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ABSTRACT

Ore conveyor belt rollers operate in harsh environments, making them prone to premature failure. Their service
lives are highly dependent on the stress field and bearing misalignment angle, for which limit values are defined
in a standard. In this work, an optimization methodology using metamodels based on radial basis functions is
implemented to reduce the mass of two models of rollers. From a structural point of view, one of the rollers is made
completely of metal, while the other also has some components made of polymeric material. The objective of this
study is to develop and apply a parametric structural optimization methodology to minimize the mass of the two
models of rollers. To represent the mechanical behavior of the rollers, simulations were performed using the finite
element method. During the numerical optimization process, the variable parameters were the dimensions of the
shaft and external tube. The geometric configuration that corresponded at the same time to the lowest mass and
acceptable ranges for the stress and bearing misalignment angle was determined. With the proposed methodology,
a 32.3% reduction in mass was obtained for a metal roller design and an 18.9% reduction for a polymer roller. In
both cases, the constraints were not violated. For the all-metal roller, the safety factors for the maximum stress and
bearing misalignment angle were 1.44 and 1.75, respectively, while for the polymer roller the corresponding figures
were 1.50 and 2.23. This work describes a low-computational-cost optimization methodology for roller designs that
have been little studied in the literature. Furthermore, the methodology could be adapted for use with other types
of rollers and rollers made of different materials.
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Nomenclature

DOE Design of Experiments
FEA Finite Element Analysis
GBNM Globalized Bounded Nelder-Mead
HDPE High-Density Polyethylene
LHS Latin Hypercube Sampling
RBF Radial Basis Functions
Di Design Variable
f (x) Objective Function
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fp (x) Penalized Objective Function
f̂ (x) Radial Basis Approximation Function
gi (x) The Value of the Constraint Function Evaluated at the Point x
gi Reference Value of the Constraint
k Non-Dimensional Exponent
SVM Maximum von Mises Stress
x General Point
x(i) Sampling Point
β Bearing Misalignment Angle
δi Penalized Objective Function’s Parameter
ψ Radial Basis Function Type
ωi Radial Basis Function Weight
‖.‖ Euclidean Norm

1 Introduction

In several sectors of the economy where products and commodities must be transported continu-
ously, the use of conveyor belts is an excellent choice. Ingale et al. [1] pointed out that conveyors are
often used to move materials safely from one place to another, a process that is both time-consuming
and expensive when carried out by humans. Conveyor belts depend on the use of several rollers to
ensure longitudinal movement of the belt so that the material is transported from one place to another.

However, as noted by Vasić et al. [2], rollers operate in harsh environments in the mining industry,
where they are subjected to high loads and temperatures, the effects of the weather and contamination
of the bearing lubricants. As a result of these factors, as well as inaccuracies during roller manufacture
and assembly and roller misalignment during use, as reported by Zhao et al. [3], a significant number of
rollers need to be replaced every year and roller life cycle can vary greatly, making the product prone to
premature failure. Compounding these problems, rollers are usually made of metal and weigh from 20
to 70 kg each, creating risks for the operator responsible for replacing the product when it is damaged,
as this activity is performed manually.

Roller mass can be reduced by using polymer or metals with a lower density than that of steel in
the manufacturing process. However, Brazilian standard ABNT NBR 6678.2017 [4], which regulates
the requirements for the manufacture and operation of conveyor belt rollers, does not mention
recommendations exclusively for rollers produced in materials other than steel, whether polymers or
other types of metals. Therefore, when a material other than that recommended by the standard is
used, it is the responsibility of the designer to understand the mechanical behavior of the material and
carry out the structural design appropriately.

The mechanical behavior of rollers in terms of the stress and strain distributions in the structure
can be evaluated using finite element analysis (FEA). By combining FEA and optimization techniques,
appropriate roller dimensions can be defined, thereby ensuring an acceptable service life with low mass.

According to Christensen et al. [5], there are three types of structural optimization: shape,
parametric and topological optimization. Choosing the most appropriate one to use in the design
process is essential before starting the optimization procedure. In the first approach, starting from an
initial model/geometry we try to find a new geometry by modifying the shape without removing or
adding material in regions that change the “topology” of the structure. In parametric optimization,
which is used in this work, the shape of the structure is unchanged, i.e., only some dimensions,
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such as section diameter, length and thickness are modified during the optimization. In topological
optimization, the results can be even more remarkable as there is a more significant change in the shape
of the structure, i.e., the “topology” (sets of regions with and without material) can be modified.

