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ABSTRACT

The surrogate model technology has a good performance in solving black-box optimization problems, which is
widely used in multi-domain engineering optimization problems. The adaptive surrogate model is the mainstream
research direction of surrogate model technology, which can realize model fitting and global optimization of
engineering problems by infilling criteria. Based on the idea of the adaptive surrogate model, this paper proposes
an efficient global optimization algorithm based on the local remodeling method (EGO-LR), which aims at
improving the accuracy and optimization efficiency of the model. The proposed algorithm firstly constructs the
expectation improvement (EI) function in the local area and optimizes it to get the update points. Secondly,
the obtained update points are added to the global region until the global accuracy of the model meets the
requirements. Then the differential evolution algorithm is used for global optimization. Sixteen benchmark
functions are used to compare the EGO-LR algorithm with the existing algorithms. The results show that the
EGO-LR algorithm can quickly converge to the accuracy requirements of the model and find the optimal value
efficiently when facing complex problems with many local extrema and large variable spaces. The proposed
algorithm is applied to the optimization design of the structural parameter of the impeller, and the outflow field
analysis of the impeller is realized through finite element analysis. The optimization with the maximum fluid
pressure (MP value) of the impeller as the objective function is completed, which effectively reduces the pressure
value of the impeller under load.
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1 Introduction

The adaptive surrogate model [1] technology can significantly reduce the number of simula-
tions by selecting a small number of experimental points and accelerate the convergence to the
global optimal solution when dealing with complex simulation models. The initial experimental
design method, model construction, and accurate prediction are the three necessary steps of
traditional surrogate model construction. The adaptive surrogate model adds a feedback link in
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the traditional construction process. In feedback link of the adaptive process,new experimental
points are selected and added to the initial sample library through multiple iterations. Generally,
the construction of the adaptive surrogate model is closely combined with the global optimization
process, the model construction and optimization are carried out at the same time. The EI
criterion [2] as a classical adaptive infilling criterion, which is based on the Kriging surrogate
model [3] and combined with the prediction error of experimental points to construct the EI
function. As an efficient global optimization strategy [4,5], although the EI criterion takes into
account the globality and efficiency of optimization, only one update point is generated in each
iteration, which means that more iterations are needed to reach the convergence criteria. Therefore,
the parallel optimization methods of selecting multiple update points each iteration have become
the mainstream research direction of adaptive surrogate model optimization in recent years.
There are three main research ideas for parallel optimization: 1) Obtain multiple update points
by optimizing the same infilling criterion many times or calculating multiple expectation points
of the same criterion; 2) Obtain multiple update points by using different surrogate models or
different infilling criteria; 3) Obtain multiple update points by taking multiple infilling criteria
as optimization objectives at the same time. The multi-point infilling criteria attempt to make
the selected new experimental points have both local search and global search functions. Zhan
et al. [6] proposed a pseudo expectation improvement criterion (PEI) of parallel computing
multiple update points. The criterion approximates the real updated EI function by multiplying
the initial EI function and the influence function (IF) of the update point. Therefore, it can
be used without reshaping the expensive function to select multiple candidate points in each
iteration, and a new parallel EGO algorithm is proposed based on the PEI criterion. Jian et al. [7]
applied the PEI function to find the multi-peak position of the EI function and proposed a
multi-point criterion PEI-R, which can achieve the accurate global solution of the optimization
problem by obtaining multiple local sampling points. The proposed method has good performance
in structural optimization. Ivo et al. [8] applied the probability of improvement (POI) and EI
criteria of the Kriging model to multi-objective optimization to identify the Pareto frontier with
the least number of expensive simulations. In order to solve the poor performance of the EGO
algorithm in high-dimensional optimization problems, Mohamed et al. [9] proposed a “locating
the regional extreme” criterion, which includes minimizing the alternative model and maximizing
the expected improvement criterion at the same time. According to the quantity and probability
of target improvement, Chaudhuri et al. [10] proposed the EGO-AT algorithm. The algorithm
adjusts the target in each iteration according to whether the target is achieved in the previous
iteration.

The improved global optimization algorithm performs well in numerical optimization prob-
lems and can accurately find the optimal value of function in complex mathematical examples
[11–13]. At the same time, many scholars apply the global optimization algorithm based on the
surrogate model to engineering problems such as fluid analysis and have been effectively verified,
which provides an effective method for the field of engineering optimization [14–16]. Yi et al. [17]
establishes two surrogate models of spray angle and liquid film thickness based on Kriging’s global
optimization algorithm, and carry out multi-objective parameter optimization for the swirl nozzle
of aero-engine at low-pressure start-up stage. Heo et al. [18] optimized the inlet angle of the
expander blade of the mixed-flow pump by using the surrogate model, which greatly improved
the efficiency of the mixed-flow pump at the specified speed. Lai et al. [19] optimized the impeller
structure with the goal of weight reduction and used a genetic algorithm to globally optimize
the Kriging model in the design space, which not only improved the optimization efficiency but
also obtained good optimization results. Wang et al. [20] applied Kriging global optimization
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algorithm to the aerodynamic performance optimization of wind turbine blades. Compared with
the numerical simulation method, the obtained aerodynamic efficiency optimization coefficient of
blades is higher, but it lacks the improvement of traditional global optimization algorithm, and
its optimization process is easy to fall into local search.

