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ABSTRACT

Multi-scale object detection is a research hotspot, and it has critical applications in many secure systems. Although
the object detection algorithms have constantly been progressing recently, how to perform highly accurate and
reliable multi-class object detection is still a challenging task due to the influence of many factors, such as the
deformation and occlusion of the object in the actual scene. The more interference factors, the more complicated
the semantic information, so we need a deeper network to extract deep information. However, deep neural
networks often suffer from network degradation. To prevent the occurrence of degradation on deep neural
networks, we put forth a new model using a newly-designed Pre-ReLU, which inserts a ReLU layer before
the convolution layer for the sake of preventing network degradation and ensuring the performance of deep
networks. This structure can transfer the semantic information more smoothly from the shallow to the deep
layer. However, the deep networks will encounter not only degradation, but also a decline in efficiency. Therefore,
to speed up the two-stage detector, we divide the feature map into many groups so as to diminish the number
of parameters. Correspondingly, calculation speed has been enhanced, achieving a balance between speed and
accuracy. Through mathematical demonstration, a Balanced Loss (BL) is proposed by a balance factor to decrease
the weight of the negative sample during the training phase to balance the positives and negatives. Finally, our
detector demonstrates rosy results in a range of experiments and gains an mAP of 73.38 on PASCAL VOC2007,
which approaches the requirement of many security systems.
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1 Introduction

In recent years, computer vision has thrived with the support of deep learning [1–7]. Object
detection manifests great practical and research value in many subfields of computer vision.
Many object detection approaches proposed in earlier years [8,9] were built based on designing
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features manually. The shortcoming of those detectors is a lack of generalization. Now, more and
more state-of-the-art detection models using convolution neural networks (CNNs) [10,11] were
presented. By combining with CNN, object detectors display great power by addressing complex
tasks. There are two kinds of detectors: (1) two-stage method [12–20] and (2) one-stage method
[21–30]. As for the two-stage detector, firstly, the detector tries to find a set of candidate boxes
containing objects. These boxes will introduce important semantic information to classification
and regression in the second part. Two-stage methods obtained a better accuracy on PASCAL
VOC [31] and MSCOCO [32] than one-stage detectors. Object classification and bounding box
regression will take place simultaneously in one-stage approaches. These are very important in
building a secure system using image detection.

A new framework termed region proposal network (RPN) was proposed by Ren et al. [15]
in 2017. They made a detector titled Faster R-CNN, which used RPN to find the bounding box.
Object detection was regarded as a regression other than classification task in which you look only
once (YOLO) by Redmon et al. [22], which splits the input image into multiple parts for predicting
the object. Liu et al. [21] merged features from different layers to make an object prediction in
a detector, called single shot detector (SSD). SSD has a better performance in comparison with
YOLO. Pang et al. [25] exposed some imbalances during the phase of detection: sample imbalance
and feature imbalance. Consequently, the IoU-balanced, feature pyramid and a new loss function
termed L1 loss is proposed to moderate those imbalances in Libra R-CNN. Despite its attempts
to improve themselves, two-stage detectors were still better than one-stage detectors till the advent
of RetinaNet. Lin et al. [24] depicted that the severe imbalance between the foreground and
background samples is the critical determinant to influencing the accuracy of one-stage detectors,
and a newly-designed loss function termed focal loss was proposed to relieve such imbalance.

However, the one-stage approaches and two-stage approaches mentioned above have some
weaknesses. The main limitation of the popular methods is the insensitivity to multi-scale objects.
First, in most detection datasets, the scales of objects vary a wide range. What is worse, there
are some extremely big or small objects. Such scale variation will make it difficult for detectors
to take into account the different scales, hence weakening the accuracy of those detectors. All of
the methods summarized above have to reshape the input image to a small size at the beginning
of training, which inevitably misses some semantic information. Furthermore, more information
will be lost in the following convolution process. Accordingly, traditional detectors have lousy
performance for this multi-scale object detection. Second, there is a class imbalance problem in
existing datasets. The amount of easily classified samples is much more than those hard to classify.
Consequently, the detector is not robust enough.

