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ABSTRACT

Actual engineering systems will be inevitably affected by uncertain factors. Thus, the Reliability-Based Multidis-
ciplinary Design Optimization (RBMDO) has become a hotspot for recent research and application in complex
engineering system design. The Second-Order/First-Order Mean-Value Saddlepoint Approximate (SOMVSA/-
FOMVSA) are two popular reliability analysis strategies that are widely used in RBMDO. However, the SOMVSA
method can only be used efficiently when the distribution of input variables is Gaussian distribution, which
significantly limits its application. In this study, the Gaussian Mixture Model-based Second-Order Mean-Value
Saddlepoint Approximation (GMM-SOMVSA) is introduced to tackle above problem. It is integrated with the
Collaborative Optimization (CO) method to solve RBMDO problems. Furthermore, the formula and procedure of
RBMDO using GMM-SOMVSA-Based CO(GMM-SOMVSA-CO) are proposed. Finally, an engineering example
is given to show the application of the GMM-SOMVSA-CO method.

KEYWORDS
Uncertain factors; reliability-based multidisciplinary design optimization; saddlepoint approximate; gaussian
mixture model; collaborative optimization

1 Introduction

Multidisciplinary Design Optimization (MDO) is a methodology that deals with complex and
coupled engineering system design problems [1,2]. MDO uses the cooperative mechanism of inter-
action to design complex systems and subsystems to improve product performance [3,4]. In actual
engineering, the exchange of information between coupled disciplines will lead to the spread of
uncertain factors [5–8]. However, in the original MDO method, the influence of uncertain factors
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is ignored, which may lead to product failure [9–11]. The Reliability-Based Multidisciplinary Design
Optimization (RBMDO) method is proposed to deal with the influence of uncertain factors [12–23].
In RBMDO, reliability analysis methods mainly include three methods: the analytical method, the
approximate analytical method, and the simulation method [24–27]. The analytical method can be
used to handle simple reliability constraints. The simulation method requires lots of samples to obtain
accurate analysis results [28]. The approximate analytical method is widely used because of its balance
between calculation accuracy and efficiency [29,30].

Approximate analytical methods in multidisciplinary reliability analysis methods include First-
Order/Second-Order Mean-Value Reliability Analysis (FOMVRA/SOMVRA) methods [31]. How-
ever, both of them require the Rosenblatt transformation, which may add to the complexity of the Limit
State Function (LSF), resulting in low accuracy for uncertainty analysis [32,33]. To tackle this problem,
Huang et al. [34] proposed a First-Order Mean-Value Saddlepoint Approximation (FOMVSA)
method. Papadimitriou [35] proposed a Second-Order Mean-Value Saddlepoint Approximation
(SOMVSA) method to increase the calculated precision of the FOMVSA method. In SOMVSA,
however, only when the distribution of input random variables is Gaussian distribution can the output
Moment Generating Function (MGF) be directly expressed by the input MGF.

To deal with this problem, Papadimitriou et al. [36] proposed a Gaussian Mixture Model-
based Second-Order Mean-Value Saddlepoint Approximation (GMM-SOMVSA) method by using
a Gaussian mixture model instead of randomly distributed random variables. Thus, in this study, the
GMM-SOMVSA method is introduced and is integrated with the Collaborative Optimization (CO)
method [37–39] to solve RBMDO problems. Furthermore, the formula and procedure of RBMDO
using GMM-SOMVSA-Based CO (GMM-SOMVSA-CO) are proposed.

The other parts of this paper are organized as follows. In Section 2, MDO and RBMDO models
are introduced. Current reliability assessment methods in RBMDO are also reviewed. In Section 3,
the computational procedure of GMM-SOMVSA is introduced. In Section 4, the proposed method
is explained, namely, the RBMDO method combining GMM-SOMVSA and CO (GMM-SOMVSA-
CO). In Section 5, the calculated precision of the proposed method is proved using an engineering
example. Finally, Section 6 concludes the paper.

