
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2022.021299

ARTICLE

Cotangent Similarity Measure of Consistent Neutrosophic Sets and
Application to Multiple Attribute Decision-Making Problems in Neutrosophic
Multi-Valued Setting

Angyan Tu1,2, Jiancheng Chen3 and Bing Wang1,*

1School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
2Department of Computer Science and Engineering, Shaoxing University, Shaoxing, 312000, China
3Zhejiang Industry Polytechnic College, Shaoxing, 312000, China

*Corresponding Author: Bing Wang. Email: susanbwang@shu.edu.cn

Received: 06 January 2022 Accepted: 10 March 2022

ABSTRACT

A neutrosophic multi-valued set (NMVS) is a crucial representation for true, false, and indeterminate multi-
valued information. Then, a consistent single-valued neutrosophic set (CSVNS) can effectively reflect the mean
and consistency degree of true, false, and indeterminate multi-valued sequences and solve the operational issues
between different multi-valued sequence lengths in NMVS. However, there has been no research on consistent
single-valued neutrosophic similarity measures in the existing literature. This paper proposes cotangent similarity
measures and weighted cotangent similarity measures between CSVNSs based on cotangent function in the
neutrosophic multi-valued setting. The cosine similarity measures show the cosine of the angle between two vectors
projected into a multidimensional space, rather than their distance. The cotangent similarity measures in this study
can alleviate several shortcomings of cosine similarity measures in vector space to a certain extent. Then, a decision-
making approach is presented in view of the established cotangent similarity measures in the case of NMVSs. Finally,
the developed decision-making approach is applied to selection problems of potential cars. The proposed approach
has obtained two different results, which have the same sort sequence as the compared literature. The decision
results prove its validity and effectiveness. Meantime, it also provides a new manner for neutrosophic multi-valued
decision-making issues.

KEYWORDS
Neutrosophic multi-valued set; consistency single-valued neutrosophic sets; cotangent similarity measure; multiple
attribute decision-making

1 Introduction

Zadeh [1] proposed fuzzy sets for the first time to deal with fuzzy information in uncertain
problems. Atanassow [2] further extended the fuzzy set and proposed the intuitionistic fuzzy set, which
is described by a membership degree and a nonmembership degree. Smarandache [3] proposed the
concept of a neutrosophic set (NS) considering the truth, falsity, and determinacy membership degrees.
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NS shows its main merit in dealing with indeterminate and inconsistent information. Hence, NSs have
been widely used in image segmentation [4,5], decision making [6], clustering analysis [7], and so on.
Wang et al. [8] introduced the concept of a single-valued neutrosophic set (SVNS) within the real
interval [0,1] to more effectively solve practical problems. For example, some similarity measures of
SVNSs were applied in multiple attribute decision-making (MADM) [9,10] and clustering analysis
[11]. Then, the cross entropy of SVNSs was utilized for MADM [12] and object tracking [13]. Some
aggregation operators of SVNSs and correlation coefficients of SVNSs were used for MADM [14,15].
As the subclass of NS, some aggregation operators of simplified NSs (containing SVNSs and interval
NSs) [16–18] and similarity measures of simplified NSs [19] were presented and used for MADM.

When considering neutrosophic multi-valued/hesitant information, some similarity measures
of single-valued neutrosophic multisets (SVNMs) were proposed and used for medical diagnosis
[20] and MADM [21]. Multi-valued/hesitant NSs were introduced and applied in decision-making
[22–29]. However, MVNS loses some identical neutrosophic values due to hesitant characteristics,
thus the information aggregation of MVNSs may produce the union of multiple aggregated values
in MADM problems, which may lead to computational complexity [24]. Furthermore, converting
single-valued neutrosophic sequences in SVNM into SVNS [21] only contains the average value in the
transformation process, which may lead to the loss of useful information (e.g., standard deviation).
To solve these issues, Ye et al. [30] proposed a neutrosophic multi-valued set (NMVS), which contains
identical and/or different true, false and indeterminate values, and defined a new method that converts
NMVS into consistent single-valued neutrosophic sets (CSVNSs) in view of the mean and consistent
degree of the true, false and indeterminate sequences. They also introduced the correlation coefficients
of CSVNSs and applied them to MADM.