Based on the above shortcoming of those networks, a new network entitled balanced Pre-
ReLU ResNet (B-PesNet) is proposed in our work. As a significant idea, we propose a Pre-
ReLU residual block that aims to prevent the degeneration of the deep networks, and then we
could build a deeper network without losing semantic information and a new loss function for
addressing the extremely class imbalance. The main contributions of our work are from two
aspects:
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(i) A new residual block within a Pre-ReLU is proposed, which is proven to mitigate the
degradation problem of deep neural networks when the network becomes deeper. The reason
for the degradation of deep neural networks is that too much semantic information is lost in
the repeated convolution process. However, our Pre-ReLU retains shallow semantic information
so that the deep neural unit can also use shallow information to calculate, thus solving the
degradation problem. This brings a more reliable model for many secure systems.

(ii) Balanced Loss (BL) is suggested for solving class imbalance and helping produce a model more
reliable than YOLOv2 [27], YOLOv3 [28], and YOLOv4 [26]. Compared with YOLOv5 [33],
we found that the accuracy of B-PesNet is comparable, and the speed is slightly inferior. By
introducing weight factor α, BL balances the proportions of different samples in the gradient
and prevents negative samples from dominating the direction of gradient descent, thereby
solving the problem of class imbalance. We give a mathematical deduction, as well as extensive
experimental evaluations, to confirm its crucial role for a reliable solution.

The following content in this paper is summarized as follows. We concisely retrospect the
research concerned with our work in Section 2. Then, particulars of our approach are given
in Section 3, where we introduce our B-PesNet. In Section 4, we will state our datasets and
evaluation metrics. Experimental results are listed in Section 5. Finally, Section 6 sums up our
outcomes and offers some standpoints for future work.

2 Related Work

With the widespread utilization of deep learning, object detection approaches have evolved
from traditional algorithms based on manual design to automatic extraction of features based on
deep learning. Modern object detectors can be approximately divided into one-stage [21–24,26–30]
and two-stage algorithms [12–20].

2.1 One-Stage Methods
The one-stage method combines extraction and detection into a whole. One-stage approaches

will not explicitly extract candidate regions but directly obtain the final detection result. Liu
et al. [21] proposed Single Shot Multi-Box Detector (SSD), which utilizes fused features from
different layers of the network. Redmon et al. [22] proposed You Only Look Once (YOLO).
YOLO integrates the information of the entire image to predict the object at each position. It
regards the entire image as input and predicts in the original image: the category and positioning-
related information of each part in the area. Lin et al. [23] proposed feature pyramid networks
(FPN). The main problem of this method is the insufficiency of object detection in dealing with
multi-scale changes. This network architecture can increase the feature map with various semantic
information, but rich spatial information is integrated under the premise of less calculation.

2.2 Two-Stage Methods
The working method of the two-stage detection method is to first generate a set of region

proposals and then classify and regress these proposals. Compared with the one-stage method, the
two-stage method is more accurate but less efficient. Firstly, 2000 region proposals were selected
through selective search, and each region proposal will be input into CNN to extract features. And
then, the classifier will utilize these features to classify. Subsequently, Girshick et al. [12] proposed
an improved version of R-CNN, which is termed Fast R-CNN. For R-CNN, the disadvantage
is that the efficiency begins to decline during preprocessing. For instance, use selective search to
track potential bounding boxes as input. This search method will make the model spend much
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time on useless data. Fast R-CNN introduces a new layer of the network, named ROI Pooling,
which cleverly puts regression into the network and fuses it with classification into a multi-task
model. Ren et al. [15] proposed Faster R-CNN. On the basis of Fast R-CNN, they added a
newly-designed structure termed region proposal network (RPN). Therefore, the model will utilize
RPN to find candidate boxes, which further improves efficiency.

3 Our Method

In this section, we firstly introduce the B-PesNet. Then BL is proposed to balance the class
imbalance during the network training.

3.1 Pre-ReLU
ResNet [34] solved the degradation problem of deep neural networks. However, after deepen-

ing the network without limitation, the network degradation problem still exists. It is considering
that the residual structure tackles the problem of network degradation by the skip connection,
which retains the shallow information. After a large number of experiments and rigorous math-
ematical verification, it has been found that if we put the ReLU [35] layer in front of the
convolution layer, we can get a Pre-ReLU residual block, and improve its performance.