Global optimization is closely related to the adaptive surrogate model, and scholars have more
extensive research on parallel optimization methods, but the optimization problem still faces diffi-
culties: 1) The number of initial sample points is difficult to determine in the stage of experimental
design, which is prone to clustering and degradation in the face of high-dimensional and large
sample problems; 2) Too many dimensions and too much variable space will lead to modeling
failure or solving difficulty; 3) In the face of high nonlinearity and multiple local extremums,
the inaccurate model fitting leads to the death cycle of local search. Given the difficulty of
model optimization caused by the large range of design space and many local extrema, this paper
proposes an efficient global optimization algorithm based on local remodeling (EGO-LR), which
not only balances the local and global search but also speeds up the efficiency of local fitting and
global optimization under the condition of ensuring the accuracy.

The remaining chapters of the paper are as follows: In Section 2, the specific construc-
tion process of EGO-LR algorithm is proposed in detail. Compared with PEI algorithm, the
advantages of EGO-LR algorithm are analyzed; In Section 3, the parametric design of the main
structure of the impeller is carried out, and the model is preprocessed in ANSYS CFX; In
Section 4, the mathematical model of impeller hydrodynamic analysis is established. Combined
with finite element simulation analysis, the EGO-LR algorithm is used to minimize the maximum
pressure (MP) of the impeller structure; finally, the EGO-LR algorithm and optimization results
are summarized.

2 Global Optimization of Surrogate Model Based on Reshaped Domain

In summarizing scholars’ research on the global optimization algorithm, it is found that
when the EGO algorithm performs a global search on a large spatial region, the value of the
EI function decreases sharply near the update point. In other words, the impact of the update
point on the EI function at a certain point depends on the distance between the point and the
update point. The smaller the distance, the greater the impact. When the distance is too large, the
expectation of the EI function is very low. Therefore, the iterative process has a strong dependence
on the previous update point. If the update point is in a wide area, the EGO method gradually
carries out a random search in the later stage of optimization, and the convergence degree is slow.
Therefore, in the remodeling domain, only one iteration is carried out to search for new sample
points, which not only ensures the directionality and expectation of the EGO algorithm search
but also avoids the slow search caused by falling into the local optimization.

2.1 The Construction of the EGO-LR Algorithm
The main goal of optimization is to obtain global optimal value which can also be regarded

as the minimum extreme value among the local extreme values. Based on the idea of balancing
local and global optimization, in order to find an accurate solution and speed up the efficiency of
jumping out of local search, the EGO-LR algorithm is constructed with the Kriging. The Kriging
model is composed of regression part and nonparametric part. The nonparametric part contains
the approximation error of local simulation that has the statistical characteristics of correlation.
The correlation of samples is affected by the correlation function. In this paper, we choose the
widely used Gaussian correlation function which has the best calculation effect in general. The
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superparameter θ of Gaussian function affect the correlation of samples and the fitting accuracy
of response values. A low value of θ will cause a high correlation between adjacent sample points.
A high value of θ will cause the value of the correlation function change too quickly between
two points. After consulting a large number of literature and practical examples, in order to
make the approximate function have good “activity” when fitting the function response value with
higher dimension, and ensure that the test examples in the paper have better contrast under the
same parameter conditions, the value of the superparameter θ is an appropriate fixed value 1.
Firstly, the EGO-LR algorithm is described in detail based on numerical examples. The specific
construction block diagram is shown in Fig. 1.
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Figure 1: Construction block diagram of the EGO-LR algorithm
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The main steps of the EGO-LR algorithm are as follows:

(1) Initial random sampling. The sample distribution formed by the Sobol sequence
method [21] is more uniform in high-dimensional space and more conducive to the execution of
the algorithm program. In this paper, the Sobol sequence method is used to obtain the initial
sample points to improve the balance of sample distribution. The number of sample points is a
multiple of N, and N represents the number of dimensions.

(2) Calculate the response value of each sample point and save it to the sample library,
establish the initial Kriging surrogate model, and evaluate the overall accuracy of model fitting
with the determination coefficient R2. The mathematical calculation formula of R2 is:

R2 = 1−
∑(

f (x)− f̃ (x)
)2

∑(
f (x)− f (x)

)2 (1)

where f (x) is the real response value of the test point, f̃ (x) is the predicted response value of the
test point, and f (x) is the mean value of the real response value. The determination coefficient
is used to measure the accuracy of the model, which is less affected by the calculation example,
and the solution result is relatively stable. At the same time, the accuracy of the model can be
expressed intuitively. When R2 is close to 1, it means that the accuracy of the surrogate model is
better. According to the experience of engineering optimization, 0.8 is taken as the standard of
model fitting accuracy. If R2 is less than 0.8, the model fitting is inaccurate.

(3) The Leave-One-Out Cross-Validation (LOO-CV) method is performed on the Kriging
model to obtain the normalized maximum absolute error (NMAE) of each sample point [22]. The
idea of the LOO-CV method is to divide the sample set into n small data sets, where the first
set is selected as test set and the remaining n-1 sets is used as the training set. Then select the
second set as the test set and the remaining n-1 sets as the training set, and so on. In this paper,
the test set has only one sample, and each sample is looped as the test set. The NMAE value
of each sample represents the influence of the sample on the model fitting accuracy in a small
neighborhood, which can fully represent the complexity of the local region. The mathematical
expression of NMAE is as follows:

NMAE = max
{|f (x)− f̃ (x) |}√

1
n

∑(
f (x)− f (x)

)2
(2)

If R2 is greater than 0.8, then go to Step (7) for global optimization.