However, a similarity measure for CSVNSs was studied in the literature [30] as it is a key
mathematical tool for MADM problems in the setting of NMVSs. Therefore, we should propose
new similarity measures of CSVNSs to perform MADM in the case of NMVSs. In this paper, two
cotangent similarity measures of NMVSs are proposed and applied to the purchase decision issue
of potential cars. The rest of the paper consists of the following sections. Section 2 introduces some
concepts of NMVSs and CSVNSs. The cotangent similarity measures of the CSVNSs are established
from the cotangent function, and the properties of the cotangent similarity measures are demonstrated
in Section 3. Section 4 introduces the MADM algorithm with respect to the established cotangent
similarity measures of CSVNSs. Section 5 presents an example of purchase decision issues of potential
cars and the comparative results of the related approach to prove the effectiveness and rationality of
the new approach. Finally, conclusions and further works are put forward in Section 6.

2 Some Concepts of NMVSs and CSVNSs

This section introduces some concepts of NMVSs and CSVNSs presented by Ye et al. [30].

Definition 2.1 [30]. Let D = {d1, d2, . . . , ds} be a finite set. A NMVS Y defined on D is given by

Y = {< dj, NTY(dj), NIY(dj), NFY(dj) > |dj ε D} (1)

where NFY (dj), NIY (dj) and NTY (dj) are the falsity-membership function, the indeterminacy
membership function, and the truth membership function, respectively, which are described by three
multi-valued sequences NTY

(
dj

) = (
ϕY

1
(
dj

)
, ϕY

2
(
dj

)
, . . . , ϕY

qj
(
dj

))
, NIY

(
dj

) = (λY
1
(
dj

)
, λY

2
(
dj

)
, . . . ,

λY
qj

(
dj

)
) and NFY

(
dj

) = (
βY

1
(
dj

)
, βY

2
(
dj

)
, . . . , βY

qj
(
dj

))
with different and/or identical fuzzy values,

such that ϕY
k
(
dj

)
, λY

k
(
dj

)
, βY

k
(
dj

) ∈ [0, 1] (k = 1, 2, . . . , qj) and 0 ≤ sup NTY (dj)+ sup NIY (dj) + sup
NFY (dj) ≤ 3 for dj ∈ D (j = 1, 2, . . . , s).
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The basic element <dj, NTY (dj), NIY (dj), NFY (dj)> (j = 1, 2, . . . , s) in Y is simply denoted
as yj = 〈

NTj, NIj, NFj

〉 = 〈(
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, which is named a
neutrosophic multi-valued element (NMVE).

Definition 2.2 [30]. Set Y = {y1, y2, . . . , ys} as NMVS, where yj = 〈
NTj, NIj, NFj

〉 =
〈(ϕj
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of the average values of NTj, NIj, and NFj and the consistent degrees of NTj, NIj, and NFj (j = 1,
2, . . . , s), the CSVNS G = {g1, g2, . . . , gs} is transformed from NMVS. The consistent single-valued
neutrosophic element (CSVNE) of CSVNS is represented by gj = < (nNTj, bNTj), (nNIj, bNIj), (nNFj, bNFj)
> (j = 1, 2, . . . , s), where nNTj, nNIj, nNFj ∈ [0, 1] are the average values of NTj, NIj, and NFj and bNTj,
bNIj, bNFj ∈ [0, 1] are the consistent degrees of NTj, NIj, and NFj. Then, the average values of NTj, NIj,
and NFj and the consistent degrees of NTj, NIj, and NFj are obtained by the following formulae.
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where δNTj, δNIj, δNFj ∈ [0, 1] are the standard deviations corresponding to NTj, NIj, and NFj (j = 1, 2,
. . . , s), respectively, and qj is the number of fuzzy values in NTj, NIj, and NFj.