We introduce the Pre-ReLU residual block starting from the standard residual unit:

yl = h (xl)+F (xl, Wl) . (1)

xl+1 = f (yl) . (2)

where xl is the input of the lth residual unit, and Wl means a set of weight factors associated
with the lth residual unit. f denotes the ReLU, h means a skip connection: h (xl) = xl, and F
represents the residual function. As it is known to all, the advantage of ResNet is contributed by
the skip connection. This design is able to propagate more lower layers information to the deeper
layers. However, in real training, we found that deeper ResNet caused a worse degeneration.

Then, if f is a skip connection: xl+1 = yl, we can convert Eq. (2) into Eq. (1):

xl+1 = xl +F (xl, Wl) . (3)

For the whole network, it becomes:

xL = xl +
L−1∑
i=l

F (xi, Wi) , (4)

where xL means the input of any residual unit that is behind the lth unit. Then, we found that,
for any unit, the information is able to be propagated from one unit to the others.

In order to build a gate, which is able to propagate information without loss from shallow to
deep layer, we put a ReLU layer in front of the convolution layer. As we assumed, the Pre-ReLU
residual block builds a clean pathway from shallower to a deeper layer. Then more features can
be reserved during convoluting.
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3.2 Feature Map Division
To decrease the number of parameters and enhance the running speed, we split the feature

map into many groups.

First, we divide the feature map into an equal dimension at the dimension level and divide it
into multiple groups with the same dimension. The workflow is shown in Fig. 1.
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Figure 1: The workflow of dividing. H represents the height of the feature map, and W means
the width of the feature map. c1

g expresses the dimension of each group feature map

Assume the size of the input image is H × W × c1, and divide it into g groups, then every
group has the same size as H ×W × c1

g , the corresponding convolution kernel size is h1 ×w1 × c1
g ,

and there are c2
g kernels. Then perform the SAME convolution, the size of each output is H ×

W × c2
g . Afterwards, concatenate the results of g groups, we will obtain an output feature map

whose size is H ×W × c2 finally. The amount of parameters of this convolution layer is:

h1 ×w1 × c1

g
× c2

g
× g = h1 ×w1 × c1 × c2 × 1

g
. (5)

3.3 B-PesNet
Pre-ReLU residual block contains three convolutional layers. The architecture of the block is

shown in Fig. 2, and the convolution kernel sizes are 1×1, 3×3, and 1×1, respectively. According
to the characteristics of the Pre-ReLU block, we construct a feature extractor named Pre-ReNet,
which contains 50 convolutional layers. The net can be divided into five parts based on the size
of the output image. The first part is a 7× 7 convolution kernel, the second part contains three
residual blocks, the third part contains four residual blocks, the fourth part contains six residual
blocks, and the fifth part contains three residual blocks. The structure of Pre-ReNet is shown in
Table 1.

The number of parameters required for this convolution operation decreases in inverse
proportion to the number of groups.
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Figure 2: The architecture of the Pre-ReLU residual block

Table 1: The architecture of Pre-ReNet

Layer name Architecture

Conv1 7× 7, stride = 2, padding = 3
Conv2 (Pre-ReLU residual block) × 3
Conv3 (Pre-ReLU residual block) × 4
Conv4 (Pre-ReLU residual block) × 6
Conv5 (Pre-ReLU residual block) × 3

The output of the lth convolution layer is:

xl
j = fl

⎛
⎝∑

i∈Mj

xl−1
i × kl

ij + bl
j

⎞
⎠ . (6)

where xj is the ith output, fl (g) is the ReLU function, kl
ij is the convolution kernel, × means the

convolutional multiplication, and the bias of this layer is bij.
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The output of the Mth pooling layer is:

xm
j = fs

(
βm

j S
(

xm−1
j

)
+ bm

j

)
. (7)

where the summation of the entire feature matrix is S (g), fs (g) means the SoftMax function,
the weight coefficient is βj, the input for this layer is xm−1

j , and the bias is bm
j . By combining

the Pre-ReNet with the loss introduced in the following subsection, we build a detector named
B-PesNet. Then the architecture of our B-PesNet is shown in Fig. 3.
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Figure 3: The architecture of B-PesNet

