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ABSTRACT

It is essential to fully understand master the traffic characteristics of the self-stabilizing control effect and road
characteristics to ensure the regular operation of transportation. Traffic flow on curved roads and slopes is irregular
and more complicated than that on the straight road. However, most of the research only considers the effect of
self-stabilizing in the straight road. This study attempts to bridge this deficiency from the following three aspects.
First, we review the potential influencing factors of traffic flow stability, which are related to the vehicle’s steady
velocity, history velocity, and the turn radius of the road and the slope of the road. Based on the above review,
an extended continuum model accounting for the self-stabilizing effect on a curved road with slope is proposed.
Second, the linear stability criterion of the newmodel is derived by applying linear stability theory, and the neutral
stability curve is obtained in detail. The modified KdV equation describing the evolution characteristics of traffic
congestion is derived by using the nonlinear analysis method. Upon the theoretical analysis, the third aspect
focuses on simulating the self-stabilizing effect under different slopes and radius, which demonstrates that the
self-stabilizing effect is conducive to reducing congestion of the curved road with slope.
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1 Introduction

The accelerated development of modern intelligent transportation system not only alleviates
traffic congestion, but also improves the stability of the transportation system [1–5]. However,
the stability of traffic system is also easily affected by various driver characteristics, such as
self-stabilizing, memory, backward-looking, and road geometry (e.g., slope and curved road).
Therefore, it is a critical and urgent task to improve the stability of traffic flow by fully considering
the driver characteristics and road geometry.

Generally speaking, there are three types of traffic models: microscopic models [6–12], lattice
models [13–20], and macroscopic hydrodynamic models [21–27]. The macro model mainly refers
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to the continuous medium model of traffic flow, which regards a large number of vehicles as
compressible continuous medium and studies the comprehensive average behavior of the vehicle
group. This type of model tries to characterize the traffic flow with the average density ρ, average
speed v, and flow q and study the functional relationship it satisfies. As early as 70 years ago,
Lighthill et al. [28,29] first proposed the continuous medium model of traffic flow. Later in
1956, Richards [30] independently proposed the LWR model, which is analogous with continuum
model. According to the basic idea of car-following theory, the motion equation (i.e., acceleration
equation) is introduced into the continuous medium model to form a high-order continuous
medium model of traffic flow mechanics [31]. Whihtma established a similar model, so the model
is often called Pyane-Whihtam (PW) model [32].

Traffic flow theory has been the focus of scientific research since it was put forward. Countless
scientific and technological workers have devoted a lot of effort to exploration and research. Jiang
et al. [33] proposed a full velocity difference model (FVDM) considering the positive and negative
speed difference comprehensively. Zhang et al. proposed a macroscopic model considering the
speed difference between adjacent vehicles on the slope [34]. Sun et al. developed an extended
micro model is proposed considering the driver’s desire for smooth driving on a curved road [35].
Gong et al. [36] designed a hybrid system and simulated human driving and autonomous vehicles.
By using Gamma-convergence, it is proved that the optimal control problem of the mean-field
can be solved at the microscopic level. Peng et al. analyzed the impact of self-stabilization on
traffic stability considering the current lattice’s historic flux for a two-lane freeway [37]. Although
these papers attempt to use simulation platforms to develop vehicle dynamics models, they did
not connect driver characteristics with geometric characteristics of the road. Therefore, this study
attempts to bridge this critical defect.

The paper is organized as follows: Section 2 proposes a new continuum model considering
the effect of self-stabilizing is constructed on the curved road with slope. Sections 3 and 4 present
the linear and nonlinear analysis, and then the neutral stability curve and the KdV equation
describing the nonlinear density wave are obtained. Section 5 carries out numerical experiments
that demonstrate how the stability of traffic flow is affected by self-stabilizing, curved and slopes.
Finally, the concludes are provided in Section 6.

2 The Extended Continuum Traffic Flow Model

In 2001, Jiang et al. [33] proposed the FVDM to solve the problem of vehicle retrogression
based on previous studies. The model equation is

dvn(t)
dt

= a[V(�xn(t))− vn(t)]+λ�vn , (1)

where the headway and velocity difference between two adjacent vehicles are �xn = xn+1−xn and
�vn = vn+1− vn; a denotes driver’s distance sensitivity coefficient; λ is the sensitivity coefficient of
driver to speed difference; V(�xn(t)) is optimal velocity function.