2 The Emulation and Approximation Ways for the Reliability Assessment in RBMDO Issues
2.1 The RBMDO Model

The RBMDO model is shown in Eq. (1).

min
DV

f (ds, d, μXs
, μX, μY)

s.t. Pr[Gi(ds, d, Xs, X, Y) ≤ 0] ≥ 1 − �(−βt)

g(ds, d, μXs
, μX, μY) ≤ 0

h(ds, d, μXs
, μX, μY) = 0

DV= {ds, d, μXs
, μX}

(1)

where: g(•) ≤ 0 represents the inequality constraint. f (•) represents the design goal of the design
optimization problem. ds represents the deterministic shared variable. d represents the deterministic
local variable. h(•) = 0 represents the equality constraint. Y represents the coupling variables between
different disciplines. Xs represents the uncertainty shared variable. X represents the uncertainty local
variable. Pr[•] ≥ 1 − �(−βt) represents the reliability constraint in the design optimization problem.
G(•) represents LSF. βt represents the reliability index in the optimization objective. μ is mean value
of random parameters.



CMES, 2022, vol.132, no.2 555

2.2 Emulation and Approximation Ways for the Reliability Assessment
The reliability Pr[Gi(•) ≤ 0] can be expressed as following:

Pr[Gi(d,ds,XR) ≤ 0] =
∫

Gi(d,ds ,XR)≤0

fXR(XR)dXR (2)

where: XR is random design variables and XR = {X, XS, Y}. fXR(XR) is the joint Probability Density
Function (PDF) of XR.

Joint PDF is non-linear and random variables are multi-dimensional [40]. Therefore, under
the modern scientific system, it is not easy to directly find the solution of Eq. (2). Currently,
three strategies are often used to estimate Pr[Gi(•) ≤ 0]: the sampling-based methods, the Most
Probable Point (MPP) based methods, and the moment matching methods [41–46]. Besides the above
methods, the Saddlepoint Approximation (SA) is a novel alternative method which is widely utilized
in reliability engineering [47,48]. Here, different SA methods, including FOMVSA, SOMVSA, and
GMM-SOMVSA, are introduced into RBMDO.

3 The Reliability Evaluation Method with GMM-SOMVSA
3.1 FOMVSA

FOMVSA only uses the first two sample points of random variables as the research objects [47].
The Cumulative Distribution Function (CDF) and PDF of the LSF can be obtained by SA. And use
of the MGF of the input random variables to compute the MGF of the LSF is allowed. These features
make the computational procedure simple and clear; thus, it can roughly solve RBMDO problems.
The detailed computational procedure is as follows:

Step I: Linearize the LSF. Linearized LSF using first-order Taylor expansion at the deterministic
variable’s value or the random variable’s mean. The expansion expression is shown in Eq. (3) [34]:

G̃ = g̃(d, X) = g(d∗, μX) +
n∑

i=1

∂G
∂di

∣∣∣∣
d

(di − di
∗
) +

n∑
i=1

∂G
∂Xi

∣∣∣∣
μX

(Xi − μXi) (3)

where: d is a deterministic variable and d = (d1, d2, . . . , dn); g(•) represents the LSF; X is a random
variable and X = (X1, X2, . . . , Xn); μX is the mean value of the random variable X; d∗

i is the value of
the deterministic variable di.

Step II: Calculate the Cumulative Generating Function (CGF) of the LSF. If the CGF of the
random variable X is KX(t), it can be expressed by Eq. (4):

KX(t)= ln[MX(t)] (4)

where: MX(t) is the MGF of the random variable X. The expression of MX(t) is shown in Eq. (5):

MX(t) =
∫ ∞

−∞
etxfX(x)dx (5)

where: fX(x) is the PDF of random variables.

Two important functional properties of CGF are given below to further illustrate the role of CGF
in the reliability analysis method based on SA [34]:

Property 1: If the random variables in the variable space X = (X1, X2, . . . , Xn) are independent,

and the corresponding CGF is KXi(t). Then the CGF of the response Y =
n∑

i=1

Xi is KY(t) =
n∑

i=1

KXi(t);
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Property 2: If X = (X1, X2, . . . , Xn) is random variable and its CGF is KXi(t). Then the CGF of
Y = cXi + d (c and d are constants) is KY(t) = KXi(ct) + dt.