The input of the region proposal network (RPN) is a feature map, which is also used in
the region of interest (ROI) Align layer. And the output of RPN is a set of rectangular regions
named region proposals. We adopt the sliding window method to select a region titled anchor
by sliding a window on the input feature map to obtain the region proposals. In each sliding
window, multiple anchors are predicted simultaneously, and the maximum possible anchors of
each pixel point are denoted by K. In this paper, K is set to 9 since there are 3 scales anchors,
and each scale has 3 anchors with a different shape. Each anchor will be sent to SoftMax and
classified it is positive or negative. At the same time, all anchors will perform a regress to get
more actual coordinates. Then, the RPN will output the region proposals, which will be sent to
the ROI Align layer. ROI Align reduces and normalizes those region proposals, extracts the ROIs
feature vectors. And then, sends these vectors into the subsequent layer. The ROIs feature vector
obtains the regression results and classification results through the Fully Connected and SoftMax
layers.
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The classifier and regressor in the output layer work are as follows:

Classifier: This layer will output the probability of objects in region proposals. The classifier
will calculate the probability Pi of each element in the feature map i, which contains the object
after thoroughly scanning the feature map.

Regressor: In this layer, the intersection of union (IoU) will be utilized to measure the
accuracy of the bounding box (b-box). Then, the regressor will output the coordinates (x, y) of
the center point of each anchor box, as well as the width w and height h of this box. IoU is
calculated by Eq. (8):

IoU = A∩B
A∪B

. (8)

where A and B are the area of two region proposals.

Suppose the coordinates of the center point in the region proposal is (x, y), and the coor-
dinates combined by width and height of this region proposal is (w, h). Then, a region proposal
can be denoted by four indexes(x, y, w, h). Moreover, suppose

(
Px, Py, Pw, Ph

)
,

(
GX , Gy, Gw, Gh

)
,(

G′
χ , G′

y, G′
w, G′

h

)
, which are depicting the positive anchor, ground-truth box, and predicted box,

respectively. IoU can be used to adjust the edges of the predicted box in regression progress.
Assume the difference between the region proposal and ground-truth box is td = (

tx, ty, tw, th
)
,

where:

tx = Gx −PX

Pw
, ty = Gy −Py

Ph
. (9)

tw = log
(

Gw

Pw

)
, th = log

(
Gh

Ph

)
. (10)

Then the loss function of the regressor can be written as:

Le =
N∑

i=1

(
ti
d −ωT

d φ (Pi)
)2

. (11)

here the ROI feature vector is φ (Pi), the coefficient achieved from the training phase is ωT
K , the

total number of samples is N, i means the ith sample. Thus, the classifier outputs 20k scores that
denote the probability of 20 objects in the PASCAL VOC2007 dataset for each region proposal,
the coordinates of k boxes are output by the regressor, which are 4k vectors.

3.4 Balance the Classes with an Improved Cross-Entropy Loss
The balanced loss (BL) is designed to handle the severe imbalance between foreground and

background classes during the training phase, and the class imbalance overwhelms the cross-
entropy (CE) loss. Quickly classified negatives cover the majority of the loss and dominate the
gradient. Whereas, we propose to reshape the loss function to down-weight easy negatives, and
then the network focuses on hard negatives during the training stage.

We introduce our BL starting from the standard CE loss:

CE (p, y)=
{− log(p) if y=1
− log(1− p) otherwise. (12)
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here y ∈±1 indicates the ground-truth class, and p ∈ [0, 1] means the estimated probability of the
model for the class with label y = 1. For notational convenience, we define pt:

pt =
{

p if y=1
1− p otherwise. (13)

then rewrite CE (p, y)= CE (pt)=−log (pt).

A common method to address the imbalance of classes is to introduce a hyperparameter. In
our method, we introduce a weight coefficient α ∈ [0, 1]. In our experiments, α shows the ability
to balance the significance of positive/negative examples. Hence we write the BL as:

BL (p, y)=
{−α log(p) if y=1
−(1−α) log(1− p) otherwise. (14)

Then both positive/negative examples will dominate the gradient while α < 1, For notational
convenience, we define αt:

αt =
{
α if y=1
−(1−α) otherwise. (15)

and rewrite BL to BL (p, y)= BL (pt)=−αtlog (pt).

The loss is a simple but effective extension to the standard CE loss, as our follow-up
experiments show.