Based on the FVD model, Li et al. [38] proposed a new car-following model. They considered
the impact of the driver’s desire and the self-stabilizing control on traffic flow stability, and the
extended model can be expressed as

d2xn(t)
dt2

= a[Vop(�yn(t))− vn(t)]+λ1[V(h)− (1+ p)vn(t− τ )]+λ2[vn(t)− (1+ p)vn(t− τ )], (2)
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where yn(t) = �xn(t) is the headway difference between two adjacent vehicles; h is the average
space headway distance on the straight road; V(h)−vn(t− τ ) is the driver’s desire for smooth driv-
ing; vn(h)− vn(t− τ ) is the self-stabilizing control effect in the difference between the current and
history velocity; λ1 and λ2 denote the reaction coefficients of two introduced factors, respectively;
p is the reaction coefficient reflecting the uncertainty of vehicle’s speed; Vop(�yn(t)) is desired
optimal velocity of vehicle n.

For the sake of avoiding more fuel caused by frequent changes in driving speed during
driving, drivers can hope to drive more smoothly. On account of the FVDM, Sun et al. [35]
proposed a new car-following model of curve road and considered the impact of driver’s desire
on traffic flow stability, and the extended model can be expressed as

d2sn(t)
dt2

= a
[
V(�sn(t))− dsn(t)

t

]
+λ1

d�sn(t)
dt

+λ2[rω(s)− rωn(t− τ )], (3)

where �sn(t)= sn+1(t)− sn(t) is the headway between the vehicle n and vehicle n+ 1 on the curve
road; τ is the history time; rω(s)− rωn(t− τ ) represents the drive’s desire for smooth driving.

Zhou et al. [39] consider a situation such that vehicles are running on a single-lane gradient
highway under a periodic boundary condition, which is described in Fig. 1. Fig. 1 shows the
gravitational force acts upon vehicles on the slope of the gradient.

Figure 1: Vehicles move on a gradient highway: uphill and downhill situation: uphill − and
downhill +

Kaur et al. [40] make full use of road geometry to study driver’s anticipation effect and
further presented a new lattice model as follows:⎧⎪⎪⎨
⎪⎪⎩

∂tρj + ρ0

sinφj
(ρjvj −ρj−1vj−1)= γ

|ρ2
0V

′(ρ0, θ)|
sin2 φj

(ρj+1− 2ρj+ρj−1)

ρj(t+ τ )vj(t+ τ )= ρ0

sinφj
V(ρj+1(t+ατ), θ)

, (4)

V(ρj(t), θ)= κ
√

μgR1 cos θ ∓ sin θ

2
V0(ρj(t), θ), (5)

V0(ρj(t), θ)=
[
tanh

(
2
ρ
− ρj(t)

ρ2
0

− 1
ρc

)
+ tanh

(
1
ρc

)]
, (6)

ρc(θ)= 1
hc(θ)

= 1
h(1∓ sin θ)

, (7)
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where κ(0< κ ≤ 1) is control parameter; R1 is the radius of curvature, θ is slope; φj represents
the angle for the curved road at jth site; hc(θ) is the necessary distance between two cars to avoid
collision on the slope road; μ and g mean the friction coefficient and gravitational acceleration,
respectively.

Through research on driver characteristics and control signals, the stability of traffic flow can
be improved to a certain extent under certain conditions. However, road geometric characteristics
also affect the stability of traffic flow, allowing of no to neglect. Distinguished with traditional
studies, a modified car-following model on a single-lane gradient highway with curved is proposed
with the consideration of the self-stabilizing effect as follows:

dωn(t)
dt

= a
r
[V(r�αn(t))− rωn(t)]+λ[ωn(t)−ωn(t− τ )], (8)

where ωn(t) is the angular velocity of car nth at time t; α and r represent the radius and radian
of the curved road.