Several algorithms that can be used in an optimization procedure are mentioned in the literature.
According to Arora [6], some examples are the Conjugate Gradient, Modified Newton, Particle
Swarm, Simulated Annealing and Genetic algorithms. The choice of which algorithm to use depends
on the definition of the problem to be solved. However, as several iterations are generally required
to reach an accurate result regardless of the algorithm used, the optimization process may become
unfeasible depending on the time required to run each iteration. Jiang et al. [7] therefore suggested the
use of surrogate models as an alternative to reduce the computational cost of the optimization.

According to Rodrigues et al. [8], a surrogate model (also called a metamodel) is equivalent to
an approximate model that is used to replace an original high-fidelity model. Briefly, a metamodel
can be understood as a simplified function that aims to represent an original function but with a
lower computational cost. The simplified function is obtained by using a reduced number of responses
from the original function. In the present work, for example, each point is equivalent to a different
combination of variables (parameters) corresponding to the dimensions of the roller model to be
optimized.

Within this context, the present work describes and apply a low-computational-cost optimization
methodology for ore conveyor belt roller designs that have been little studied in the literature. The
objective of the study is to develop and apply a parametric structural optimization approach to reduce
the mass of two models of rollers, one made completely of metal, while the other also has some
components made of polymeric material. The variable parameters of the optimization problem (the
design variables) are the dimensions of the shaft and external tube.

The optimization framework uses metamodels based on radial basis functions (RBF). The meta-
models construction uses the structural responses of finite element simulations of the roller models
and the Globalized Bounded Nelder-Mead [9] is employed as the optimizer. The RBF metamodel
is iteratively refined using infill points. The optimization methodology is detailed in Subsections 2.3
to 2.5.

2 Ore Conveyor Belt Roller Optimization Procedure

This section introduces some concepts related to conveyor belt rollers, the formulation of the
optimization problems and the optimization strategy used.

2.1 Generalities about Ore Conveyor Belt Rollers
Conveyor belt rollers must direct, sustain and/or absorb the impact of loads from conveyor belts

loaded with material to be transported. To perform these functions, rollers consist essentially, from a
structural point of view, of three types of components: bearings, shaft and external tube.

The bearings are responsible for allowing the tube to rotate, and at the same time they transfer
the load from the contact between the tube and conveyor to the shaft. The shaft supports the roller
load and is fixed on two supports at its ends that prevent it moving vertically or axially. The external
tube (or barrel) is usually made of steel and is the part in contact with the belt.

In some roller models, two tubes can be used, as shown in Fig. 1. An alternative is to use bearing
holders, which hold the bearings in position and are in direct contact with the inner part of the roller,
as shown in Fig. 2. The models shown in Figs. 1 and 2 are the rollers that were studied in this work.
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Figure 1: Metal roller (longitudinal section view)

Figure 2: Polymer roller (longitudinal section view)

The current Brazilian standard for the design of this type of mechanical system (ABNT NBR
6678.2017 [4]) classifies rollers according to their use, stipulates the minimum load that must be
supported and defines the recommended dimensions and operating conditions. Based on this standard,
the two models studied here are classified as load rollers as they are directly responsible for supporting
the conveyor belt. Also, according to the standard, they must support at least the loads defined in
Table 1. These values are based on the serial number and length of the tube; the serial number refers
to the nominal diameter of the shaft, in mm, in the region where the bearings are positioned.

Table 1: Allowable loads for the rollers studied

Roller type Serial number Tube length (mm) Allowable load (N)

Roller J (metal roller) 45 760 11662
Polymer roller 50 800 15817

Also according to the standard, the maximum bending stress must be less than 100 MPa, while
the bearing misalignment angle when the roller is in operation must be less than 9′ (i.e., 0.15° or 0.0026
rad). Fig. 3 depicts the misalignment angle, represented by β.