For two CSVNEs gj = <(nNTj, bNTj), (nNIj, bNIj), (nNFj, bNFj)> (j = 1, 2), both contain the following
relationships:

(1) If g1 ⊆ g2, there are nNT1 ≤ nNT2, nNI1 ≥ nNI2, nNF1 ≥ nNF2, bNT1 ≤ bNT2, bNI1 ≥ bNI2, and bNF1 ≥ bNF2;

(2) If g1 ⊆ g2 and g2 ⊆ g1, there are nNT1 = nNT2, nNI1 = nNI2, nNF1 = nNF2, bNT1 = bNT2, bNI1 = bNI2, and
bNF1 = bNF2.

By means of the average values of NTj, NIj and NFj and the consistent degrees of NTj, NIj, and
NFj, weighted correlation coefficients between CSVNSs are introduced below [30].

Definition 2.3 [30]. Set Y 1 = {y11, y12, . . . , y1s} and Y 2 = {y21, y22, . . . , y2s} as two NMVSs, where
yij =< NTij, NIij, NFij >=<
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j = 1, 2, . . . , s) are NMVEs. Suppose that the weight of yij (i = 1, 2; j = 1, 2, . . . , s) is wj with wj
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∈ [0, 1] and
∑s

j=1 wj = 1. Based on the consistent degrees and the average values of NTj, NIj, and NFj,
the weighted correlation coefficients between CSVNSs are presented by the following formulae:
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where bNTij, bNIij, bNFij, nNTij, nNIij, and nNFij are the consistent degrees and average values of NTij, NIij,
and NFij (i = 1, 2; j = 1, 2, . . . , s), which are produced by Eqs. (2)–(7).

3 Cotangent Similarity Measures of CSVNSs

This section introduces cotangent similarity measures and weighted cotangent similarity measures
between CSVNSs and their properties.

Definition 3.1. Let Y 1 = {y11, y12, . . . , y1s} and Y 2 = {y21, y22, . . . , y2s} be two NMVSs, where
yij =< NTij, NIij, NFij >=<
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j = 1, 2, . . . , s) are NMVEs. Then, cotangent similarity measures between CSVNSs are proposed
as follows:
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where bNTj, bNIj, bNFj, nNTj, nNIj, and nNFj are the consistent degrees and average values of NTij, NIij, and
NFij, which are produced by Eqs. (2)–(7).

Proposition 3.1. The cotangent similarity measures Cot1(G1, G2) and Cot2(G1, G2) in CSVNSs have
the following properties:

(Z1) Cot1(G1, G2) = Cot1(G2, G1) and Cot2(G1, G2) = Cot2(G2, G1);

(Z2) 0 ≤ Cot1(G1, G2), Cot2(G1, G2) ≤ 1;

(Z3) Cot1(G1, G2) = 1 if only if G1 = G2;
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(Z4) For any CSVNS G3 and G1 ⊆ G2 ⊆ G3, Cot1(G1, G2) ≥ Cot1(G1, G3) and Cot2(G2, G3) ≥
Cot2(G1, G3).

Proof: (Z1) It is obvious that the proof of the property (Z1) is straightforward.

(Z2) Since the values of |nNT1j − nNT2j |, |nNI1j − nNI2j |, |nNF1j − nNF2j |, |bNT1j − bNT2j |, |bNI1j − bNI2j | and
|bNF1j − bNF2j | for j = 1, 2, . . . , s are between 0 and 1 and the value of cotangent function falls in the
interval [π /4, π /2], the cotangent values in Eqs. (10) and (11) are also located between 0 and 1. Hence,
there is 0 ≤ Coti(G1, G2) ≤ 1 for i = 1, 2.