By these two properties, the CGF of G̃ is showed in Eq. (6):

KG̃(t) =
(

g(d∗, μX) +
n∑

i=1

∂G
∂di

∣∣∣∣
d

(di − di
∗
) −

n∑
i=1

∂G
∂Xi

∣∣∣∣
μX

μXi

)
t

+
n∑

i=1

KXi

(
∂G
∂Xi

∣∣∣∣
μXi

t

) (6)

Find the solution where the first derivative of the above formula is equal to zero:

K ′
G̃
(t) =

(
g(d∗, μX) +

n∑
i=1

∂G
∂di

∣∣∣∣
d

(di − di
∗
) −

n∑
i=1

∂G
∂Xi

∣∣∣∣
μX

μXi

)

+
n∑

i=1

∂G
∂Xi

∣∣∣∣
μXi

K ′
Xi

(
∂G
∂Xi

∣∣∣∣
μXi

t

)
= 0

(7)

Step III: Calculate the PDF and CDF of the LSF. Through Eq. (7), the value of saddlepoint ts can
be obtained. Finally, SA method is used to approximate the PDF and CDF of the LSF. The PDF of
the LSF can be calculated as follows:

fG̃ ≈
[

1
2πK ′′

G̃(ts)

]1/2

e[K
G̃

(ts)] (8)

where: K ′′
G̃
(•) is the second derivative form of CGF.

The failure probability (CDF of the LSF) can be obtained by Eqs. (9) or (10):

FG̃ = P[g̃(X) ≤ 0] ≈ �(w) + φ(w)

(
1
w

− 1
v

)
(9)

FG̃ = P[g̃(X) ≤ 0] ≈ �

(
w + 1

w
log

v
w

)
(10)

where: φ(•) and �(•) are the PDF and CDF of the standard normal distribution, respectively, and
w = sign(ts){2[−KG̃(ts)]}1/2, v = ts[K ′′

G̃(ts)]1/2; sign(ts) is a piecewise function related to the saddlepoint
ts, as shown in Eq. (11):

sign(ts) =
⎧⎨
⎩

1, ts > 0
0, ts = 0
−1, ts < 0

(11)

In this method, the cost of calculating the limit state gradient is independent of the number
of random variables. Only the first-order sensitivity derivative of the random variables needs to be
input. Therefore, the most significant superiority of the FOMVSA method is that it reduces the
computational cost [34]. Nevertheless, this method only uses Taylor first-order expansion, which leads
to poor approximation of the LSF. This problem is especially notable when the variance of the random
variables is large. Thus, this method is appropriate only when the standard deviation of random
variables is small and the uncertainty of the model is low.
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3.2 SOMVSA
To improve the calculation accuracy of FOMVSA, SOMVSA method is proposed [35]. Compared

with FOMVSA, this method has a more accurate approximate solution. And it can also solve the
problem that FOMVSA cannot handle the large standard deviation of random variables [48]. The
detailed computational procedure is as follows:

Step I: Linearize the LSF. Linearized LSF using second-order Taylor expansion at the determin-
istic variable’s value or the random variable’s mean. Its expression is as follows:

Ĝ = ĝ(d, X)

= g(d∗, μX) +
n∑

i=1

∂G
∂di

∣∣∣∣
d

(di − di
∗
) + 1

2

n∑
i=1

n∑
j=1

∂2G
∂di∂dj

∣∣∣∣
d

(di − d∗
i )(dj − d∗

j )

+
n∑

i=1

∂G
∂Xi

∣∣∣∣
μX

(Xi − μXi) + 1
2

n∑
i=1

n∑
j=1

∂2G
∂Xi∂Xj

∣∣∣∣
μX

(Xi − μXi)(Xj − μXj)

(12)

After simplifying the above equation, as shown in Eq. (13):

Ĝ = ĝ(d, X)