(4) Sort the NMAE values of all sample points, take the sample points corresponding to
the first m maximum NMAE values as the remodeling points, and construct the corresponding
remodeling domains of all remodeling points. Xu et al. proposed the concept of dominance radius
in the literature [23]. The idea is that n sampling points can divide the design space into n-1 parts,
and the upper and lower limits of each dimension of sample points are constructed according
to the initial design space. However, this method does not notice that the dominant radius of
sample points may have an intersection in the same dimension, which will cause the overlap of
spatial regions and lead to high correlation in the subsequent sample selection. In this paper, to
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avoid spatial repetition caused by correlation, the dimension is divided into n + 1. The threshold
of each dimension is mathematically expressed by Eq. (3) as:

ri =
xU

i − xL
i

n+ 1
, i = 1, 2, . . . , N (3)

where ri is the corresponding remodeling domain threshold under the i-th dimension, xU
i and xL

i
represent the upper and lower limits of dimension i. n is the number of all samples that change
with the increase of iterations. At the same time, in order to ensure that the sample points close
to the boundary will not exceed the boundary after remodeling, the boundary of the remodeling
domain is modified. The reshaped domain �i of the ith dimension is represented as:

�i =
{

xL
i ≤ xi − ri

}
∪

{
xU

i ≥ xi + ri

}
(4)

where, xi is the i-th dimension component of the sample point. The reshaping domain of each
dimension of the sample point is �= {�1,�2, . . . ,�N}. The one-dimensional reshaping domain is
represented as a line segment, the two-dimensional reshaping domain can be taken as a square
region, the three-dimensional reshaping domain is a spatial cuboid region, and the reshaping
domain of multi-dimensional space can be understood as a super three-dimensional region.

(5) The EI function model is constructed in each remodeling domain. The EI expression is
as follows:

E [I (x)] = (
fmin − f̃ (x)

)
Φ

(
fmin − f̃ (x)

s

)
+ sφ

(
fmin − f̃ (x)

s

)
(5)

The EI function matrix is expressed as follows:

EI =

⎡⎢⎢⎢⎣
E [I (x)]1
E [I (x)]2

...
E [I (x)]j

⎤⎥⎥⎥⎦ , j = 1, 2, . . . , m (6)

(6) The remodeling domain is locally optimized to obtain m expected points in the remodeling
domain. The EI criterion can consider the prediction value and prediction error of the surrogate
model that can identify areas with high uncertainty. However, when EI criterion are used for
optimization, the model improvement in the later optimization stage is low and the search is also
slow, especially when the model has high nonlinearity. The EGO-LR algorithm only uses the EI
criterion for one iteration in the remodeling domain that does not need to carry out multiple
iterations to search for the accurate expected points. Because this step is only a part of the whole
cycle of the EGO-LR algorithm, it will tend to the global optimal solution step by step with the
progress of the local iteration cycle. At the same time, this step also ensures the identification of
uncertain regions and sparse regions by the EI criterion. This part is optimized by particle swarm
optimization (PSO). Among them, the expected points are optimized according to all the sample
points in the current remodeling domain. All the sample points are composed of the original
sample points and the sample points with a small amount of resampling. All samples in the
current remodeling domain will participate in the construction of EI function, and the expected
point with prediction error corresponding to the maximum EI function value is optimized by
algorithm. In order to ensure the expected point and the sample point are not duplicated, we have
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added the step of “deleting the point with a correlation of 1” in the algorithm. If the value of
correlation is 1, which means the expected point and the sample point are duplicated, the program
can continue to search for a new expected point. The new expected points often have prediction
errors, so the expected points obtained in each remodeling domain will not be repeated with the
sample points in the previous sample database.

(7) After the simulation analysis of m expected points, the response values are added to the
sample library, and the updated Kriging surrogate model is globally optimized by differential
evolution algorithm (DE). The most novel feature of the DE algorithm is mutation operation. At
the beginning of the iteration, the population individual difference makes the algorithm has strong
global search ability; At the end of the iteration, the individual difference of the population is
small, so the algorithm has strong local search ability. Therefore, in the global optimization part,
the differential evolution algorithm is adopted to effectively balance the local and global search.
If the error of the optimal value e ≥ 1%, return to Step (4); If e ≤ 1%, the optimal solution is
output and the algorithm iteration is terminated.

Taking the one-dimensional function Forrester as an example to explain the construction
of the fitting model and iterative optimization in the remodeling domain. The mathematical
expression of the function and the update of Kriging model are shown in Eq. (7) and Fig. 2,
respectively. The initial Kriging model of the function is constructed by three random sample
points, which are updated by two iterations, and two expected points are produced in each
iteration. It can be seen from the position of expected points generated in the process of iteration
that the EGO-LR algorithm takes into account the modeling and optimization process. The
expected points generated in the first iteration focuses on improving the model accuracy, and the
expected point generated in the second iteration focuses on global optimization.

f (x)= (6x− 2)2 sin (12x− 4) , x ∈ [0, 1] (7)

(a)

Figure 2: (Continued)
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(b)

(c)

Figure 2: 2 Iterations process. (a) Initial sample distribution and initial model construction, (b)
First iteration, (c) Second iteration

Taking the two-dimensional function Branin as an example to explain the construction of the
fitting model and iterative optimization in the remodeling domain. The mathematical expression
and the corresponding graph of Branin function are shown in Eq. (8) and Fig. 3, respectively.

f (x)= a
(
x2 − bx2

1 + cx1 − r
)2 + s (1− t) cos (x1)+ s,

a = 1, b = 5.1
4π2 , c = 5

π
, r = 6, s = 10, t = 1

8π
,

x1 ∈ [−5, 10] , x2 ∈ [0, 15]

(8)
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Figure 3: Branin function

Fig. 4 shows the four iterations of the function. The figure includes the sample update of
each iteration, the NMAE values of all sample points and the constructed Kriging model of the
function.