The highlight of our proposed model is to study the influence of self-stabilizing control and
curved road with the slope on traffic flow stability from a macro perspective. Here, we can convert
the micro variables in Eq. (8) into macro variables through the method proposed by Liu et al. [41],
as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r�αn(t)→ h(s, t)≈ 1
ρ(s, t)

− ρx

2ρ3 −
ρxx

6ρ4

ωn(t)→ω(s, t)
ωn(t− τ )→ω(s−ωt, t− τ )

V(r�αn(t))→
(

κ
√

μgr cos θ ∓ sin θ

2

)
V0(r�αn(t))=

(
κ
√

μgr cosθ ∓ sin θ

2

)
Ve(ρ)

, (9)

where ρ(s, t) and ω(s, t) are macroscopic density and velocity on the curved with slope, respec-
tively; Ve(ρ) is the equilibrium velocity and V̄ ′(h)=−ρ2V ′

e(ρ).

For simplification, we carry out time first-order Taylor expansion for ω(s−ωτ , t− τ ) while
ignoring the non-linear terms, i.e.,

ω(s−ωτ , t− τ)=ω(s, t)− τ
dω(s, t)
dt

. (10)

Substituting macro variables into Eq. (8), we derive

∂ω

∂t
+ω

∂ω

∂s
= a
r(1−λτ)

[(
κ
√

μgr cosθ ∓ sin θ

2

)
Ve(ρ)− rω

]
. (11)

3 Linear Stability Analysis

In the literature, the theory of fluid dynamics is used to describe the traffic flow state, and its
continuity fluid dynamics equation is established to study [42,43]. By combining the above formula
with the continuous conservative equation, we have⎧⎪⎨
⎪⎩

∂ρ

∂t
+ ∂(ρω)

∂t
= 0

∂ω

∂t
+ω

∂ω

∂s
= a
r(1−λτ)

[(
κ
√

μgr cosθ ∓ sin θ

2

)
Ve(ρ) − rω

] . (12)
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The equations are rewritten into matrices to simplify the analysis as follows:

∂U
∂t

+A
∂U
∂s

=E, (13)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U =
[
ρ

ω

]

A=
[
ω ρ

0 ω

]

E =
⎡
⎣ 0

a
r(1−λτ)

[(
κ
√

μgr cos θ ∓ sin θ

2

)
Ve(ρ)− rω

]⎤⎦
. (14)

According to Eq. (14), it is obvious that the average velocity ω is equal to the character-
istic velocity λ1 and λ2, which proves that the model satisfies the characteristics of traffic flow
anisotropy.

Slight interference caused by driver behavior characteristics or external factors will spread
upward with the traffic flow, and the traffic-free flow will develop into congestion flow gradually.
If the slight disorder tends to be stable or disappear, the traffic flow can run smoothly, therefore
controlling traffic congestion. Assuming that the traffic system is a homogeneous flow at the initial
time, constants ρ0 and ω0 represent the initial density and speed in the uniform state. Therefore,
the steady-state solution of the uniform flow is

ρ(s, t)= ρ0, ω(s, t)=ω0. (15)

(
ρ(s, t)
ω(s, t)

)
=
(

ρ0
ω0

)
+
(

ρ̂k
ω̂k

)
exp(iks+ σkt) . (16)

By substituting Eq. (16) into Eq. (12) and neglecting the nonlinear higher-order terms, we
obtain the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(σk+ω0ik)ρ̂k+ρ0ikω̂k = 0

ω̂kσk+ ikω0ω̂k =
a

r(1−λτ)
·
(

κ
√

μgr cos θ ∓ sin θ

2

)
· (V ′

e(ρ0)ρ̂k− rω̂k)

+ a
r(1−λτ)

(
ρ̂kik
2ρ0

+ ρ̂k(ik)
2

6ρ2
0

)
V ′

e(ρ0)

. (17)

The necessary and sufficient condition for the stability of linear systems is that the determi-
nant of matrix coefficients returns to zero, i.e.,∣∣∣∣∣∣

σk+ω0ik ρ0ik

a
r(1−λτ)