(Z3) For the two CSVNSs G1 and G2, if G1 = G2, this implies nNT1j = nNT2j, nNI1j = nNI2j, nNF1j = nNF2j,
bNT1j = bNT2j, bNI1j = bNI2j and bNF1j = bNF2j for j = 1, 2, . . . , s. Hence |nNT1j − nNT2j | = 0, |nNI1j − nNI2j | = 0,
|nNF1j − nNF2j | = 0, |bNT1j − bNT2j | = 0, |bNI1j − bNI2j | = 0, and |bNF1j − bNF2j | = 0. Thus Coti(G1, G2) = 1 for
i = 1, 2.

If Coti(G1, G2) = 1 for i = 1, 2, this implies cot(π /4) = 1 and |nNT1j - nNT2j | = 0, |nNI1j - nNI2j | = 0, |nNF1j

− nNF2j | = 0, |bNT1j − bNT2j | = 0, |bNI1j − bNI2j | = 0, and |bNF1j − bNF2j | = 0 for j = 1, 2, . . . , s. Then, there
are nNT1j = nNT2j, nNI1j = nNI2j, nNF1j = nNF2j, bNT1j = bNT2j, bNI1j = bNI2j and bNF1j = bNF2j for j = 1, 2, . . . , s.
Therefore, there is G1 = G2.

(Z4) Since there exists G1 ⊆ G2 ⊆ G3, there are |nNT1j − nNT3j | ≥ |nNT1j − nNT2j |, |nNT1j − nNT3j | ≥ |nNT2j

− nNT3j |, |nNI1j − nNI3j | ≥ |nNI1j − nNI2j |, |nNI1j − nNI3j | ≥ |nNI2j − nNI3j |, |nNF1j − nNF3j | ≥ |nNF1j − nNF2j |, |nNF1j −
nNF3j | ≥ |nNF2j − nNF3j |, |bNT1j − bNT3j | ≥ |bNT1j − bNT2j |, |bNT1j − bNT3j | ≥ |bNT2j − bNT3j |, |bNI1j − bNI3j | ≥ |bNI1j

−bNI2j |, |bNI1j − bNI3j | ≥ |bNI2j − bNI3j |, |bNF1j − bNF3j | ≥ |bNF1j − bNF2j |, and |bNF1j − bNF3j | ≥ |bNF2j − bNF3j |.
Since the cotangent function is a decreasing function within the interval [π /4, π /2], there are Cot1(G1,
G2) ≥ Cot1(G1, G3) and Cot2(G2, G3) ≥ Cot2(G1, G3).

When the importance of each yij is different, the weight of yij (i = 1, 2; j = 1, 2, . . . , s) is specified
as wj with wj ∈ [0,1] and

∑s

j=1 wj = 1. Thus, we present the weighted cotangent similarity measures of
CSVNSs.
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When wj =1/s (j = 1, 2, . . . , s), Eqs. (12) and (13) are reduced to Eqs. (10) and (11), which are
special cases of Eqs. (12) and (13).

4 MADM Approach Regarding the Proposed Cotangent Similarity Measures of CSVNSs

This part introduces a MADM approach corresponding to the proposed cotangent similarity
measures in the setting of NMVSs. When dealing with a MADM problem, there is often a set
of multiple alternatives T = {T 1, T 2, . . . , Tq}, evaluated by a group of multiple attributes E =
{e1, e2, . . . , es}. The weight vector of E is specified as w = (w1, w2, . . . , ws). Each alternative Ti

(i = 1, 2, . . . , q) is evaluated over the attributes ej by a NMVE yij =< NTij, NIij, NFij >=<(
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k ≤ 3 (k = 1, 2, . . . , qij). Hence, the NMVS Y i = {yi1,
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yi2, . . . , yis} and the decision matrix of NMVSs Y = (yij)q × s are established by the obtained NMVEs.
Therefore, we can perform the MADM problem through the following steps:

Step 1: Using Eqs. (2)–(7), the NMVS Y i = {yi1, yi2, . . . , yis} and the decision matrix Y = (yij)q.s

are transformed into the CSVNS Gi = {gi1, gi2, . . . , gis} and the decision matrix of CSVNSs G = (gij)q.s,
respectively.

