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ABSTRACT

Pneumonia is part of the main diseases causing the death of children. It is generally diagnosed through chest X-
ray images. With the development of Deep Learning (DL), the diagnosis of pneumonia based on DL has received
extensive attention. However, due to the small difference between pneumonia and normal images, the performance
of DL methods could be improved. This research proposes a new fine-grained Convolutional Neural Network
(CNN) for children’s pneumonia diagnosis (FG-CPD). Firstly, the fine-grained CNN classification which can handle
the slight difference in images is investigated. To obtain the raw images from the real-world chest X-ray data, the
YOLOv4 algorithm is trained to detect and position the chest part in the raw images. Secondly, a novel attention
network is proposed, named SGNet, which integrates the spatial information and channel information of the images
to locate the discriminative parts in the chest image for expanding the difference between pneumonia and normal
images. Thirdly, the automatic data augmentation method is adopted to increase the diversity of the images and
avoid the overfitting of FG-CPD. The FG-CPD has been tested on the public Chest X-ray 2017 dataset, and the
results show that it has achieved great effect. Then, the FG-CPD is tested on the real chest X-ray images from
children aged 3–12 years ago from Tongji Hospital. The results show that FG-CPD has achieved up to 96.91%
accuracy, which can validate the potential of the FG-CPD.
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1 Introduction

Pneumonia is a common lung disease caused by a variety of infectious sources [1], including
viruses, bacteria, and fungi. It is one of the leading infectious diseases that cause the death of children
all over the world [2]. In 2017, an estimated 808,694 children died from pneumonia, accounting for
15 percent of all deaths in children under five years old [3]. Pneumonia poses a significant threat to
children’s life. Chest X-ray examination is an important method to diagnose pneumonia. Usually, the
chest X-ray image is analyzed by the radiologists. However, it has been found that the imaging changes
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of recent viral pneumonia are rapid, and the manifestations of pneumonia are varied [4]. Because of
the low Kv used in children to reduce radiation injury, the image quality of children’s chest X-rays is
less than adults. The interstitial part of the lungs in children is prosperous, the volume of the chest
cavity in children is small, and the chest X-ray shows many cardiovascular vessels, which can easily
cover up the lesions. Therefore, it is necessary to develop a more robust diagnostic method.

With the rapid development of Deep Learning (DL), the DL-assisted pneumonia diagnosis has
been widely researched [5]. As one of the most powerful kinds of DL, Convolutional Neural Network
(CNN) can handle the raw images directly and extract the feature of images for further diagnosis
[6,7], and it has been widely used in the field of medical image [8]. As shown in Fig. 1, there is very
little difference between abnormal sample 1 and normal sample 1, and the difference between normal
sample 1 and normal sample 2 is very obvious, which is consistent with the fine-grained characteristics
with small differences between classes and large intra-class differences. Therefore, it can be determined
that chest X-ray images of children with pneumonia have typically fine-grained characteristics. There
is little difference in chest X-ray images between normal people and patients with pneumonia, and the
chest X-ray images of patients with pneumonia are diverse [4], which leads to inefficient and unreliable
diagnosis methods based on CNN. Therefore, it is of great significance to develop more powerful
diagnostic methods to improve the performance of CNNs on children’s chest X-ray images.

Figure 1: Children chest X-ray images, from left to right, are abnormal sample 1, normal sample 1,
and normal sample 2

Fine-grained (FG) classification is a new paradigm in this field. The spirit of the fine-grained
classification is to find the local information in images to expand the small differences between
classes. Therefore, fine-grained classification can learn both the local and global features of the images,
which are suitable for pneumonia diagnosis using chest X-ray images. As shown in Fig. 2, the local
information of the chest X-ray image is located by using an attention mechanism. The attention
mechanism finds the discriminative parts denoted as the attention maps and then fuses the attention
maps and the raw images to locate the local parts denoted as the attention thermal map. As the
attention mechanism can judge the significant parts in the images, the FG method can pay attention
to these discriminative parts to train the CNN classifier while ignoring other irrelevant information
and promote the classification accuracy of CNN models [9].

In this research, a novel childhood Pneumonia Diagnosis based on a Fine-Grained Convolutional
Neural Network (FG-CPD) is proposed. Firstly, since the original chest X-ray images of children have
many sparse spaces, the YOLOv4 algorithm is adopted to localize and crop the children’s chest X-ray
images before introducing the CNN model. Secondly, a novel attention network (SGNet) is used to
locate and distinguish local information, and the attention-guided data augmentation is used to learn
these distinguished parts, and the feature maps are fused with the attention maps based on feature
fusion to improve the performance of FG-CPD. Then, it was further conducted on real chest X-ray
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images from children aged 3–12 years old between August 2020 and May 2021 from Tongji Hospital
in Tongji Medical College of Huazhong University of Technology and Science. The results show that
FG-CPD has achieved good results.