=
n∑

i=1

(
∂G
∂Xi

∣∣∣∣
μX

+
n∑

j=1

∂2G
∂Xi∂Xj

∣∣∣∣
μX

μXj

)
Xi + 1

2

n∑
i=1

n∑
j=1

∂2G
∂Xi∂Xj

∣∣∣∣
b

XiXj

+

⎛
⎜⎜⎜⎝

g(d∗, μX) −
n∑

i=1

∂G
∂Xi

∣∣∣∣
μX

μXi + 1
2

n∑
i=1

n∑
j=1

∂2G
∂Xi∂Xj

∣∣∣∣
μX

μXiμXj

+
n∑

i=1

∂G
∂di

∣∣∣∣
d

(di − di
∗
) + 1

2

n∑
i=1

n∑
j=1

∂2G
∂di∂dj

∣∣∣∣
d

(di − d∗
i )(dj − d∗

j )

⎞
⎟⎟⎟⎠

(13)

Express the above equation as a matrix polynomial form, as shown in Eq. (14):

Ĝ = Q(X) = XTAX + bTX + c (14)

The parameter expression is as follows:

Aij = 1
2

∂2G
∂Xi∂Xj

∣∣∣∣
μX

;

bi = ∂G
∂Xi

∣∣∣∣
μX

+
n∑

j=1

∂2G
∂Xi∂Xj

∣∣∣∣
μX

μXj ;

c = g(d∗, μX) −
n∑

i=1

∂G
∂Xi

∣∣∣∣
μX

μXi + 1
2

n∑
i=1

n∑
j=1

∂2G
∂Xi∂Xj

∣∣∣∣
μX

μXiμXj

+
n∑

i=1

∂G
∂di

∣∣∣∣
d

(di − di
∗
) + 1

2

n∑
i=1

n∑
j=1

∂2G
∂di∂dj

∣∣∣∣
d

(di − d∗
i )(dj − d∗

j )

(15)

Step II: Calculate the CGF of the LSF. Through the above derivation process, the MGF of the
LSF Ĝ can be expressed as follows:

MY(t) =
∫ ∞

−∞
etQ(X)fX(x)dx (16)

where: MY(t) is MGF of the LSF. take the natural logarithm of MY(t) to obtain the CGF of the LSF Ĝ.
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Step III: Calculate the PDF and CDF of the LSF. Take the derivative of the CGF of the LSF Ĝ
and make it equal to zero. Solve the above equation to get saddlepoint ts. Then combine Eqs. (9) or
(10) to get the PDF and CDF of the LSF Ĝ.

It should be noted that only when the input distribution is Gaussian input distribution can the
SOMVSA method directly use the MGF of the input random variables to represent the output MGF
like FOMVSA. Therefore, SOMVSA is only valid when the distribution of input variables is Gaussian
distribution.

3.3 GMM-SOMVSA
Regarding the problem that MVSOSA cannot handle non-Gaussian input variables, the GMM-

SOMVSA method is proposed [36]. This method uses the Expectation Maximization (EM) algorithm
to find the parameters of the Gaussian mixture model, thereby transforming the joint distribution of
non-Gaussian inputs into the Gaussian mixture model. Finally, the MVSOSA method is used to solve
the reliability of the system. The detailed steps are as follows:

Step I: Extract a sample of size M from the copula function C(uk). Where, uk = (uk
1, . . . , uk

2)(k =
1, . . . , M).

Step II: Use the inverse marginal CDFs and produce a sample (x1, . . . , xn) as [xk
1, . . . , xk

n] =
[F−1

1 (uk
1), . . . , F−1

n (uk
n)]. After selecting a Gaussian input distribution number K, the joint PDF can be

expressed as follows:

fX(x) =
K∑

k=1

pk

exp[− (X−μk)T
∑−1

k (X−μk)

2
]√∣∣2π

∑
k

∣∣ (17)

where: K is the number of Gaussian input distributions. pk is the weight of the kth Gaussian
distribution. μk is the mean vector of the kth Gaussian distribution.

∑
k is covariance matrix of the

kth Gaussian distribution.