Step 2: The ideal solution G∗ = (g1
∗, g2

∗, . . . , gs
∗) is determined by the ideal CSVNE:
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Step 3: The weighted cotangent similarity measures of the CSVNSs Gi and G ∗ for Ti are obtained
by the following equations:

WCot1 (Gi, G∗) =
s∑

j=1

wj cot

⎡
⎢⎣π

4
+ π

4
max

⎛
⎜⎝

∣∣nNTij − n∗
NTj

∣∣ ,∣∣nNIij − n∗
NIj

∣∣ ,∣∣nNFij − n∗
NFj

∣∣ ,

∣∣bNTij − b∗
NTj

∣∣ ,∣∣bNIij − b∗
NIj

∣∣ ,∣∣bNFij − b∗
NFj

∣∣

⎞
⎟⎠

⎤
⎥⎦ (15)

or
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Step 4: According to the values of the weighted cotangent similarity measure, the alternatives are
arranged in descending order, and the best one is selected.

Step 5: End.

5 Illustrative Example

To easily compare the proposed MADM approach with existing relevant MADM methods, this
section presents an illustrative example on the selection purchase of potential cars in [21] to illustrate
the effectiveness and rationality of the proposed MADM approach.

Customers want to choose a suitable car according to their own living needs and driving habits.
There are four types of potential cars, represented by the set of alternatives T = {T 1, T 2, T 3, T 4}. They
must satisfy the requirements of four indexes/attributes: (1) e1 is the fuel economy; (2) e2 is the price; (3)
e3 is the amenity; (4) e4 is the safety. The weight vector of E = {e1, e2, . . . , es} is expressed as w = (0.5,
0.25, 0.125, 0.125). The evaluation values of the four attributes for each alternative are expressed by
the NMVE yij =< NTij, NIij, NFij >=<

(
ϕij

1, ϕij
2, · · · , ϕij

qij
)

,
(
λij

1, λij
2, · · · , λij

qij
)

,
(
δij

1, δij
2, · · · , δij

qij
)

>

(i, j = 1, 2, 3, 4) for ϕij
k, λij

k, δij
k ∈ [0, 1]. Table 1 shows the decision matrix of NMVEs.

Table 1: The decision matrix of NMVEs

e1 e2 e3 e4
T1 <(0.5, 0.7), (0.3, 0.7), (0.2, 0.6)> <0.4, 0.4, 0.5> <(0.7, 0.8), (0.7, 0.7), (0.5, 0.6)> <(0.1, 0.5), (0.2, 0.5), (0.7, 0.8)>
T2 <(0.7, 0.9), (0.7, 0.7), (0.1, 0.5)> <0.7, 0.6, 0.8> <0.9, 0.4, 0.6> <(0.5, 0.5), (0.1, 0.2), (0.7, 0.9)>
T3 <(0.3, 0.6), (0.3, 0.4), (0.2, 0.7)> <0.2, 0.2, 0.2> <(0.6, 0.9), (0.5, 0.5), (0.2, 0.5)> <(0.4, 0.7), (0.2, 0.5), (0.2, 0.3)>
T4 <(0.8, 0.9), (0.6, 0.7), (0.1, 0.2)> <0.3, 0.5, 0.2> <(0.1, 0.5), (0.4, 0.7), (0.2, 0.5)> <(0.4, 0.4), (0.2, 0.2), (0.8, 0.8)>
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5.1 The Proposed MADM Approach for the Illustrative Example
In the environment of NMVSs, we apply the proposed MADM approach to the MADM problem

of the illustrative example and present the following algorithmic steps.