Figure 2: The images from the Chest X-ray 2017 dataset, from left to right, are the original raw image,
attention map, and attention thermal map

The rest of this research is as follows. Section 2 presents the related work. Section 3 presents
the paradigm of fine-grained CNN. Section 4 explains the methodologies of the FG-CPD. Section 5
presents the case studies and the experimental results. Section 6 concludes and gives future research
directions.

2 Related Work
2.1 Convolutional Neural Network Based Pneumonia Diagnosis

CNN has been extensively used in various classifications [10,11]. Most of the existing DL
pneumonia diagnostic methods are based on CNN. Sedik et al. [12] proposed a deep learning
module based on a Convolutional Neural Network (CNN) and convolutional long-term memory. The
experimental result showed that in some cases, the accuracy of pneumonia diagnosis reaches 100%.
Yu et al. [13] researched a novel pneumonia diagnosis by the ResGNet framework, and the results
showed that the average accuracy of ResGNet-C was up to 96.62%. Ahsan et al. [14] investigated a
novel pneumonia diagnosis module using multilayer perceptron and MLP-CNN. The experimental
results showed that the overall accuracy of the model reached 94.6%, which was better than existing
models. Jaiswal et al. [15] proposed a mask-RCNN model with connection context structure by
using chest X-ray images of pneumonia. Rahman et al. [16] used four different pre-trained CNN
for migration learning to diagnose bacterial and viral pneumonia and achieved 93.3% accuracy in
the diagnosis of mixed pneumonia. Nam et al. [17] studied the diagnosis of malignant pulmonary
nodules on chest film on the CNN network. The experimental results showed that the automatic
diagnosis algorithm based on deep learning is better than doctors in medical image classification and
improves the performance of doctors as second readers. Rajpurkar et al. [18] proposed a CNN model
CheXNeXt for detecting a variety of diseases, including pneumonia, the algorithm classifies clinically
important chest X-ray abnormalities, and its performance level corresponds to license radiologists.
Pham et al. [19] proposed a supervised multi-label classification framework based on CNN, which uses
the hierarchical dependence between abnormal labels to improve the diagnosis accuracy of chest X-
ray images. Sun et al. [20] proposed a novel framework of BEVGG for diagnosing COVID-19 through
chest X-ray images and used a biogeography-based optimization method to optimize hyperparameter
values of convolutional neural networks, and the experimental results showed that the framework
performs higher than the current methods. Gayathri et al. [21] proposed a computer-assisted diagnosis
method using chest X-ray images, sparse autoloader, and feedforward neural network FFNN, which
reached high results in diagnosing COVID-19. Showkat et al. [22] evaluated the performance of
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the ResNet model to classify pneumonia cases from CXR images, built a custom ResNet model,
and evaluated its contribution to performance improvement. Zhang et al. [23] proposed a new
pneumonia diagnosis network, which uses the hybrid attention module (CBAM) to obtain more
attention information, making the model have better performance in pneumonia diagnosis.

Although several previous studies combined CNN pneumonia diagnosis methods, there are few
studies on the diagnosis of pneumonia in children. Kermany et al. [24] collected and labeled a total
of 5232 chest X-ray images from children for pneumonia diagnosis. The improved CNN model for
pneumonia diagnosis proposed has obtained an accuracy of 92.8%. Then, several researchers follow
this work. Yi et al. [25] studied a scalable and interpretable deep convolutional neural network to
diagnose pneumonia using chest X-ray images. Chouhan et al. [26] proposed a new CNN model for
pneumonia diagnosis based on transfer learning, which improves diagnosis accuracy by integrating
multiple pre-training models. Hou et al. [27] proposed a six-layer convolutional neural network
combining maximum pooling, batch normalization, and an Adam algorithm that outperforms several
state-of-the-art methods with a 10-weight cross-validation method. In this research, the FG-CPD is
developed for the children’s pneumonia diagnosis. It tests in the Tongji Hospital dataset and the results
validate its performance.

2.2 Fine-Grained Convolutional Neural Network Classification
Fine-grained classification has been investigated in image classification. Fu et al. [28] proposed

a fine-grained classification method based on a cyclic neural network. The experiments are shown
that it is more efficient than a single classification network. Ju et al. [29] proposed a multi-task
learning framework named GAPNet, which has improved the accuracy of fine-grained classification
by integrating multi-scale and multi-site features. Wang et al. [30] proposed a new weakly supervised
fine-grained classification method, which used a gaussian mixture model to locate key regions and
finally improved the accuracy of fine-grained classification. The attention mechanism in FG is used
to find discriminative parts for the FG classification. Xiao et al. [31] proposed a two-level attention
algorithm. It was the first to use an attention mechanism to achieve fine-grained classification.
Zhang et al. [32] proposed a weakly supervised fine-grained classification method based on com-
ponent image representation, which can reach high accuracy just by using image category labels.
Zhao et al. [33] proposed a diversified visual attention model to improve classification accuracy by
increasing the variety of visual attention. Sun et al. [34] proposed a multi-attention and multi-category
constraint model to improve the computational efficiency of the model through the correlation of
the discriminant inner region. Zheng et al. [35] proposed a Trilinear Attention Sampling Network
(TASN) to achieve fine-grained classification. Ding et al. [36] proposed a fine-grained classification
model based on the attention pyramid CNN, and model performance was optimized by enhancing the
discriminating regions and eliminating background noise.