Step III: Apply the EM algorithm to solve the parameters pk, μk,
∑

k of the Gaussian mixture
distribution. The detailed computational procedure is as follows:

Expected steps:

pi(k|n) = pi
kf (xn|μi

k,
∑i

k )
K∑

k=1

pi
kf (xn|μi

k,
∑i

k )

(18)

Maximization steps:

μi+1
k =

N∑
n=1

pi(k|n)xn

N∑
n=1

pi(k|n)

(19)

∑i+1

k
=

N∑
n=1

pi(k|n)(xn − μi+1
k )(xn − μi+1

k )
T

N∑
n=1

pi(k|n)

(20)
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pi+1
k =

N∑
n=1

pi(k|n)

N
(21)

where: i represents the ith cycle; p(k|n) represents the probability that the nth sample data belongs to
the kth sub-model (k = 1, . . . , K); xn are sample points extracted from arbitrary input distribution
(n = 1, . . . , M).

The corresponding parameters are updated once every iteration. The iterative convergence
conditions of the algorithm are as follows:

||θ i+1 − θ i|| ≤ ε (22)

where: θ is parameter vector, namely, θ = {pk,μk,
∑

k }; ε is arbitrarily small positive number.

Step IV: Linearize the LSF. From Eq. (14), the expanded LSF can be obtained.

Step V: Calculate the CGF of the expanded LSF.

The MGF of LSF can be expressed as follows:

MY(t) = ∫ ∞
−∞ etQ(X)fX(x)dx

= ∫ ∞
−∞ etQ(X)

K∑
k=1

pk

exp[−(X − μk)
T ∑−1

k (X − μk)

2
]√∣∣2π

∑
k

∣∣ dx
(23)

where: MY(t) is the MGF of LSF.

Take the natural logarithm of MY(t) to obtain the CGF of the LSF Ĝ.

Step VI: Calculate the PDF and CDF of the LSF. First, take the derivative of the CGF of the LSF
Ĝ and make it equal to zero. Second, solve the above equation to get saddlepoint ts. Finally, the PDF
and CDF of the LSF Ĝ is solved by Eqs. (9) or (10).

4 The Procedure of GMM-SOMVSA-CO

The GMM-SOMVSA is integrated with the CO method to solve the RBMDO problem, namely
GMM-SOMVSA-CO method.

The solving procedure of GMM-SOMVSA-CO is as follows:

Step I: Set the initial value of the design variables dsys,(k)

i , μsys,(k)

Xi
, μsys,(k)

XS
, μsys,(k)

Y•i
, μsys,(k)

Yi• ; ddis,(k)

i , μdis,(k)

Xi
,

μ
dis,(k)

XS
, μdis,(k)

Y•i
, μdis,(k)

Yi• . The letter i represents the ith discipline. k represents the kth cycle. The superscripts
dis and sys represent the discipline level and system level, respectively.

Step II: System-level optimization. The optimization model is as follows:

min
DV

f = f (dsys,(k)

i , μsys,(k)

Xi
, μsys,(k)

XS
, μsys,(k)

Y•i
, μsys,(k)

Yi• )

s.t.Ji = (dsys,(k)

i − ddis,(k−1)

i )2 + (μ
sys,(k)

Xi
− μ

dis,(k−1)

Xi
)2

+(μ
sys,(k)

XS
− μ

dis,(k−1)

XS
)2 + (μ

sys,(k)

Y•i
− μ

dis,(k−1)

Y•i
)2

+(μ
sys,(k)

Yi• − μ
dis,(k−1)

Yi• )2 ≤ ε, i = 1, 2, 3, . . . , n

(24)

where: Ji represents the compatibility constraint of the ith discipline; ε is an arbitrarily small positive
number.
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Step III: Discipline-level optimization. The solution obtained by Eq. (24) is the design parameter
of the ith discipline. The optimization model is as follows:

min
DV

Ji = (dsys,(k)

i − ddis,(k−1)

i )2 + (μ
sys,(k)

Xi
− μ

dis,(k−1)

Xi
)2

+ (μ
sys,(k)

XS
− μ

dis,(k−1)

XS
)2 + (μ

sys,(k)

Y•i
− μ

dis,(k−1)

Y•i
)2

+(μ
sys,(k)

Yi• − μ
dis,(k−1)

Yi• )2

s.t.Pr[g
i
(ddis,(k)

i , μdis,(k)