Step 1: Using Eqs. (2)–(7), all NMVSs in Table 1 are transformed into the decision matrix of
CSVNSs:

G =

⎡
⎢⎢⎣

G1

G2

G3

G4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

< (0.6, 0.8586), (0.5, 0.7172), (0.4, 0.7172) >

< (0.8, 0.8586), (0.7, 1), (0.3, 0.7172) >

< (0.45, 0.7879), (0.35, 0.9293) (0.45, 0.6464) >

< (0.85, 0.9293), (0.65, 0.9293), (0.15, 0.9293) >

< (0.4, 1), (0.4, 1), (0.5, 1) >

< (0.7, 1), (0.6, 1), (0.8, 1) >

< (0.2, 1), (0.2, 1), (0.2, 1) >

< (0.3, 1), (0.5, 1), (0.2, 1) >

< (0.75, 0.9293), (0.7, 1), (0.55, 0.9293) > < (0.30, 0.7172) , (0.35, 0.7879) , (0.75, 0.9293) >

< (0.9, 1), (0.4, 1), (0.6, 1) > < (0.5, 1), (0.15, 0.9293), (0.8, 0.8586) >

< (0.75, 0.7879), (0.5, 1), (0.35, 0.7879) > < (0.55, 0.7879), (0.35, 0.7879), (0.25, 0.9293) >

< (0.3, 0.7172), (0.55, 0.7879), (0.35, 0.7879) > < (0.4, 1), (0.2, 1), (0.8, 1) >

⎤
⎥⎥⎦

For example, using Eq. (2), calculating equation (0.5 + 0.7)/2, we get 0.6, which is the value of
the variable ϕ1

11. Also, using Eq. (5), calculating equation
√

(0.5 − 0.6)
2 + (0.7 − 0.6)

2, we get 0.8586,
which is the value of the variable ϕ2

11. With the same way, we obtain the other data.

Step 2: By Eq. (14), the ideal solution G∗ = (g1
∗, g2

∗, . . . , gs
∗) is yielded from the decision matrix

CSVNSs as follows:

G∗ =
{〈(0.85, 0.9293), (0.35, 0.7172), (0.15, 0.6464)〉, 〈(0.7, 1), (0.2, 1), (0.2, 1)〉
〈(0.9, 1), (0.4, 0.7879), (0.35, 0.7879)〉, 〈(0.55, 1), (0.15, 0.7879), (0.25, 0.8586)〉

}

Step 3: Using Eqs. (15) or (16), the values of WCot1(Gi, G∗) or WCot2(Gi, G∗) (i = 1, 2, 3, 4) are
obtained below:

WCot1(G1, G∗) = 0.6157, WCot1(G2, G∗) = 0.4909, WCot1(G3, G∗) = 0.5363, and WCot1(G4, G∗)
= 0.5205.

Or WCot2(G1, G∗) = 0.6171, WCot2(G2, G∗) = 0.6086, WCot2(G3, G∗) = 0.6552, and WCot2(G4,
G∗) = 0.6359.

Step 4: The ranking of all alternatives is T 1 > T 3 > T 4 > T 2 or T 3 > T 4 > T 1 > T 2, then the best
one is T 1 or T 3.

To investigate sensitivity to the weights of the four attributes, we select four weight vectors and
give the decision results of the potential cars, as shown in Table 2. It is obvious that different weight
vectors can affect the ranking of the four alternatives, and shows some sensitivity to the weights of the
four attributes in the example, as shown in Figs. 1 and 2.