·
(

κ
√

μgr cos θ ∓ sin θ

2

)
·
(
1+ ik

2ρ0
+ (ik)2

6ρ0

)
V ′

e(ρ0) −
[
σk+ω0ik+ a

r(1−λτ)

]
∣∣∣∣∣∣= 0. (18)
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Regarding ρ̂k and ω̂k as the unknown parameters in the equations, then we can get that σk
satisfies the following quadratic equation:

(σk+ω0ik)
2+(σk+ω0ik)

a
r(1−λτ)

+ a
r(1−λτ)

· κ
√

μgr cos θ ∓ sin θ

2
·ρ0V ′

e(ρ0)ik

(
1+ ik

2ρ0
+ (ik)2

6ρ0

)
= 0.

(19)

According to the criterion of control theory, the neutral stable condition for the traffic flow
is obtained

a=−r(1−λτ)
(
κ
√

μgr cosθ ∓ sin θ
)

ρ2
0V

′
e(ρ0). (20)

Performing the Taylor expansion for σk as follows:

Im(σk)≈−a
[
ω0+ρ0

κ
√

μgr cosθ ∓ sin θ

2
V ′

e(ρ0)

]
+ o(k3). (21)

According to Eq. (21), we infer that

c(ρ0)=ω0+ρ0
κ
√

μgr cosθ ∓ sin θ

2
V ′
e(ρ0), (22)

This is similar to the velocity gradient model [44] and modified model.

The neutral stability lines for different slopes of the gradient road are plotted in Fig. 2. The
neutral stability curves for uphill and downhill situations on the road, respectively, as shown in
the illustration. In Fig. 2a, the stability region becomes more significant and more prominent with
the addition of slope θ on the uphill slope. In contract, in Fig. 2b, in the downhill situations the
stable area becomes larger and larger with the decrease of the slope.

Figure 2: Neutral stability lines for different slopes in two situations: patterns (a) and (b) are
corresponding to uphill and downhill situations respectively
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4 Nonlinear Analysis

For the sake of explore the nonlinear analysis of the new model, we adopt a new coordinate
system as follows [33]:

z= s− ct. (23)

By substituting Eq. (23) into (12), we obtain the following equation:{−cρz+ qz = 0

−cωz+ω ·ωz = a
r(1−λτ)

[(
κ
√

μgr cos θ∓sin θ
2

)
Ve(ρ)− rω

]
+ a

r(1−λτ)
·V ′

e(ρ)
(

ρz
2ρ + ρzz

6ρ2

) . (24)

Here, traffic flow is defined as the product of density and velocity of traffic flow as q= ρωr,
which can be obtained from Eq. (23):

ωz = cρz
ρr

− qρz
rρ2 . (25)

Applying second-order Taylor expansion to q= ρωr yields

q= ρVe(ρ)+ b1ρz+ b2ρzz. (26)

Substituting the Eq. (25) into the second row of Eq. (12), it can be written as

−c
(
cρz
ρr −

qρz
rρ2

)
+ q

ρ

(
cρz
ρr −

qρz
rρ2

)
= a

r(1−λτ)

[(
κ
√

μgr cosθ∓sinθ
2

)
Ve(ρ)− q

ρ

]
+ a
r(1−λτ)

·V ′
e(ρ)

(
ρz
2ρ + ρzz

6ρ2

)(κ
√

μgr cosθ ∓ sin θ

2

)
.

(27)

The coefficients b1 and b2 are determined by balancing the terms ρz and ρzz in Eq. (27), so
we get⎧⎨
⎩
b1 = (1−λτ)

a (c−Ve(ρ))2+ V ′
e(ρ)
2

(
κ
√

μgr cos θ∓sin θ
4

)
b2 = 1

6ρ

(
κ
√

μgr cos θ∓sin θ
2

)
V ′

e(ρ)
. (28)

Eq. (26) can be rewritten with Taylor expansions near the neutral stability condition

ρVe(ρ)≈ ρhVe(ρh)+ (ρVe)ρ |ρ=ρh ρ̂ + 1
2
(ρVe)ρρ |ρ=ρh ρ̂

2. (29)

Substituting the Eq. (24) into Eq. (29), and turning the ρ̂ to ρ, we obtain the following
equation:

−cρz+ [(ρVe)ρ + (ρVe)ρρρ]ρz+ b1ρzz+ b2ρzzz = 0. (30)

Aiming at obtaining the standard KdV-Burgers equation, we perform the following transfor-
mations:

U =−[(ρVe)ρ + (ρVe)ρρρ], X =mx, T =−mt. (31)

Considering Eq. (24), the KdV-Burgers equation is obtained as follows:

UT +UUX −mb1UXX −m2b2UXXX = 0. (32)
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One analytical solution of the above KdV-Burgers equation is

U =− 3(−mb1)2
25(−m2b2)

⎡
⎢⎢⎢⎢⎣
1+ 2 tanh

(
±−mb1

10m2

)(
X + 6(−mb1)2

25(−m2b2)
T + ζ0

)

+tanh2
(
±−mb1

10m2

)(
X + 6(−mb1)2

25(−m2b2)
T + ζ0

)
⎤
⎥⎥⎥⎥⎦ , (33)

in which ζ0 is an arbitrary constant.

5 Numerical Simulation

This section presents simulation studies to illustrate the effect of self-stabilizing of our
developed dynamic model on a single-lane highway with slope. According to the time forward
difference and space centre difference, the space and time are divided into space step �x and time
step �t, for numerical simulation

ρ
j+1
i = ρ

j
i +

�t
�x

ρ
j
i (ω

j
i −ω

j
i+1)+

�t
�x

ω
j
i(ρ

j
i−1−ρ

j
i ). (34)

ω
j+1
i =ω

j
i −

�t
�x

ω
j
i

r(1−λτ)
(ω

j
i −ω

j
i−1)+

a�t
r(1−λτ)

[(
κ
√

μgr cosθ ∓ sin θ

2

)
Ve(ρ

j
i )− rωj

i

]

+ a�t
r(1−λτ)

[
ρ
j
i+1−ρ

j
i

2ρji�x
+ ρ

j
i+1− 2ρji +ρ

j
i−1

6(ρji )
2(�x)2

]
V ′

e(ρ
j
i ), (35)

where ρ
j
i and ω

j
i represent density and speed on the condition of (i, j), and the space and time

section are represented by i and j, respectively.

5.1 Shock Waves and Rarefaction Waves
Traffic wave is a kind of nonlinear wave, which can evolve into so-called “traffic shock”

as time goes on. Therefore, we study the influence of small disturbance on the spatiotemporal
evolution of density and velocity under crowding and sparsity. The Riemann initial conditions
are considered as follows:

ρ1
up= 0.04 veh/m, ρ1

down= 0.18 veh/m (36)

ρ2
up= 0.18 veh/m, ρ2

down= 0.04 veh/m (37)

where ρ
1,2
up and ρ

1,2
down are the density of upstream and downstream, respectively. The corresponding

initial speeds are expressed as follows:

v1,2up =Ve(ρ1,2
up ), v1,2down=Ve(ρ

1,2
down). (38)

Then, we adopted equilibrium velocity function by Castillo et al. [45] as follows:

Ve = vf

[
1− exp

(
1− exp

(
nm
vf

(
ρm

ρ
− 1

)))]
, (39)
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where ρm is the density of vehicle under congestion flow; vf and nm respectively denote free
flow speed and the propagation speed of density wave under congestion density. Thus, we can
obtain the evolution of Eqs. (36)–(39) (see Figs. 3 and 4). The propagation of shock-wave and
rarefaction-wave patterns can be smooth and backward in Figs. 3 and 4. As time goes on,
the resulting rarefaction wave disturbance propagates in the negative direction of x and is not
amplified, which further validates that our proposed model satisfies the anisotropy.