(a)

(b)

Figure 4: (Continued)
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(e)

(c)

(d)

Figure 4: 4 Iterations process. (a) Initial sample distribution and initial model construction, (b)
First iteration, (c) Second iteration, (d) Third iteration, (e) Fourth iteration

As shown in Fig. 4a, the function initially selects 6 sample points to construct the surrogate
model. The maximum NMAE value of the initial sample is 2.25, the expected number of points
generated in each iteration is m = 3, and the expected points are represented by asterisks in the
Fig. 4. After four iterations, the total sample size is 18 and the maximum NMAE value is reduced
to less than 0.3. The remodeling domain threshold of the first iteration is r = {2.1419, 2.1419},
and the remodeling domain threshold of the fourth iteration is r = {0.9375, 0.9375}. It can be
seen from the Fig. 4 that in the first iteration, there are two reshaped points searched for local
extreme values, and the third reshaped point searched for places with dense contour lines. The
search direction is the fastest direction perpendicular to the contour lines. This search method
meets the original idea of the EGO-LR algorithm, which is to balance local and global search,
and also conforms to the point finding characteristics of the EI criterion. The Branin function is
relatively simple, so in the second iteration, only one point is searched for local extremum, and the
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other two points tend to search for areas with high uncertainty in their respective reconstruction
domain. In the third and fourth iterations, the maximum NMAE value of sample points is very
small, and the algorithm focuses on searching the areas with low fitting accuracy. After the last
iteration, the R2 of the surrogate model has reached 0.95, and the fitting model is also close to the
real model. Fig. 5 shows the Branin function model initially constructed and the Kriging fitting
model for the last iteration.

Figure 5: The initial Kriging model and the final Kriging model

2.2 Optimization Comparison between EGO-LR and EGO- PEI Algorithms
The EGO-LR algorithm searches the global optimal value through parallel optimization and

generates multiple expectation points in one iteration to reshape the model to ensure the accuracy
of optimization. In reference [6], the EGO-PEI algorithm is proposed, which identifies update
points by maximizing the PEI function, and selects multiple expected points in each iteration
cycle. In this paper, the EGO-LR algorithm is compared with the EGO-PEI algorithm by using
16 benchmark functions from one dimension to eight dimensions under the condition that the
same expected points are generated in each iteration. The specific information of the functions
is shown in Appendix A. The initial sample points of the same function are the same, and the
expected points of each iteration are m = 2, 3, 4, 5. The total number of samples after reaching
the convergence condition is shown in Table 1.

Table 1: Comparison results of benchmark functions

Function Dimension m = 2 m = 3 m = 4 m = 5

EGO-LR PEI EGO-LR PEI EGO-LR PEI EGO-LR PEI

Forrester 1 12 11 11 11 14 13 16 15
Santner 1 10 7 9 8 14 13 11 10
Branin 2 29 24 31 36 29 30 40 31
Sasena 2 22 28 24 33 29 34 28 41
Threehump 2 17 30 22 39 23 30 27 46
Sixhump 2 43 46 41 42 46 46 39 51

(Continued)
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Table 1 (Continued)

Function Dimension m = 2 m = 3 m = 4 m = 5

EGO-LR PEI EGO-LR PEI EGO-LR PEI EGO-LR PEI

Goldprice 2 94 100 98 90 107 90 97 91
Hartman3 3 22 26 28 30 29 34 23 36
Colville 4 198 204 264 214 212 194 254 260
Hartman4 4 52 44 51 49 68 54 68 80
Shekel5 4 80 78 119 196 93 126 100 165
Shekel7 4 126 80 96 226 102 106 121 100
Shekel10 4 112 136 185 202 140 218 89 220
Fried 5 36 29 33 30 33 31 31 35
Hartman6 6 60 39 65 51 58 59 73 65
Detpep 8 101 114 110 144 115 124 104 131

It can be seen from the table that the two algorithms have their own advantages and disadvan-
tages in different functions. For two one-dimensional functions, the EGO-PEI algorithm performs
better, and the sample points used are less than the EGO-LR algorithm. Among the 5 two-
dimensional functions, four of them are optimized by the EGO-LR algorithm that can converge to
the optimal value faster. The function Goldprice is complicated, and the performance of the two
algorithms is different due to different iterative expected points. Colville, Shekel5, Shekel7, and
Shekel10 are complicated functions with high nonlinearity, large variable space and multiple local
extrema. The algorithm needs multiple iterations to obtain enough sample points to obtain the
global optimal value. When each iteration generates different number of expected update points
to optimize Shekel5, Shekel7 and Shekel10, the total number of samples required by the EGO-LR
algorithm are less than that of the EGO-PEI algorithm. Fig. 6 shows the iterative convergence
curves of the two algorithms with updating 2, 3, 4 or 5 expected points for some four-dimensional
functions each time. The EGO-LR algorithm can quickly jump out of the time-consuming local
search and efficiently optimize the global. The EGO-LR algorithm is still applicable to six and
eight-dimensional functions. The sample size required in eight-dimensional function Detep is less
than that of the EGO-PEI algorithm.