Table 2: Decision results corresponding to four weight vectors

MADM
method

Weight vector Similarity measure value Ranking order The best
one

MADM
with
Eq. (15)

(0.6, 0.2, 0.1, 0.1) 0.6262,0.5047,0.531,0.539 T 1 > T4 > T 3 > T 2 T 1

(0.5, 0.25, 0.125, 0.125) 0.6157,0.4909,0.5363,0.5205 T 1 > T 3 > T 4 > T 2 T 1

(0.35, 0.25, 0.25, 0.15) 0.6024,0.4996,0.5667,0.4784 T 1 > T 3 > T 2 > T 4 T 1

(0.25, 0.25, 0.25, 0.25) 0.5770,0.4805,0.5870,0.4540 T 3 > T 1 > T 2 > T 4 T 3

(Continued)
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Table 2 (continued)

MADM
method

Weight vector Similarity measure value Ranking order The best
one

MADM
with
Eq. (16)

(0.60, 0.20, 0.1, 0.1) 0.7947,0.7831,0.8010,0.8035 T 4 >T 3 > T 1 > T 2 T 4

(0.5, 0.25, 0.125, 0.125) 0.7905,0.7857,0.8122,0.8017 T 3 > T 4 > T 1 > T 2 T 3

(0.35, 0.25, 0.25, 0.15) 0.7804,0.7950,0.8254,0.7938 T 3 > T 2 > T 4 > T 1 T 3

(0.25, 0.25, 0.25, 0.25) 0.7699,0.8000,0.8379,0.7873 T 3 > T 2 > T 4 > T 1 T 3

Figure 1: MADM with Eq. (15)

Figure 2: MADM with Eq. (16)
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6 Comparative Analysis

In this section, the proposed MADM approach based on the cotangent similarity measures is
compared with the MADM method in [21,30] to prove the feasibility and effectiveness of the proposed
MADM method.

To enhance the comparability, we use the same weight vector w = (0.5, 0.25, 0.125, 0.125) for
various MADM methods and present their decision results in Table 3. In Table 3, the ranking order
of the proposed MADM approach using Eq. (15) is mostly consistent with the MADM method
using Eq. (9) [30]. Two Eqs. (15) and (9) [30] using the parameter ‘max’, which has the same result.
It shows that the results are reasonable. Then, the ranking order of the MADM method proposed
by Eq. (16) is calculated with the average, which is the same as the MADM method using the cosine
measure [21]. The comparison results show the efficiency of the proposed MADM approach. However,
the MADM method using the cosine measure [21] does not consider the consistent degree in the
MADM process, which may lead to the loss of some useful information and the difference in sorting
results. Furthermore, the consistent degree of multi-valued sequences can affect the sorting results of
alternatives, revealing the importance of the consistent information in MADM problems, and making
the decision results more credible and reasonable.

Table 3: Ranking orders of various MADM methods

MADM method Ranking order The best one

The proposed MADM method using Eq. (15) T 1 > T 4 > T 3 > T 2 T 1

The proposed MADM method using Eq. (16) T 3 > T 4 > T 1 > T 2 T 3

The MADM method using Eq. (8) [30] T 1 > T 2 > T 4 > T 3 T 1

The MADM method using Eq. (9) [30] T 1 > T 3 > T 4 > T 2 T 1

The MADM method using the cosine measure [21] T 3 > T 4 > T 1 > T 2 T 3

The advantages of the cotangent similarity measure in this study can make up for some deficiencies
of the cosine similarity measure in the vector space to a certain extent. Using two different methods of
cotangent similarity measures, different ranking results can be obtained. It shows that the results have
excellent plasticity and rationality. At the same time, the method also provides a new way of thinking
about the multi-valued decision-making problem.

7 Conclusion

Based on the concepts of NMVS and CSVNSs, the cotangent similarity measures of CSVNSs are
proposed by the cotangent function. The proposed MADM method using the cotangent similarity
measures of CSVNSs is applied to perform the MADM problem with NMVSs. Then, the proposed
MADM method is applied to the selection problem of potential cars to verify the effectiveness
of the proposed MADM method. Compared with other MADM methods, the proposed MADM
method shows its high efficiency and rationality. In future research, we will further develop other new
similarity measures of CSVNSs and apply them in the fields of medical diagnosis/ assessment and
image processing in the setting of NMVSs.
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