∧
[ς(W(t))≥ ς(R(t′))], and there is no t′′ ∈ T such that (t t′′)∧ (t′  t′′) ∧ (d ∈De(t′′)) Then
(9) Divide t into two transitions tk and tk′ , with tk′�ct′, R(tk)=R(t)−Γ (d), W(tk)=W(t)−{d},
De(tk)=De(t)−Γ (d), R(tk′)= Γ (d), W(tk′)= {d}, and De(tk′)= Γ (d);
(10) Else
(11) Not repair;
(12) End if
(13) End if

(a) (b) (c) (d) (e) (f)

Figure 11: The repairing results of Figs. 3(a)–(f) are shown in (a)–(f)

As we know, the error of inconsistent data exists in weak concurrency relations, and can be
avoided by taking a locking mechanism. It needs to be repaired firstly. The errors of redundant
data, missing data, and lost data may exist in weak concurrency relations, weak sequence relations,
weak exclusiveness relations, and weak circulation relations. For the example of Fig. 4h, we have
d <·WMD. If Type(d) = Cons, we need to add a new transition tk into T satisfying (tk→ct2)∧
(tk→ct3) ∧ (d ∈W(tk)) (i.e., Steps (4)–(5) in Algorithm 2), as shown in Fig. 8h1. However, this
would bring in weakly redundant data (i.e., d <·WRD). Based on the Steps (1)–(36) in Algorithm
2 and Steps (1)–(22) in Algorithm 3, when we repair missing data, we haven’t brought in lost data,
and vice versa. For the example of Fig. 5a, we have d <· SLD. We need to remove the data item
d from W(t1)(i.e., Steps (1)–(10) in Algorithm 3). However, after taking this algorithm to repair,
there are still exist weakly redundant data (i.e., d <·WRD), as shown in Fig. 9a. The lost data
belongs to redundant data. After repairing lost data, the redundant data may still exist. Based on
Steps (1)–(13) in Algorithm 4, when we repair redundant data, we have not brought in lost data
or missing data. As we know, the transitions with missing data have no right to fire, and possibly
making WFD-net systems stop at a nonterminal state. In other words, missing data may lead to
terminal errors [24]. Compared with missing data, lost data and redundant data are not terminal
errors. Therefore, the missing data needs to be repaired secondly and the lost data needs to be
repaired thirdly. Based on these analyses, we organize the data-flow errors into a hierarchy, as
shown in Fig. 7b. This hierarchy can help us avoid bringing in new unnecessary data-flow errors
as far as possible when we repair one kind of error.
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5 Case Study

This paper aims to detect and repair data-flow errors, and guarantees the correctness of a
WFD-net system. For the example of Fig. 1, we can find that the data item d7 is a missing data
in R(t9), i.e., d7 <·MD. Obviously, the transition t9 cannot fire if we do not repair this kind of
error.

Based on Definitions 9–12, we analyze the data-flow errors in Fig. 1. By taking Algorithms
2–4, we repair these errors, and their results are shown in Fig. 12.

(1) Data items d2, d3,d8 are not in any data-flow errors;
(2) Due to the fact that (d1 <· SMD) ∧ (Type(d)=Cons) in R(t3) and R(t7), we can remove

d1 ∈De(t2) (Steps (18)–(22) in Algorithm 2);
(3) Since d7 <·WMD in R(t9), we can add a transition tk with d7 ∈W(tk) and related places

as well as arcs in the same branch just before t9 (Steps (1)–(12) in Algorithm 2);
(4) Given d5 <· IND ∧ SLD ∧ SRD in W(t13) ∩ W(t14) ∩ R(t15), we can adopt the locking

mechanism to avoid of IND and SLD (Steps (16)–(17) in Algorithm 3). Therefore, the data
item d5 read by t15 can only come from W(t13). After then, we have d5 <· SRD in W(t14),
and we should remove d5 ∈W(t14)(Steps (1)–(5) in Algorithm 4);

(5) Considering d6 <· SLD ∧ SRD in W(t12) ∩ W(t13) ∩ R(t14) ∩ R(t15), we can remove
d6 ∈ W(t12) to avoid SLD and SRD (Steps (1)–(10) in Algorithm 3 or Steps (1)–(5) in
Algorithm 4); and

(6) Given d4 <·WRD in W(t3), we can divide the transition t3 into two transitions t3k and t3k′ .
The transition t3k′ is in the same branch just before t4 (Steps (6)–(9) in Algorithm 4).

Figure 12: A repaired WFD-net system of Fig. 1
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After taking these methods, a repaired WFD-net system is shown in Fig. 12. It is a new
WFD-net system without any control-flow or data-flow errors.

6 Evaluation and Experiment

6.1 Functional Evaluation
In this subsection, we compare our methods with some state-of-the-art methods in terms of

repairing functions for data-flow errors (Fig. 13). The method of Criterias 1–3 [10] can repair
data-flow errors caused by transition pairs only in weak sequence relations, and its transitions
read/write at most one data item. The method of CorrDF [14] can repair data-flow errors caused
by transition pairs in weak sequence relations, weak exclusiveness relations, or weak concurrency
relations. Unfortunately, these methods cannot repair data-flow errors in weak circulation relations
and errors caused by delete operations. By comparison, our methods overcome these deficiencies,
as shown in Fig. 13.