4 Data Processing and Evaluation Metrics

4.1 Data Processing
The data set trained, validated, and tested in this paper is the public dataset PASCAL

VOC2007. It is composed of 21 classes, 20 foregrounds, and 1 back-ground.

Objects in real life are often under various interferences and are not as simple as the samples
in the data set. A model trained with a simple data set will be challenging to apply to complex
and changeable real-world scenarios, i.e., generalization is not strong. In order to overcome such
a problem, online data enhancement operations will be introduced before training. Whether it
is the human eye or the shooting device, it is possible to observe the object from any angle in
the real world. The object might present a vastly different appearance due to the perspective.
Accordingly, we warp the picture without changing the relevant information of the label. Twist
operation can improve the generalization of the model in this respect. Besides this, there may
be various interferences in the actual scene, such as intense light, haze, stains, etc. Therefore,
we artificially highlight and blur the image to enhance the generalization of the model in such
scenarios.

4.2 Evaluation Metrics
We utilize some common evaluation criteria to evaluate our detector in this paper. We utilize

IoU, Precision, and Recall to evaluate our detector, and find the average of these experiments
through multiple experiments and evaluations, which are

Precision = TP/ (TP+FP) , (16)

and

Recall = TP/ (TP+FN) . (17)
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In Eqs. (16) and (17), TP indicates the number of samples for which the prediction is a
positive example, which is a positive example. FP expresses that the prediction is positive, which
is the number of samples for negative cases. FN represents that the prediction is negative, which
is the number of samples for positive cases. Accordingly, Precision expresses how many of the
predicted positive samples are genuinely correct, and Recall means how many of the predicted
samples are genuinely correct.

mAP = 1/C
N∑

k=i

(k = i)N P (K)�R (k). (18)

In Eq. (18) [7], C represents the number of categories included in the model, N means the
number of thresholds used as a reference, and k indicates the currently used threshold. P means
the precision rate, R expresses the recall rate, and AP indicates the area under the precision-recall
curve. The higher AP represents a better classifier. The average value of APs is mAP, where APs
mean the sum of different classes. The value of mAP is within [0, 1]. This index is the crucial
index of the object detection algorithms.

5 Experimental Results and Analysis

5.1 Experiment Setup
We adopt VOC2007 as the training set and perform data augmentation, which adds artificial

noise to each image. Moreover, we scale all inputs into the size of 224 × 224 to save calculation
resources. We utilize stochastic gradient descent (SGD) with momentum as the optimizer with
momentum as 0.9 and weight decay as 1e-4. All the experiments are performed on the same
computer, and the main hard-ware settings are Intel� Core TM i7-6700 CPU@3.40 GHz, GeForce
GTX 1070 GPU with 8 GB and 16GB RAM. All codes are written in Python, using PyTorch,
and running under Ubuntu 16.04.

5.2 Calculation Results Using Different Backbones
To test the impact of different backbones used in the detector, we have carried out experi-

ments on different feature extractors to compare the difference of mAP. The mAP and calculating
speed in the different condition is shown in Table 2. It is evident that the accuracy of our method
is higher than the others except for YOLOv5. The accuracy of our proposed B-PesNet is inferior
to YOLOv5 cause the network structure of YOLOv5 is more complex than B-PesNet. From this
point of view, our B-PesNet is still valuable and meaningful. The B-PesNet obtain a balance
between accuracy and speed.

Table 2: Results with different methods

Detector Network
Metrics

mAP Speed(ms/image)

Faster R-CNN [15]

ResNet18 0.6100 80
ResNet34 0.6305 92
ResNet101 0.6582 145
ResNext101 0.6754 120

Fast R-CNN [12] VGG16 0.6229 280

(Continued)
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Table 2 (continued)

Detector Network
Metrics

mAP Speed(ms/image)

YOLO [22] GoogLeNet 0.6228 60
YOLOv4 [26] CSPDarknet53 0.6927 31
YOLOv5 [33] CSPDarknet53 0.7134 51
B-PesNet Pre-ReNet 0.7086 132

5.3 Results by Different Detection and Recognition Approaches
To demonstrate the effect of the BL, we test some networks using BL or not. Table 3 shows

the mAP for each condition. In this table, the value of α in every BL is 0.75. The reason for
choosing 0.75 as the value of α will be discussed in subsequent sections. It is easily found that
our BL is able to be inserted into any network as a plug-in. What is more, BL improves the
performance of these methods. Furthermore, our B-PesNet is better than the other methods when
using ordinary CE. The mAP of B-PesNet will increase to 73.34% while using BL as the loss
function. The efficiency of the BL is shown in Fig. 4.