Xi
, μdis,(k)

XS
, μdis,(k)

Y•i
, μdis,(k)

Yi• ≤ 0)] ≥ 1−�(−βt),

dmin ≤ ddis,(k)

i ≤ dmax, Xmin ≤ μ
dis,(k)

Xi
≤ Xmax, Xmin

s ≤ μ
dis,(k)

XS
≤ Xmax

s

Ymin ≤ μ
dis,(k)

Y ≤ Ymax, XDV = {d, μX, μXs , μY}, i = 1, 2, . . . , n

(25)

The reliability analysis at the discipline-level can be divided into 6 steps: (1) Extract a sample of
size M from the copula function C(uk). (2) Use the inverse marginal CDFs and produce a sample
(x1, . . . , xn) as [xk

1, . . . , xk
n] = [F−1

1 (uk
1), . . . , F−1

n (uk
n)]. Choose a Gaussian input distribution number K.

(3) Apply the EM algorithm to solve the parameters of the Gaussian mixture distribution. (4) Use
Taylor series to expand LSF to second order at the random variable’s mean. (5) Calculate the CGF of
the expanded LSF. (6) Calculate the PDF and CDF of the LSF.

Step IV: Determine whether the algorithm has converged. The solution ddis,(k)

i , μdis,(k)

Xi
, μdis,(k)

XS
, μdis,(k)

Y•i
,

μ
dis,(k)

Yi• of Eq. (25) is substituted back to the system layer to calculate the compatibility constraints Ji. If
Ji ≤ ε and the Objective Function (OF) of the system layer is stable, output the solution of Eq. (25);
otherwise, continue to Step II and k = k + 1.

The GMM-SOMVSA-CO solution procedure is shown in Fig. 1.

start

Set the initial value and k=1

Use Eq. (11) to optimize the 
system layer

Use Eq. (12) to optimize the 
sub-discipline layer

Ji ε ?

Output

End

Yes

No

k=k+1

Figure 1: GMM-SOMVSA-CO solution procedure
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5 Engineering Example

This example is the design optimization of the working device of a mining excavator. The actual
picture and structure diagram of the mining excavator are shown in Figs. 2 and 3, respectively. The
working device of the excavator consists of a lifting mechanism and a pushing mechanism. The mech-
anism composition and movement principle of the working device are shown in Fig. 4. The purpose
of optimization is to maximize the lifting force f1 of the working device and minimize the size f2 of the
mechanism of the working device.

Figure 2: Actual pictures of mining excavator [49]

Saddle seat Hoisting wire 

rope

Bucket rod

Swinging arm

Bucket

Hoisting 
sheave

Figure 3: Schematic diagram of mining excavator structure

This optimization design has 11 design variables: r, S2, S3, S4, l3, H0, S0, l1, l2, S1, θ . r is the radius
of the hoisting sheave. S2 is the distance from the support point of the swinging arm to the center of
rotation. S3 is the height from the support point of the swinging arm to the ground. S4 is the distance
from the center of the hoisting sheave to the center line of the swinging arm. l3 is the length of the bucket
rod. H0 is the height of the loaded item. S0 is the starting position of loading items. l1 is the length of
the swinging arm. l2 is the length of the swinging arm below the pushing shaft. S1 is the distance from
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the saddle seat to the centerline of the swinging arm. θ is the corner of the bucket rod. Superscript M
means mean. The specific uncertainty information of input variables is shown in Table 1.

(3) Mechanism movement 
principle

A
D

B

C
Lifter 

motion

Pushing motion

(1)Lifting mechanism

A

C

(2)Pushing mechanism

D

B

Hoisting 
sheave

Hoisting 
wire rope

Swinging 
arm

Saddle seat

Bucket rod

Bucket

Figure 4: The mechanism composition and movement principle of the excavator working device