The Shekel5, Shekel7 and Shekel10 functions have multiple local optimal values. There are
not enough sample points at these local optimal positions which are easy to be mistaken as the
expected positions of the next iterative search. It needs to add points many times to jump out of
the local optimal positions or always fall into the local domain. The EGO-PEI algorithm performs
global optimization from the initial modeling. However, the accuracy of the initial model is very
low. When performing multiple optimization operations on these three functions, the EGO-PEI
algorithm is easy to fall into a local loop, and very difficult to escape the local search after
hundreds of iterations, which means the performance of the EGO-PEI algorithm for complicated
functions is unstable. The data of the EGO-PEI algorithm of these three functions in Table 1
and Fig. 6 are selected data that have successfully converged after multiple runs. The EGO-LR
algorithm proposed is computationally stable and has little difference in the results of multiple
iterations. Although it will fall into the local search of complicated functions, it can quickly
jump out of multiple local domains and face the global search. The EGO-LR algorithm not only
reduces the time consumption but also can get the accurate optimal value, which is also suitable
for high-dimensional functions.
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(a)

(b)

(c)

(d)

Figure 6: Iterative optimization curve. (a) Shekel5, (b) Shekel7, (c) Shekel10, (d) Detep

3 Fluid Analysis and Parametric Design of Impeller

Computational Fluid Dynamics (CFD) promotes the experimental research and theoretical
analysis of fluid analysis, which is a powerful technology of modern scientific research for simulat-
ing and analyzing physical problems such as flow and heat dissipation [24,25]. In this section, the
axial-flow impeller and fluid analysis simulation model are established, and the flow characteristics
of the outer flow field of the impeller are analyzed by ANSYS CFX. When using the CFD
method to simulate actual problems, it is necessary to set the working environment, boundary
conditions, and numerical algorithms. These settings will affect the calculation efficiency and
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accuracy of the model. In the numerical simulation of the model, the SIMPLE algorithm in the
finite volume method is used. The core of the algorithm is to modify the pressure field so that the
velocity field corresponding to the pressure field meets the solution conditions of the continuous
momentum equation.

3.1 Structural Design of Axial Flow Impeller
In engineering practice, according to the different blade outlet installation angles of the

impeller, the impeller is divided into three forms: forward inclined type, radial type and backward
inclined type [26,27]. In this paper, the backward inclined impeller is used for the structural design
and optimization of axial flow impeller that the installation angle of the blade outlet is less than
90 degrees. It has the characteristics of high efficiency, low bearing pressure and high energy
conversion rate. The impeller blade adopts arc design, which is conducive to improving blade
strength and fluid flow performance. The structure of the impeller is shown in Fig. 7.

1D

2D

1

2

D

(a)

1H

(b)

Figure 7: Impeller structure diagram

The function of the impeller is to realize the conversion of energy between fluid kinetic energy
and mechanical energy, and improve the speed and flow of fluid. The design of different impeller
structural parameters will affect the energy conversion efficiency and the impact force received by
the impeller during operation. Ye et al. [28] used the response surface method to optimize the
inlet and outlet angle of the impeller blade and improve the efficiency of the pump and impeller.
Zhou et al. [29] studied the influence of impeller blade outlet angle on the hydraulic performance
of mixed flow pump by a numerical calculation method. According to the literatures on impeller
optimization, we consider the main parameters affecting the impeller fluid analysis and carries out
the structural design of the impeller. The main structural design parameters of the impeller are
shown in Table 2.

Table 2: The main structural parameters of the impeller

Parameter Symbol Explanation Ranges

The diameter of outflow field D The inlet and outlet diameters of
fluid channel

228 mm

The diameter of blade inlet D1 54–64 mm
The diameter of impeller outer D2 – 178 mm

(Continued)
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Table 2 (continued)

Parameter Symbol Explanation Ranges

The installation angle of blade inlet β1 The angle between the tangent of
the blade entrance and the tangent
of the circumference

60◦–80◦

The installation angle of blade outlet β2 The angle between the tangent of
the blade entrance and the tangent
of the circumference

20◦–30◦

The height of impeller H1 – 80 mm
Number of blades Z – 3–13

Since the main research object of this paper is the performance of impeller blade under
the action of flow field and the flow characteristics of flow field, the following text focuses on
the design of the relevant parameters of the blade. So the outer flow field diameter, impeller
outer diameter and impeller height are set as fixed values to simplify the complexity of blade
optimization. The values of parameters are shown in the table.

3.2 Meshing and Model Preprocessing
Before the fluid analysis of the impeller, it is necessary to import the model into ANSYS

CFX, and set the boundary conditions and calculation domain of the calculation model. The
calculation model and flow field inlet and outlet information are shown in Fig. 8a, the calculation
grid division is shown in Fig. 8b, and the boundary condition information is shown in Fig. 8c.