Figure 13: A comparison with some state-of-the-art methods (e.g., Criterias 1–3 [10] and Cor-
rDF [14]) in terms of repairing functions for data-flow errors. In this figure, N(Read)(resp.
N(Write) or N(Delete)) denotes the maximum number of data items on the read (resp. write or
delete) operations of a transition, where n ∈N. WSR denotes weak sequence relation, WER stands
for weak exclusiveness relation, WCR represents weak concurrency relation, and WCIR means
weak circulation relation

6.2 Experiments
In reality, a simple pseudo-code easily suffers from different kinds of data-flow errors. In

this part, some experimental cases are given to show the advantages of our methods. Their
detailed procedures are proceeding as follows. Firstly, we use a WFD-net system to model the
real pseudo-code. Secondly, we check the data-flow errors based on Algorithm 1. After that, we
use Algorithms 2–4 to repair these data-flow errors in a WFD-net system. Finally, we can obtain
the repaired WFD-net system. According to the repaired WFD-net system, we can further repair
the errors in the pseudo-code.

6.2.1 Repairing Missing Data (MD)
In the first experiment, we use a WFD-net system to model a simple pseudo-code with missing

data, as shown in Figs. 14a and 15a. Due to the fact that the data item a read by t10 is deleted
by t4, we can find (a<·MD)∧ (Type(a)=Cons). Therefore, it is important to repair this kind of
data-flow error in a suitable position. We utilize Algorithm 2 (Steps (18)–(22)) to do this work,
and its result is shown in Fig. 15b. Furthermore, we can repair this pseudo-code according to the
WFD-net system without missing data, as shown in Fig. 14b.
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Figure 14: (a) Pseudo-code with missing data (MD) and (b) after being repaired

(a) (b)

Figure 15: (a) and (b) are the WFD-net systems of Figs. 14a and 14b

6.2.2 Repairing Unnecessary Lost Data (LD)
In the second experiment, we use a WFD-net system to model a simple pseudo-code with

unnecessary lost data, as shown in Figs. 16a and 17a. Due to the fact that the data item a is
overwritten without being read or deleted first. Therefore, we have a<·LD. We utilize Algorithm
3 (Steps (1)–(10)) to do this work, and its result is shown in Fig. 17b. Furthermore, we can repair
this pseudo-code according to the WFD-net system without unnecessary lost data, as shown in
Fig. 16b.
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(a) (b)

Figure 16: (a) Pseudo-code with Lost data (LD) and (b) after being repaired

(a) (b)

Figure 17: (a) and (b) are the WFD-net systems of Figs. 16a and 16b

6.2.3 Repairing Unnecessary Redundant Data (RD)
In the third experiment, we use a WFD-net system to model a simple pseudo-code with

redundant data, as shown in Figs. 18a and 19a. Due to the fact that the data item a2 wrote by t3
is only read by t6, we can find a2 <·RD. We utilize Algorithm 4 (Steps (6)–(9)) to do this work,
and its result is shown in Fig. 19b. Furthermore, we can repair this pseudo-code according to the
WFD-net system without redundant data, as shown in Fig. 18b.

(a) (b)

Figure 18: (a) Pseudo-code with redundant data (RD) and (b) after being repaired
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Figure 19: (a) and (b) are the WFD-net systems of Figs. 18a and 18b

6.2.4 Repairing Results of Existing Examples
In the following experiment, we consider examples from the existing references. We present

the advantages of our methods in repairing four kinds of data-flow errors. Fig. 20 is the result of
our experiment. It shows the numbers of data items on read/write/delete operations, the numbers
of guards and transitions, and the numbers of data-flow errors before and after repairing. We can
find that after taking our Algorithms 2–4, most of the data-flow errors can be repaired. However,
as shown in Algorithm 4, some kinds of redundant data should not be repaired, e.g., redundant
data item e shown in Fig. 1 in [30]. Therefore, our methods are more effective.

Figure 20: Our experiment result in terms of the numbers of data items on read/write/delete
operations, the numbers of guards and transitions, and the numbers of data-flow errors before
and after repairing
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7 Conclusion and Future Work

WFD-net is a formal functional method to describe the control-/data-flows of workflow
systems. It extends WF-net systems with three kinds of data operations (i.e., read, write, and
delete operations) and guard functions. A good modeling method and efficient detecting and
repairing technique are crucial for the correctness of workflow systems. Based on weak behavioral
relations (i.e., weak sequence relation, weak exclusiveness relation, weak circulation relation, and
weak concurrency relation) and order relation, we formalize four kinds of data-flow errors (e.g.,
redundant data, missing data, lost data, and inconsistent data) in a WFD-net system. Then, we
reveal the relations between these data-flow errors, and organize them into a hierarchy, which
is conducive to correctly repairing data-flow errors without repeated work. Furthermore, some
algorithms are developed to detect and repair data-flow errors in WFD-net systems according to
system requirements and repair strategies. Compared with the existing methods, our methods can
repair data-flow errors in weak circulation relations and errors caused by delete operations. What’s
more, our methods can avoid bringing in new unnecessary errors when repairing some kinds of
data-flow errors.

In the future, we plan to do the following studies:

(1) We analyze the behavioral consistency of WFD-net systems, and study what kind of data-
flow error affects the behavioral consistency degree;

(2) We develop a tool to repair some unnecessary data-flow errors automatically based on
system requirements; and

(3) We intend to consider the process mining with timestamps in the workflow processes, and
use the unfolding-based technique [7] to detect and repair their data-flow errors.
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