Table 1: Uncertainty information of design variables of excavator working device

Design variable Distribution
type

Standard
deviation

Mean Lower bound Upper
bound

r(m) Gumbel 0.001r rM 0.624 1.282
S2(m) Normal 0.001S2 SM

2 2.136 3.734
S3(m) Gumbel 0.001S3 SM

3 2.763 3.107
S4(m) Normal 0.001S4 SM

4 −0.641 0.614
l3(m) Normal 0.001l3 lM

3 9.884 10.8816
H0(m) Lognormal 0.001H0 HM

0 0 -
S0(m) Lognormal 0.001S0 SM

0 0 -
l1(m) Normal 0.001l1 lM

1 12.472 12.815
l2(m) Normal 0.001l2 lM

2 3.7416 7.689
S1(m) Lognormal 0.001S1 SM

1 1.08 1.22
θ (°) Lognormal 0.001θ θM −208 0

Divide this optimization problem into two disciplines, as shown in Fig. 5. Therefore, lifting
discipline is discipline 1; pushing discipline is discipline 2.
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Figure 5: Disciplinary division of optimization problems

The mathematical model of this optimization problem is shown as follows:

max
DV

f1 = qKmδw cos θ/Ksηg(Rmax − R0) cos δ

min
DV

f2 = 0.584l0.144
1 + 0.614S0.785

1 l0.541

2
H0 cos θ + 0.254l0.248

3 S0.845
0

s.t. g1
1 = 12.472 − l1 ≤ 0, g1

2 = l1 − 12.815 ≤ 0, g1
3 = 3.7416 − l2 ≤ 0,

g1
4 = l2 − 7.689 ≤ 0, g1

5 = 0.624 − r ≤ 0, g1
6 = r − 1.282 ≤ 0,

g1
7 = 2.136 − S2 ≤ 0, g1

8 = S2 − 3.734 ≤ 0, g1
9 = 2.763 − S3 ≤ 0,

g1
10 = S3 − 3.107 ≤ 0, g1

11 = −0.641 − S4 ≤ 0, g1
12 = S4 − 0.614 ≤ 0,

g1
13 = r − DOH ≤ 0, g1

14 = l2 − 0.42l1 ≤ 0, g1
15 = 0.4l1 − l2 ≤ 0,

g2
1 = 9.884 − l3 ≤ 0, g2

2 = l3 − 10.8816 ≤ 0, g2
3 = 2.763 − S3 ≤ 0,

g2
4 = S3 − 3.107 ≤ 0, g2

5 = 0.45 − Vcl ≤ 0, g2
6 = Vcl − 0.72 ≤ 0,

g2
7 = V − 0.85Vbucket ≤ 0, g2

8 = 0.68Vbucket − V ≤ 0, g2
9 = 0.28B − cv ≤ 0,

g2
10 = cv − 0.35B ≤ 0,

DV = {l1, r, S2, S3, S4, l2, S1, l3, θ , H0, S0}

(26)

where: q is the standard excavating bucket capacity; Km is the excavating bucket full factor. Ks is the
loose coefficient of the rock; ηg is the efficiency of the working device. Ge et al. [50] gave the calculation
methods of the specific intermediate design variables in the above optimization model.

The system-level and discipline-level optimization mathematical model can be expressed by
Eqs. (27)–(29).

The optimization model of the system layer is:

Find rsys, Ssys
2 , Ssys

3 , Ssys
4 , lsys

1
, lsys

2
, Ssys

1 , θ sys, lsys

3
, H sys

0 , Ssys
0

max f1 = qKmδw cos θ/Ksηg(Rmax − R0) cos δ

min f2 = 0.584l0.144
1 + 0.614S0.785

1 l0.541

2
H0 cos θ + 0.254l0.248

3 S0.845
0

s.t. J1 ≤ 0.01J2 ≤ 0.01

(27)

The optimization model of discipline 1 is:

Find rdis1, Sdis1
2 , Sdis1

3 , Sdis1
4 , ldis1

1
, ldis1

2
, Sdis1

1 , θ dis1

min J1 = (rsys − rdis1)2 + (Ssys
2 − Sdis1

2 )2 + (Ssys
3 − Sdis1

3 )2

+ (Ssys
4 − Sdis1

4 )2 + (lsys

1
− ldis1

1
)2 + (lsys

2
− ldis1

2
)2

+ (Ssys
1 − Sdis1

1 )2 + (θ sys − θ dis1)2

s.t. P1
i [g

1
i ] ≥ 0.98; i = 13, . . . , 15

g1
i ≤ 0; i = 1, . . . , 12

(28)
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The optimization model of discipline 2 is:

Find ldis2

1
, ldis2

2
, Sdis2

1 , θ dis2, ldis2

3
, Hdis2

0 , Sdis2
0

min J2 = (lsys

1
− ldis2

1
)2 + (lsys

2
− ldis2

2
)2 + (Ssys

1 − Sdis2
1 )2 + (θ sys − θ dis2)2

+ (lsys

3
− ldis2

3
)2 + (Hsys

0 − Hdis2
0 )2 + (Ssys

0 − Sdis2
0 )2

s.t. P2
i [g

2
i ] ≥ 0.98; i = 5, . . . , 10

g2
i ≤ 0; i = 1, . . . , 4

(29)

The target reliability is 0.98. The calculated results of GMM-SOMVSA-CO are contrasted with
MCS-CO and FOMVSA-CO in Tables 2 and 3. us represents the number of iterations of the system
layer. u1 and u2 represent the number of iterations of the disciplines 1 and 2, respectively.

Table 2: Design optimization results of excavator working device

Design
variable

FOMVSA-
CO

GMM-
SOMVSA-
CO

MCS-CO Design
variable

FOMVSA-
CO

GMM-
SOMVSA-
CO

MCS-CO

r(m) 0.6891 0.6675 0.6747 S0(m) 18.99 20.08 20.04
S2(m) 3.9179 3.7881 3.8117 l1(m) 13.8193 12.7164 13.0010
S3(m) 3.3471 3.3587 3.3607 l2(m) 5.8691 6.0060 6.0114
S4(m) −0.1791 −0.1491 −0.1604 S1(m) 1.6303 1.5844 1.5801
l3(m) 12.4315 11.4556 10.4997 θ (°) 38 35 36
H0(m) 9.51 10.05 10.51

Table 3: Reliability and iteration times of probability constraints

FOMVSA-
CO

GMM-
SOMVSA-
CO

MCS-CO FOMVSA-
CO

GMM-
SOMVSA-
CO

MCS-CO

P1
13 0.9804 0.9834 0.9854 P2

8 0.9844 0.9868 0.9939
P1

14 0.9846 0.9879 0.9904 P2
9 0.9815 0.9829 0.9866

P1
15 0.9820 0.9868 0.9870 P2

10 0.9891 0.9937 0.9951
P2

5 0.9916 0.9923 0.9941 u1 19513 24671 26413
P2

6 0.9842 0.9902 0.9937 u2 20134 26110 25346
P2

7 0.9853 0.9871 0.9896 us 76 99 98

The reliability indexes of the three methods all meet the requirements of the example. However,
compared with the FOMVSA-CO method, the GMM-SOMVSA-CO method and the MCS-CO
method are more reliable. In addition, the solution result of the GMM-SOMVSA-CO method is closer
to the solution result of the MCS-CO method, which indicates that the GMM-SOMVSA-CO method
has higher accuracy.
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6 Conclusion

In this paper, GMM-SOMVSA-CO is proposed to solve RBMDO issues. The proposed method
introduces an EM algorithm to find the parameters of the Gaussian mixture distribution. Then the
non-Gaussian input joint distribution is transformed into a Gaussian mixture distribution. Finally, the
response MGF is computed to reckon the reliability of the system. This paper also gives the detailed
computational procedure and mathematical model of GMM-SOMVSA-CO. An engineering example
is used to show the application of the GMM-SOMVSA-CO. The GMM-SOMVSA-CO method
mainly has three advantages. First, GMM-SOMVSA-CO has high solution accuracy. Second, it can
solve the problem that SOMVSA cannot handle (the non-normal Gaussian distribution). Third, the
optimization process of the GMM-SOMVSA-CO method is consistent with the existing engineering
design division. The optimization problem of each discipline level represents a certain discipline field
in the actual design problem. It is not necessary to consider the influence of other disciplines in the
analysis and optimization of a single discipline.
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