In the model processing, the computational domain of unidirectional flow is generated by the
way of wall rotation, and the inlet and outlet of fluid are named. Then, the fluid computational
domain and impeller model are meshed. Considering the global mesh size, the element quality of
mesh is used as the standard to judge whether the meshing is reasonable. The element quality of
mesh is expressed as the ratio between the volume and side length of a given cell, and its value is
between 0 and 1. 0 is the worst and 1 is the best. In this paper, the average value of the element
quality of mesh is more than 0.83, which has far exceeded the reference value of 0.7, so the grid
division meets the requirements of fluid analysis. In addition, the number of nodes is 763,539 and
the number of elements is 4,002,598. In the pretreatment, the standard k-w turbulence model [30]
is used to analyze the external flow field of axial flow impeller. The k-w turbulence model is
better for the near wall region and wake region, and the k-w model is considered for the viscous
fluid. The working medium is clean water at room temperature. The fluid viscosity is 1. The flow
state type is steady-state. The boundary condition of fluid channel inlet is velocity inlet. The flow
velocity is v = 5 m/s. The inlet flow rate is Q = 199.835 kg/s, and the outlet boundary is set
to standard atmospheric pressure. The wall conditions of the blade and hub of the impeller are
designed as rotating wall.
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Figure 8: The preprocessing of computational model and computational domain. (a) Geometry
configuration, (b) Computational mesh, (c) Boundary settings
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4 Hydrodynamic Analysis and Optimization of Impeller

In the analysis of the external flow field of the impeller, the CFD numerical simulation needs
to strictly follow the basic equations of fluid dynamics, deduce the fixed value of the solution
parameters related to the impeller, and then conduct fluid analysis and select the optimal value.
The numerical simulation method is rigorous, but the simulation results may not be the ideal
optimal value, and the mathematical calculation is difficult and takes a lot of time. The intro-
duction of surrogate model optimization theory can reduce the simulations of impeller and fluid
dynamics and obtain the ideal optimal solution by transforming the simulation model into fitting
function. Since the proposed EGO-LR method shows good convergence in the above test of the
benchmark functions with high dimension and great complexity. The hydrodynamic analysis and
optimization of Impeller focuses on solving the problems of the complexity of the model and the
unknown parameter correlation that affect the fluid flow characteristics. The engineering example
has no clear optimization mathematical expression and the target direction of optimization cannot
be determined. The application of the EGO-LR method performs auxiliary optimization on the
finite element, which can effectively determine the optimization direction. It can avoid searching
in unknown local areas, and has a good performance in global optimization.

4.1 The Effect of Blade Number on Impeller Performance
In the component optimization of axial flow fan and the analysis of internal flow field of

centrifugal pump, the number of blades of impeller has a great impact on the performance
of efficiency and blade load. For the fluid analysis of axial flow impeller, the appropriate number
of blades is conducive to improve the fluid flow performance and promote the conversion between
fluid kinetic energy and mechanical energy. Fig. 9a shows the variation of the maximum pressure
P on the impeller and the maximum fluid velocity V with the number of blades from 3 to 13,
and Fig. 9b shows the flow trace cloud diagram when the number of blades is 12.

When the steady flow is in contact with the impeller, the angular momentum obtained by
the fluid from the impeller depends on the number of times it passes through the impeller. If
the number of blades is small, the guiding effect of blades on the fluid is weak, the driving
performance of the impeller on fluid is insufficient, and the fluid pressure on a single blade is
large. When the number of blades is large, the fluid pressure on a single blade decreases, but the
generated fluid hydraulic pressure is insufficient, and the separation and collision times between
fluid and blade will increase which results in less energy exchange between blade and fluid. It can
be seen from the figure that when the number of blades is 12, there is a large low-speed area near
the channel outlet. The minimum flow velocity is 0.0622558 m/s. The exit flow traces are mixed
and there is turbulent flow.
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(b)

(a)

Figure 9: Effect of blade number on impeller flow characteristics

4.2 The Optimization Mathematical Model of Impeller
According to the structural analysis of the axial flow impeller, the fluid flow rate is increased

to obtain the ideal flow. In order to reduce the fatigue loss of the impeller under long-term
working conditions, the original structural parameters of the impeller are optimized by minimizing
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the maximum pressure (MP) in the impeller structure. Based on the analysis of the influence
parameters of the impeller mentioned above, the structural parameter optimization model of axial
flow impeller is expressed as follows:

find X = [β1,β2, D1, Z]

min f MP = f̃MP (β1,β2, D1, Z)

s.t 60 ≤ β1 ≤ 80

20 ≤ β2 ≤ 30

54 ≤ D1 ≤ 64

3 ≤ Z ≤ 13

β1, β2, D1 and Z are the main parameters that affect the performance and force distribution of the
impeller, respectively. f̃MP is the surrogate model of the maximum pressure (MP). The number of
blades Z is an integer. The relevant parameter information of the optimization model of impeller
is shown in Table 3.

Table 3: The design variables of axial flow impeller

Design variable Symbol Ranges Initial value

The installation angle of blade inlet β1 60◦–80◦ 68◦
The installation angle of blade outlet β2 20◦–30◦ 20◦
The diameter of blade inlet D1 54–64 (mm) 59 mm
Number of blades Z 3–13 –

Based on the analysis of the effect of blade number on impeller performance in the previous
section, and considering that the odd and even number of blades will also affect the performance
of the impeller [31–33]. The even number of blades will form a symmetrical arrangement, which
is not conducive to the balance of the impeller and cause the blade to bear resonance fatigue.
To avoid fluid turbulence, improve energy transfer efficiency and minimize the maximum pressure
on the blade, the impeller with 9 blades is selected for structural parameter optimization in the
following text.