CMES, 2022, vol.133, no.3 605

Figure 3: Bearing misalignment angle (adapted from [4])

For polymeric materials, a value of 100 MPa for the bending stress becomes impractical because
the material’s tensile strength is in a much lower range. Hence, it is recommended that a limit value be
stipulated according to the literature for the material studied. In the case of high-density polyethylene
(HDPE), the polymer used in one of the rollers studied here, the mechanical properties are within the
range of values shown in Table 2 according to Peacock [10].

Table 2: Properties of HDPE at 23°C (according to Peacock [10])

Property Value

Density (g/cm3) 0.94–0.97
Flexural modulus (MPa) 1000–1500
Tensile modulus (MPa) 1060–1380
Tensile yield stress (MPa) 18–31
Ultimate tensile strength (MPa) 22–31
Tensile elongation at break (%) 10–1500
Izod impact strength-notched (ft-lb/in) 0.4–4.0
Melting temperature (°C) 125–132

Unlike metals, polymers exhibit behavior that is highly dependent on factors such as mechanical
stress, loading time, temperature and molecular structure. In addition, any degradation of the material
has a great influence on its mechanical properties. Polymers also exhibit viscoelasticity, according to
Cheng et al. [11], which is the result of a combination of viscous behavior, typical of fluids, and elastic
behavior, typical of solids.

When the studies by Zhao et al. [12–14] are compared, it is clear that HDPE specimens behave
in different ways depending on the type of aging test used. In some cases, the modulus of elasticity
increased, making the material more rigid, while the elongation of the samples decreased, characteriz-
ing a tendency to embrittlement of the material. Understanding these concepts helps greatly to ensure
that finite element simulation represents the real behavior as closely as possible.
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2.2 Structural Analysis of the Rollers
According to Hutton [15], the finite element method (FEM) is a computational technique which

aims to provide approximate solutions to engineering problems. Basically, the method involves dividing
a structure into several elements connected to each other by points known as nodes. The problem is
then solved numerically, attributing an interpolation function to the variable of interest in each of these
elements.

Here, the Ansys commercial code was used to build the finite element model, and the correspond-
ing analyses during the optimization process followed the ABNT NBR 6678.2017 standard [4]. As
in Berto et al. [16], it was decided to analyze a quarter of the geometry, obtained by separating the
roller model in two planes of symmetry. As shown in Fig. 4, there are two cutting planes, for which
the corresponding sections are highlighted in orange, one longitudinal and the other transverse.

Figure 4: Model of a roller considering two planes of symmetry (bearings and bearing housings are
not shown)

The region where the load is applied was determined using the Hertz equations available in
Johnson [17]; a conservative higher stress scenario was assumed, and the hyperelastic behavior of
the belt material was not taken into account. Despite the real problem presenting dynamic loads, a
uniformly distributed load statically applied along the contact area was considered. As the design is
based on the guidelines of a standard code for static considerations, this assumption is used in the
optimization procedure.

The bearings were represented as spring components whose stiffness was calculated with the
equations provided by Gargiulo [18]. The bearings used in the real metal and polymer rollers are SKF
model 6309-2Z and 6310-2Z rollers, respectively. Table 3 gives the values of the properties used to
perform the numerical simulations for both the metal and polymer (HDPE) rollers.

Table 3: Properties of the components of the roller

Property Metal roller
(type J roller)

HDPE roller

Width of the (belt/tube) contact area (mm) 12.4 15
Bearing width (mm) 25 27
Bearing stiffness (N/mm) 189712.0 220966.4
Modulus of elasticity of the tube and bearing housing (GPa) 210 1.212

(Continued)



CMES, 2022, vol.133, no.3 607

Table 3 (continued)

Property Metal roller
(type J roller)

HDPE roller

Modulus of elasticity of the shaft (GPa) 210 210
Poisson ratio of the tube 0.3 0.46
Density of the material (kg/m3) 7850 950

The von Mises stress distribution and the angle β were obtained by numerical simulation. The
latter was calculated using the difference between the displacements of the upper and lower raceways
of the bearing. The von Mises stress distribution for the initial design of the metal roller can be seen
in Fig. 5.