Figure 3: The shock wave in the initial Riemann condition (36): (a) time-space evolution of density
and (b) time-space evolution of speed

Figure 4: The rarefaction wave in the initial Riemann condition (37): (a) time-space evolution of
density and (b) time-space evolution of speed

5.2 Local Cluster Effect
In this section, for clarity, we will verify the effects of self-stabilizing control strategy and

different slopes and radius by conducting numerical simulation. The traditional method of sta-
bility simulation is to check the anti-disturbance ability of homogeneous traffic flow. In the



1824 CMES, 2022, vol.131, no.3

literature [46], the average density ρ0 has a generalized form as follows:

ρ(s, 0)= ρ0+�ρ0

{
cosh−2

[
160
L

(
s− 5L

16

)]
− 1

4
cosh−2

[
40
L

(
s− 11L

32

)]}
, (40)

where the road length L = 32.2 km and �ρ0 is density perturbation. We adopt the periodic
boundary conditions as follows:

ρ(L, t)= ρ(0, t), v(L, t)= v(0, t). (41)

Based on Kerner et al. [47], we introduce the equilibrium speed-density relationship as follows:

Ve(ρ)= vf

[(
1+ exp

ρ/ρm− 0.25
0.06

)−1

− 3.72× 10−6

]
. (42)

First of all, Fig. 5 is the nonlinear density wave of traffic flow with self-stabilizing control in
the proposed macro traffic model on the uphill and downhill slope with curved roads. Figs. 5a–
5c are the uphill angle, when the road slope is sight, the influence of minor disturbance on the
stability of traffic flow will not be amplified. However, Figs. 5e–5g are the downhill angle, with
the increase of slope angle, the impact of disruption is more and more prominent, and the traffic
flow is more unstable. Therefore, with the change of a time, there will be time stop effect or traffic
flow cluster effect.

Figure 5: (continued)
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Figure 5: The evolution of the temporal and spatial on a downhill scenario with different θ when
ρ0 = 0.055veh/m, r = 20m, λ = 0.6. (a) θ = 6◦ (b) θ = 4◦ (c) θ = 2◦ (d) θ = 0◦ (e) θ = 2◦ (f) θ =
4◦ (g) θ = 6o

To explore the second case of road geometric characteristics: the influence of curve on traffic
flow, our numerical simulation is shown in Fig. 6. It shows the evolution of traffic flow density
with different curved road radii. Numerical simulation shows that when other conditions remain
unchanged, the radius is large, the centripetal force is large, and the traffic flow is more unstable.
It can be proved that the larger curve radius has a negative influence on the traffic stability.

Next, we explore the effect of self-stabilizing control strategy on traffic flow stability as Fig. 7.
It shows that with the increasing control coefficient, the nonlinear density wave of traffic flow
becomes more stable, which indicates that the stop and go phenomenon gradually disappears.
Numerical simulation results illustrate that the effect of self-stability is helpful to improve the
stability of traffic flow.



1826 CMES, 2022, vol.131, no.3

Figure 6: Space-time evolution of the headway for different radius r = 20m, 40m, 60m, 80m
when ρ0 = 0.055veh/m, λ= 0.6, θ = 2◦(Downhill). (a) r= 20m (b) r= 40m (c) r= 60m (d) r= 80m

Figure 7: (continued)
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Figure 7: Space-time evolution of the headway for different λ values when ρ0 = 0.055veh/m, r=
20m, θ = 2◦(Downhill). (a) λ= 0.2 (b) λ= 0.4 (c) λ= 0.6 (d) λ= 0.8

6 Conclusion

This paper introduces the effect of self-stabilizing control strategy and road geometric charac-
teristics on traffic flow stability from a macro perspective. According to the maximum limit of the
actual road slopes, different slope θ = 0◦, 2◦, 4◦, 6◦, and different radius r = 20, 40, 60, 80m
are set. At the same time, the control strategy is obtained by using the historical speed and the
current speed difference of the considered vehicles. We prove that the proposed traffic flow macro
model guarantees the anisotropic characteristics. Under certain conditions, the model is analyzed
theoretically, including linear and nonlinear stability analysis. Through Matlab simulation, the new
model can accurately simulate traffic flow phenomena such as shock-wave and rarefaction-wave.
The numerical simulation clearly verifies that the self-stabilizing strategy can effectively resist the
influence of disturbance on the traffic flow and reduce the immense traffic pressure in the traffic
flow. Road characteristic is also closely related to the stability of traffic flow, which is consistent
with the theoretical study in this paper.
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