4.3 The Optimization Analysis of Impeller Hydrodynamics Based on the EGO-LR Algorithm
After the number of impeller blades is set, it is necessary to use the EGO-LR algorithm

to optimize the blade inlet installation angle, outlet installation angle and inlet diameter. The
optimization flow chart is shown in Fig. 10, and the detailed steps are as follows:

(1) Determine the design variables of impeller optimization. Based on the analysis of the
influencing parameters of impeller performance, three influencing factors: the installation angle of
blade inlet β1, the installation angle of blade outlet β2 and the diameter of blade inlet D1 are
determined as design variables.

(2) Random sampling generates initial sample points. The Sobol sequence sampling is used
to generate 15 initial sample points and save them to the sample library.
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(3) The samples are simulated and analyzed. The 3D software is used for parametric model-
ing, the model is imported into the hydrodynamic simulation software for simulation analysis to
obtain the corresponding response value of the samples.

(4) The Kriging model is constructed and optimized. The Kriging model is constructed by
using samples and their response values, and the DE algorithm optimizes the model to obtain the
best advantage.

(5) Conduct fluid analysis on the most advantageous parameters through the finite element
software to obtain the real maximum pressure value of the impeller, and judge whether the error
between the real value and the optimal value of the surrogate model meets the convergence
conditions. The convergence conditions are as follows:∣∣∣∣ymin − ỹmin

ymin

∣∣∣∣≤ 1 (9)

where ymin is the best real response value, ỹmin is the optimal response value of the surrogate
model, and the error of 1% is taken as the convergence condition.

(6) If the convergence condition is not met, combined with the surrogate model, the EGO-LR
algorithm is used to adaptively add new sample points to the sample library. The three sample
points generated in each iteration are added to the sample library and go to Step (3).

(7) Loop simulation and optimization process until the convergence condition is met.

Determine the initial design 
variables of the impeller

Initial sampling

Sample database

The fluid dynamics simulation is 
carried out with finite element 

software to obtain the MP value

The surrogate model is 
constructed and the DE algorithm 

is used for global optimization

The real MP value at the best 
point is obtained by simulation 

analysis

Output optimal solution

minminy      y

min

1%
y

The EGO-LR algorithm is used to 
optimize and generate update points

Save sample points

YES

NO

Figure 10: The optimization flow of impeller
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4.4 The Optimization Results
Taking the maximum pressure value (MP) carried by the impeller in fluid analysis as the

objective function, combined with the EGO-LR algorithm and finite element analysis, the impeller
is iteratively optimized to obtain the best structural parameters corresponding to the minimum MP
value. The optimization results of each stage before meeting the iterative convergence conditions
are shown in Table 4.

Table 3: The optimization results of each stage

Number of
iterations

The design variable Objective function
value (KPa)

Cumulative
simulation times

1 [62.5000,26.2500,62.7500,9] 174.3210 15
2 [62.0829,26.5770,62.4578,9] 172.8890 18
3 [70.5357,24.7321,55.5179,9] 173.8690 21
4 [68.0357,25.9821,54.2679,9] 168.9920 24
. . . . . . . . . . . .

11 [77.1216,28.8089,54.9173,9] 165.0750 45
12 [76.8095,28.9497,55.0249,9] 165.0120 48

It can be seen from the simulation data in the table that the increasing number of iterations
also increases the number of simulations. Since there may be multiple local extremums in the
fitting model of the objective function, there is a certain degree of contingency in the optimal
objective function value. So the MP value does not necessarily decrease with the increase of
iterations. However, the overall change trend of MP value is decline. With the increase of update
points, the value of the objective function will tend to be stable, which also reflects the practi-
cability of the black-box optimization problem and the effectiveness of the EGO-LR algorithm.
When the optimization is carried out twelve times, a total of 48 simulations are carried out.
Fig. 11 shows the plot of residual variance, contour plot of pressure distribution of the impeller
and contour plot of the flow trace of the optimal value in the simulation calculation process
respectively.

In Fig. 11a, from the analysis of the simulation result graph, the post-processing calculation
of the optimal value parameters has good convergence. The convergence residuals are stable below
10−3 and the convergence curve has no oscillation phenomenon. so the calculation results are
reliable. The load-bearing pressure distribution of the impeller is shown in Fig. 11b, which differ-
ent colors represent different pressure values. The dark red color indicates the maximum pressure
distribution of the impeller, and the dark blue color indicates the minimum pressure distribution
of the impeller. Fig. 11c is the contour plot of the flow trace of the fluid when the impeller is
designed with optimal parameters. It can be seen that there is no obvious turbulence phenomenon
after the fluid passes through the impeller, and the maximum flow velocity can reach 14.4515 m/s,
the initial flow velocity has been greatly improved. The specific information of the initial value
before optimization and the optimal value after optimization are shown in Table 5. The MP value
in the initial scheme is 188.2550 KPa, and the optimized MP value is 165.0120 KPa. When the
convergence conditions are met, the optimized MP value drops by 12.35%, which reduces the
load-bearing pressure value of the impeller and ensures that the impeller can run better under
load.
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Figure 11: The simulation results. (a) The residual variance curve, (b) Contour plot of pressure
distribution of the impeller, (c) Contour plot of the flow trace
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Table 5: The optimization results

The design variable The target values

β1(◦) β2(◦) D1(mm) Z MP(KPa)

The initial value 68 20 59 9 188.2550
The optimized value 76.8095 28.9497 55.0249 9 165.0120

The convergence error 0.8288%
The optimization percentage 12.35%

5 Conclusion

Based on the Kriging surrogate model, a new adaptive surrogate model construction method,
namely the EGO-LR is proposed. Through the verification and comparison of 16 benchmark
functions and the application of optimization design of impeller hydrodynamics, the following
conclusions are drawn:

(1) From the view of balancing local and global search, the proposed EGO-LR algorithm
efficiently constructs a surrogate model that meets the accuracy requirements and realizes the
function of global optimization.