Figure 5: Von Mises stress distribution in the metal roller (initial design)
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For each iteration during the optimization process, a static analysis simulation was performed. In
the case of the roller with components made of polymeric material, the effects of viscoelasticity were
not taken into account as there would be no certainty about how aging would affect the properties of
the material. Furthermore, the simulation time would be much longer if viscoelasticity were taken into
account, making the optimization unfeasible.

The numerical model was built predominantly with hexahedral (“brick”) quadratic solid finite
elements with an average size of 6 mm. This size was determined in a mesh convergence study and
provided acceptable accuracy. Figs. 6 and 7 show the finite element meshes for the rollers.

Figure 6: Finite element mesh for the metal roller (the bearings are modeled as a spring element and
are not shown)

Figure 7: Finite element mesh for the polymer roller (the bearings are modeled as a spring element and
are not shown)

2.3 Structural Optimization
According to Arora [6], an optimization problem is mathematically defined as the minimization or

maximization of an objective function, which may be subject to equality and/or inequality constraints.
The objective function depends on the design variables and, in the context of a structural optimization,
can represent the mass or volume of an object, while the variables can represent the dimensions of the
object. The design constraints, which can be allowable stresses or displacements or maximum and
minimum values of variables, stipulate boundaries that must be respected to make the design feasible.

After the optimization problem has been defined, an optimization method/algorithm should
be used to find the best feasible solution. The choice of optimization algorithm is directly related
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to the definition of the problem. According to Wetter et al. [19], optimization methods can be
classified as deterministic (direct search and gradient-based algorithms) or probabilistic. In gradient-
based algorithms, calculations of the derivatives (gradient) are needed, so this type of algorithm has
limitations when the objective function is discontinuous and/or non-differentiable [20]. Gradient-based
algorithms may also get stuck in a local optimum. While direct searches and probabilistic methods do
not need gradients, the latter, which are usually based on populations of points, require a large number
of simulations to reach convergence, and the former, like gradient-based algorithms, may stop in local
optima.

In this work, the Globalized Bounded Nelder-Mead (GBNM) algorithm, proposed by Luersen
et al. [9], was used. The GBNM method is a hybrid method that consists of an improved form of the
traditional direct search Nelder-Mead algorithm [21] combined with a probabilistic restart, making it
a global method if there are enough objective function evaluations.

In an optimization procedure, several iterations are usually required to obtain an appropriate
solution. If for each iteration a numerical simulation is performed, obtaining a suitable solution can
take several hours. In order to make this process more agile and still robust, one alternative is to
apply the optimization algorithm to a surrogate model, which is obtained from a reduced number of
simulations and is used as a substitute for the objective function.

2.4 Surrogate Modeling
A surrogate model (or metamodel) can be understood as a simplified representation obtained by

regression of the responses of a detailed model or of physical experiments. Here, the surrogate model is
an approximate function used to represent a computationally expensive model. In the literature, many
types of metamodels for engineering applications can be found, including polynomial regressions,
kriging, radial basis functions (RBFs) and artificial neural networks. RBFs are used in this work. As
observed by Jin et al. [22] and Hussain et al. [23], the major advantage of RBFs is that they adapt
well to different types of linear and non-linear problems. Diaz Gautier et al. [24] pointed out that
an important application of RBFs is in metamodel-based optimization of high computational cost
functions, and it is used in different schemes for practical problems in engineering.

According to Forrester et al. [25], an RBF metamodel corresponds to an interpolation that
combines several simple functions, just as in a polynomial model. However, bases are used, which are
radially symmetric functions centered on the various points scattered in the domain. The description
of the radial basis approximation function f̂ is defined by Eq. (1):

f̂ (x) = ωTψ =
∑n

i=1
ωiψ

(∥∥x − x(i)
∥∥)

, (1)

where
∥∥x − x(i)

∥∥ is the Euclidean distance between a general point x and the sampling point x(i), which
also corresponds to the center of the base. The term ωi corresponds to a weight for each RBF, and its
value has an influence on the accuracy of the metamodel. ψ represents the RBF type. In the literature,
the following functions are the most commonly used: linear, cubic, spline, Gaussian, multi quadratic
or inverse multi quadratic. The function type that fits best depends on the nature of the problem. Here,
cubic functions were used, where ψ is given by Eq. (2):

ψ (r) = r3, (2)

where r = ∥∥x − x(i)
∥∥.