Table 3: Comparison with the different loss

Detector Network Loss function Results in mAP

Faster R-CNN [15]

ResNet18
CE 0.6100
BL 0.6326

ResNet34
CE 0.6305
BL 0.6506

ResNet50
CE 0.6460
BL 0.6686

ResNet101
CE 0.6582
BL 0.6803

ResNext50
CE 0.6678
BL 0.6876

ResNext101
CE 0.6754
BL 0.6942

Fast R-CNN [12] VGG16
CE 0.6229
BL 0.6431

YOLO [22] GoogLeNet
CE 0.6228
BL 0.6482

YOLOv2 [27] Darknet19
CE 0.6464
BL 0.6716

YOLOv3 [28] Darknet53
CE 0.6566
BL 0.6745

YOLOv4 [26] CSPDarknet53
CE 0.7027
BL 0.7256

(Continued)
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Table 3 (continued)
Detector Network Loss function Results in mAP

YOLOv5 [33] CSPDarknet53
CE 0.7121
BL 0.7356

B-PesNet Pre-ReNet CE 0.7086
BL 0.7334

Figure 4: The loss curve of object classification. The blue one represents our B-PesNet with BL,
and the orange one means our B-PesNet with CE. Obviously, the loss of B-PesNet with BL is
lower and converges more quickly

5.4 Results by Using Different Hyper-Parameters
We chose 20 different values of α to verify the effect of the various hyper-parameter settings

on BL performance. The result shows that when α is too small, the capability of BL will be
inferior, even exacerbating the problem of class imbalance. When α is close to 1, BL will lose its
effect and degenerate into ordinary CE. In this paper, we finally found that when α = 0.75, the
effect is the best. The experimental results are shown in Table 4.

Table 4: Results by using different hyper-parameters

Loss α mAP

BL 0.25 0.2753
0.30 0.3248
0.35 0.3746
0.40 0.4354
0.45 0.4987
0.50 0.5559
0.55 0.5884
0.60 0.6100

(Continued)
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Table 4 (continued)
Loss α mAP

0.65 0.6736
0.70 0.7145
0.75 0.7268
0.80 0.7017
0.85 0.6874
0.90 0.6752
0.95 0.6621
0.99 0.6432
0.999 0.6289

Figure 5: The detection results of B-PesNet. The detected target in the figure is marked by a green
bounding box, and the mAP of the target is displayed on the upper part of the bounding box.
The detection results of these actual scenes show that our B-PesNet has a good performance in
a complex environment with interference factors such as occlusion and deformation
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5.5 Results and Discussions
According to the results, we can infer that the semantic information is completely extracted,

and the objects are accurately detected. From Table 3, it can be seen that our B-PesNet gets
a balance between speed and accuracy. Table 3 shows that BL can tackle the class imbalance
problem and improve the accuracy of the detector from the perspective of data. This shows that
the research of deep learning can still start from data. As shown in Table 4, the parameters have a
significant influence on BL performance. It is considering the definition of the formula, α should
be set at a little larger value to have a better balance effect. Fig. 5 shows the detection results. In
this way, we demonstrate that the new proposed loss plays an essential role in building a reliable
detection for the security system.

6 Conclusions

We propose a method that improves the performance of the existing state-of-the-art two-stage
object detection framework by enriching semantic information in shallow layers and introducing
a new loss function, then demonstrate its effectiveness on the benchmark datasets. Our newly-
designed network outperforms the previous neural network frameworks. The proposed B-PesNet
shows above 1% mAP better than those typical object detectors. Compared with the existing
approaches, the image processing speed of our method is also boosted. Greater efficiency imparts
a higher practical value to the proposed method. This leads to a reliable solution for the applica-
tions of detection in security systems. In the future, we are interested in applying this detector to
more specific scenarios, e.g., Internet of Things (IoT) applications in healthcare and health [36]
and Blockchain-enabled IoMT [37].
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