(2) The proposed EGO-LR algorithm can quickly change from local optimization to global
optimization when facing the problems of the large range of design variables and multiple local
extrema of the objective function. The proposed algorithm starts optimization only when the
initial model is successfully constructed and meets a certain accuracy, so that the addition of
points and optimization are carried out simultaneously, which improves the optimization efficiency
while ensuring accurate requirement.

(3) The proposed method has good performance and practicability in hydrodynamic analysis
which reduces the calculation amount and complexity of finite element numerical analysis. The
influence of relevant parameters on impeller bearing pressure and impeller performance is ana-
lyzed, and the structural parameters of the impeller that meets the boundary conditions in the
flow field is optimized. Taking the maximum pressure value as the objective function of the EGO-
LR algorithm, the optimal value satisfying the convergence condition is finally obtained through
multiple iterations combined with the simulation software.
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Appendix A.
Table S1: The specific information of the functions

Function Dimension Expression The true optimal solution

Forrester 1 f (x)= (6x− 2)2 sin(12x− 4), x ∈ [0, 1] –6.0207
Santner 1 f (x)= exp(−1.4x) cos(3.5πx), x ∈ [0, 1] –0.6758

Branin 2

f (x)= a(x2 − bx2
1 + cx1 − r)2 + s(1− t) cos(x1)+ s,

a = 1, b = 5.1

4π2
, c = 5

π
, r = 6, s = 10, t = 1

8π
,

x1 ∈ [−5, 10], x2 ∈ [0, 15]

0.3979

Sasena 2
f (x)= 2+ 0.01(x2 − x2

1)2 + (1− x1)2 + 2(2− x2)2

+7 sin(0.5x1) sin(0.7x1x2), xi ∈ [0, 5] –1.4565
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Table S1 (continued)

Function Dimension Expression The true optimal solution

Threehump 2 f (x)= 2x2
1 − 1.05x4

1 +
x6

1
6 + x1x2 + x2

2, xi ∈ [−5, 5] 0

Sixhump 2
f (x)=

(
4− 2.1x2

1 +
x4

1
3

)
x2

1 + x1x2 +
(
−4+ 4x2

2

)
x2

2,

x1 ∈ [−3, 3], x2 ∈ [−2, 2]

0

Goldprice 2

f (x)= [1+ (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2

+6x1x2 + 3x2
2)]× [30+ (2x1 − 3x2)2

(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)],
xi ∈ [−2, 2]

3.0002

Hartman3 3

f (x)=−∑4
i=1 αi exp(−∑3

j=1 Aij(xj −Pij)
2),

xi ∈ (0, 1),α = (1, 1.2, 3, 3.2)T

A =

⎛⎜⎜⎝
3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎞⎟⎟⎠
P = 10−4

⎛⎜⎜⎝
3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

⎞⎟⎟⎠

–3.8627

Colville 4

f (x)= 100(x2
1 − x2)2 + (x1 − 1)2 + (x3 − 1)2

+90(x2
3 − x4)2 + 10.1((x2 − 1)2

+(x4 − 1)2)+ 19.8(x2 − 1)(x4 − 1),
xi ∈ [−10, 10]

0

Hartman4 4

f (x)= 1
0.839

[
1.1−∑4

i=1 αi exp
(
−∑4

j=1 Aij(xj −Pij)
2
)]

,

xi ∈ [0, 1],α = (1, 1.2, 3, 3.2)T

A =

⎛⎜⎜⎝
10 3 17 3.50 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎞⎟⎟⎠
P = 10−4

⎛⎜⎜⎝
1312 1696 5569 124 8232 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎞⎟⎟⎠

–3.1342

Shekel5 4 m = 5

f (x)=−∑m
i=1

(∑4
j=1(xj −Cji)

2 +βi

)−1
,

xi ∈ [0, 10],β = 1
10

(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T

C =

⎛⎜⎜⎝
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3.6
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3.6

⎞⎟⎟⎠
–10.1532

Shekel7 4 m = 7 –10.4029
Shekel10 4 m = 10 –10.5364
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Table S1 (continued)

Function Dimension Expression The true optimal solution

Fried 5 f (x)= 10 sin(πx1x2)+ 20(x3 − 0.5)2 + 10x4 + 5x6,
xi ∈ [0, 1]

0

Hartman6 6

f (x)=−∑4
i=1 αi exp(−∑6

j=1 Aij(xj −Pij)
2),

xi ∈ (0, 1),α = (1, 1.2, 3, 3.2)T

A =

⎛⎜⎜⎝
10 3 17 3.50 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎞⎟⎟⎠
P = 10−4

⎛⎜⎜⎝
1312 1696 5569 124 8232 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎞⎟⎟⎠
–3.0425

Detpep 8
f (x)= 4(x1 − 2+ 8x2 − 8x2

2)2 + (3− 4x2)2

+16
√

x3 + 1(2x3 − 1)2 +∑8
i=4 i ln(1+∑i

j=3 xj),
xi ∈ [0, 1]

10.6751