As already mentioned, a metamodel is built from sampling points, which are created in a step
known as Design of Experiments (DOE). There are several ways to determine the initial distribution
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of these points in the design domain, and the choice of technique has a great influence on the accuracy
of the metamodel [26,27]. Possible sampling techniques include orthogonal array, full factorial, Sobol
sequence and Latin hypercube sampling. The technique selected in this work was Latin hypercube
sampling (LHS). According to Forrester et al. [25], samples generated by LHS are organized so that
there is only a single orthogonal projection on the axes of each point evaluated.

Even when DOE techniques are used to distribute the sampling points, this does not guarantee
that the design space will be adequately represented. This problem becomes even more evident when
there is a large number of variables, and as observed by Mack et al. [28], the larger the design space,
the more difficult it is to fill. As an alternative, new points (called infill points) can be added at the end
of each iteration in order to reduce the number of empty spaces and refine the metamodel [25,29–31].
The infill strategy used here is described in Subsection 2.5.

2.5 Problem Definition and Overview of the Optimization Procedure
The definition of the optimization problem for the metal roller design can be written as Eq. (3):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize {Mass (D1, D2, D3, D4)}

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

134 mm ≤ D1 ≤ 168 mm
110 mm ≤ D2 ≤ 131.6 mm
87 mm ≤ D3 ≤ 91 mm
54 mm ≤ D4 ≤ 63 mm
SVM ≤ 100 MPa
β ≤ 9′,

(3)

where Di are the design variables, which can be seen in Fig. 8, SVM represents the maximum von Mises
stress and β the bearing misalignment angle. The values of 100 MPa and 9′ for the constraints are from
the ABNT NBR 6678.2017 standard [4]. The design variables are chosen in order to not modify the
conceptual design of the roller, thus the design found in the optimization process can be used as a part
of the mechanical system already installed in the industrial plant.

Figure 8: Design variables for the metal roller

For the polymer roller, only two design variables were used (see Fig. 9), and the value of the
allowable von Mises stress was defined based on Peacock [10] using a safety factor of 1.5. The same
safety factor was imposed on the β angle to make the design more applicable from a practical point of
view since degradation of the material is not considered during the simulations. The definition of the
optimization problem for the polymer roller can therefore be written as Eq. (4):
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Minimize {Mass (D1, D2)}

Subject to :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

100 mm ≤ D1 ≤ 150 mm
44 mm ≤ D2 ≤ 60 mm
SVM ≤ 12 MPa
β ≤ 6′.

(4)

Figure 9: Design variables for the polymer roller

For both rollers, the stress and misalignment angle constraints are handled with a penalty
technique, which operates as follows. If for a given point a constraint is violated, the objective function
is penalized, making its value higher for that point and decreasing the chances of the point being
considered as a candidate for the optimum. The definition of the penalty function, which is added to
the objective function if a point is unfeasible, followed the methodology described by Smith et al. [32]
with adaptations, giving the Eq. (5):

fp (x) = f (x) +
∑m

i=1

((
gi (x)

gi

)k

− 1

)
f (x) δi, (5)

where fp (x) is the penalized objective function, f (x) the original objective function (not penalized),
m the number of constraints, gi (x) the value of the constraint function evaluated at x, gi the reference
value of the constraint (for example, for SVM the reference value is 100 MPa for the metal roller), k a
non-dimensional exponent defined by the user and δi a parameter which is equal to 1 if the constraint is
violated, or null otherwise. In this work, k = 1 for the metal roller problem, and k = 8 for the polymer
roller problem. The choice of an adequate penalization method and the corresponding tuning of its
parameters are always critical issues in the constrained optimization problems [33,34]. The values of
the exponent k were chosen after some preliminary numerical experiments. A higher k value was used
for the polymer roller problem because for this type of roller, optimum design candidates are close to
the unfeasible region. A higher penalty should therefore be used to ensure that the constraints will not
be violated.

The same optimization strategy is used for both rollers. The GBNM algorithm is used as the
optimizer of the RBF metamodel built with the responses of simulations performed on a finite element
model in the Ansys software. The metamodel is iteratively refined and optimized.

The steps in the optimization process can be seen in the flowchart in Fig. 10. With the points
generated using the LHS methodology, which correspond to different combinations of variables,
numerical simulations are performed in Ansys. Thus, the roller masses corresponding to the LHS
points are used to build the metamodel of the objective function, while the maximum von Mises stress
and bearing misalignment angle define whether or not the penalty function should be activated. The
penalized objective function is then optimized using the GBNM algorithm, and one iteration of the
proposed methodology is run.
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Figure 10: Steps in the optimization process

For the next iteration, two infill points (two new designs and the corresponding responses) are
added to the database of the sampling points. The infill points are the minimum found by the GBNM
algorithm and a randomly chosen point in the domain. These points (designs) are simulated, and a new
metamodel is built. Next, the updated metamodel is optimized again, and two new points (the optimum
found by the GBNM algorithm and one randomly chosen point) are then evaluated and used for a
new update. These steps are repeated until the previously defined maximum number of evaluations of
the objective function (i.e., number of simulations) is reached. Each of these evaluations (simulations)
refers to a finite element analysis.

3 Results and Discussion

The optimization of the metal roller was divided into three different cases. The first required
40 simulations (case 1), the second 50 (case 2) and the third 80 (case 3). The simulations and the
optimization processes were performed on a computer with an i7–3517U processor and 6 GB of RAM.

Case 1, the original optimization (as presented in Eq. (3)), required approximately 1:56 h and
consisted of 30 simulations with DOE sampling points and 10 simulations with infill points.

The other cases served as tests to check the functionality of the penalty function when at least
one of the constraints is violated. In case 2, a 60 MPa stress limit was used instead of the 100 MPa
constraint, i.e., an additional safety factor was included. Optimization of this case took approximately
2:18 h and used 30 simulations for DOE points and 20 for infill points.

In case 3, instead of the stress constraint, the bearing misalignment angle constraint was checked,
and a 5′ limit was imposed instead of the 9′ limit. This optimization required approximately 4:15 h and
used 30 simulations for DOE points and 50 for infill points.

As can be observed in many studies reported in the literature (e.g., [35]), there is not a universal
rule for the number of points of the initial sample (DOE points). And, since each point represents a
simulation, which corresponds to the highest computational cost within an iteration, the total number
of points (simulations) usually is limited by the available computational budget. Therefore, the number
of DOE points was chosen considering a trade-off between computational cost and space-filling; and
the number of infill points considered a trade-off between computational cost and exploration and
exploitation of the design space.

The roller mass excluding sealing elements and bearings was 69.14 kg for the initial design and
46.80 kg after optimization in case 1. The evolution of the mass after the DOE simulations can be seen
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in Fig. 11, where the DOE point with the lowest mass is marked in blue, and the best point after the
optimization process is in red.

Figure 11: Evolution of the mass of the metal roller during the optimization process (case 1)

The evolution of the stress constraint in the optimization for case 1 after the simulations using
each of the DOE points can be seen in Fig. 12, while the evolution of the angle constraint can be
seen in Fig. 13. Note that the constraints (stress and angle allowable values) were not violated in any
iteration, suggesting the penalization function was not activated during the whole optimization process
(the functionality of penalization function is tested in cases 2 and 3). It can be also noted that the best
point for case 1 was found in the first iteration (infill point #1), which indicates the problem was quite
well represented in the first metamodel, which used only DOE points.

Figure 12: Evolution of the maximum von Mises stress during the optimization process (case 1)

Figure 13: Evolution of the bearing misalignment angle during the optimization process (case 1)
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The values obtained for the final configuration of the roller and the initial version, as well as the
corresponding percentage variations, are shown in Table 4. The masses of the different versions of the
roller do not include the masses of the bearings and labyrinth seal components.

Table 4: Results of the optimization for the metal roller

Initial design Case #1 final
design
(variation)

Case #2 final
design
(variation)

Case #3 final
design
(variation)

Number of
simulations

– 40 50 80

Mass (kg) 69.14 46.80 (−32.3%) 49.12 (−29.0%) 47.27 (−31.6%)
D1 (mm) 154.00 168.00 (+9%) 167.04 (+8.5%) 167.92 (+9.0%)
D2 (mm) 111.60 110.00 (−1.4%) 110.00 (−1.4%) 110.00 (−1.4%)
D3 (mm) 91.00 91.00 (0.0%) 89.82 (−1.2%) 91.00 (0.0%)
D4 (mm) 54.00 54.00 (0.0%) 54.04 (+0.1% 54.86 (+1.6%)
SVM (MPa) 21.41 65.63 (+206.1%) 57.26 (+160.9%) 67.98 (+212.8%)
β (′) 4.96 5.12 (+3.2%) 5.09 (+2.6%) 4.86 (−2.0%)

With the optimization, a reduction in roller mass of approximately 32% for the standard case (case
1) was achieved while respecting the design constraint criteria.

Note that despite the final designs present high increases in the maximum stress compared to the
initial design, the allowable value was not surpassed. The respective values of the safety factors found
for the maximum stress and misalignment angle were 1.44 and 1.76. In cases 2 and 3, the functionality
of the penalty function was confirmed as the constraints not only were not violated, but also remained
below the maximum allowed values.

To optimize the polymer roller, the computational process required approximately 7 h and used a
total of 40 simulations. Of these 40 simulations, 20 were for the DOE and 20 for infill points. As in the
optimization of the metal roller, the 20 infill points were iteratively alternated between the best point
found by the GBNM algorithm and a randomly chosen point in the domain.

As shown in Table 5, the mass of the polymer roller was 29.57 kg for the initial design (excluding
sealing elements and bearings) and 23.99 kg for the optimized design, a reduction of approximately
19%. The evolution of the mass during the optimization process can be seen in Fig. 14, while the graphs
describing the evolution of the stress and angle constraints are shown in Figs. 15 and 16, respectively.
The red lines in these figures represent the allowable limits that should not be surpassed, i.e., a point
above this line corresponds to an unfeasible design as the constraint is being violated. Note that the
constraints were violated in some iterations of the optimization process, however, the optimization
algorithm found feasible points in other iterations, suggesting a proper functioning of the penalization
method. Also note that the best feasible point (best design) was found in the 19th iteration (infill
point #19).



CMES, 2022, vol.133, no.3 615

Table 5: Results of the optimization for the polymer roller

Initial design Final design Variation

Mass (kg) 29.57 23.99 −18.9%
D1(mm) 142.00 130.72 −7.9%
D2(mm) 61.00 44.00 −27.9%
Thickness (∅ext − D1) (mm) 27.60 33.20 +20.3%
SVM (MPa) 12.35 11.99 −2.9%
β (′) 11.27 4.03 −64.2%

Figure 14: Evolution of the mass of the polymer roller during the optimization process

Figure 15: Evolution of the maximum von Mises stress during the optimization process (polymer roller)
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Figure 16: 16 Evolution of the bearing misalignment angle during the optimization process
(polymer roller)

4 Concluding Remarks

The main objective of this work was to develop and apply a structural optimization methodology
to minimize the mass of two different ore conveyor belt rollers. As the simulations of the finite element
models of the rollers are time-consuming, a surrogate-based optimization strategy was used to alleviate
the computational burden of the optimization process.

The first roller analyzed can be considered, from a structural point of view, to be made only of
metal. In the second roller, the external component of the system (the external tube), which is in contact
with the belt, as well as the components fixed to the bearings, are made of polymeric material. The
designs are constrained by limits on the maximum stress and bearing misalignment angle.

For the metal roller, the functionality of the methodology when a penalty function is used was
confirmed by optimizing two test cases in addition to the standard optimization case. For this roller
design, a 32.3% reduction in relation to the initial mass was achieved with safety factors of 1.44 and
1.75 for the maximum stress and bearing misalignment angle, respectively. For the polymer roller, there
was an 18.9% reduction in mass compared with the initial design with safety factors of 1.50 and 2.23
for the maximum stress and misalignment angle constraints. The reference values used for this roller
were 18 MPa and 9’, respectively.

The finite element simulations, which the results are employed to build the surrogate models, were
carried out with some simplifications, e.g., the effects of the rotation of the roller, the effects of possible
vibrations and the viscoelastic effect of the polymer were not taken into account. However, the analyses
considered the recommendations in the current standard for the design of this type of mechanical
system, and descriptions of simulations carried out using a comparable approach can be found in the
literature.
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