In this research, a new model FG-CPD is proposed, which uses the SGNet to expand the search
for the discriminative part. In FG-CPD, the raw chest X-ray is used directly, so the YOLOv4 is
used to detect and trim the position of the chest on the raw chest X-ray before feeding into the FG
classification.

3 The Fine-Grained Convolutional Neural Network

This section presents the Fine-Grained Convolutional Neural Network (FG-CNN) and the
detailed descriptions of its three main components.
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3.1 The Architecture of FG-CNN
FG-CNN architecture is shown in Fig. 3, and it mainly includes three parts. 1) Feature extraction

part. The feature extraction part usually uses a CNN network to extract the features of the images and
obtain the image feature map and attention map. 2) Feature fusion part. In this part, Bilinear Attention
Pooling (BAP) is used to fuse the attention maps and feature maps, and then the fused results would
feed to the fully connected (FC) layer for the FG classification. 3) Attention-guided data augmentation
part. Obtained attention maps can reflect the significant parts in the images, so they can be used to
guide the data augment to improve the performance of FG-CNN.

Feature
Extraction

Attention
Maps BAP

Attention-
Guided Data 
Augmention

Image Attention Maps

FC

Figure 3: The overall architecture of the FG-CNN

3.2 Feature Extraction Network
In this research, the Inception V3 network is used as a feature extraction network. The Inception

V3 is firstly pre-trained on the ImageNet before handling the raw chest X-ray images. Suppose that
the feature map obtained by Inception V3 is denoted as F ∈ RC×H×W , where C, H, and W represent
the number of channels, width, and height of the features respectively.

The attention maps are based on the feature maps. It passes the data features using a convolution
operation with a convolution kernel size of 1. Suppose that A ∈ RM×H×W denotes an attention map
where M is the number of the attention map. f (·) is the convolution function. The attention map can
be expressed as Eq. (1).

f (F) = A (1)

3.3 BAP Fusion
BAP fusion is to combine the attention maps and feature maps. As attention maps are to find the

discriminative parts in the images, so fusing the attention maps and feature maps can strengthen the
feature. BAP fusion is the element-wise production of the attention map and feature map which can
be denoted in Eq. (2). F is the feature map and AM is the attention map.

P =

⎧⎪⎪⎨
⎪⎪⎩

g (F · A1)

g (F · A2)

. . .

g (F · AM)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

f1

f2

. . .

fM

⎫⎪⎪⎬
⎪⎪⎭

(2)

In the BAP fusion, the features are multiplied with each layer of attention map element-wise, and
then the Global Maximum Pool (GMP) is used for the dimension reduction. Then the fusion feature
P ∈ RM×N can be obtained for the classification.
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3.4 Attention-Guided Data Augmentation
The attention-guide data augmentation has two sub-parts, the augmentation cropping, and the

augmentation dropping. Both data augmentation methods are based on attention maps. As shown in
Eq. (3), one layer k ∈ [1, M] in the attention maps is randomly selected and normalized. Then, the
augmentation cropping and the augmentation dropping are conducted.

A∗
k = Ak − min(Ak)

max(Ak) − min(Ak)
(3)

1) Augmentation Cropping: The crop mask Ck is generated with the threshold θc. When the
element in A∗

k is greater than θc, then the element in crop mask is set as 1, otherwise to be 0.

Ck (i, j) =
{

1, if A∗
k (i, j) > θc

0, otherwise
(4)

By using the crop mask Ck, the discriminative parts in the images are cropped from the original
images, and then those discriminative parts are scaled up to the size of the raw images. Then,
these cropped images, as the data augmentation, would be used to train FG-CNN.

2) Augmentation Dropping: The augmentation dropping is the opposite of the augmentation
cropping. In augmentation dropping, the drop mask Dk sets the elements to be 0 when the
element in A∗

k is greater than θd, otherwise to be 1. This will encourage the network to extract
other identifiable parts, and the robustness of classification and the accuracy of positioning
will be improved.

Dk (i, j) =
{

0, if A∗
k (i, j) > θd

1, otherwise
(5)

Attention-guided data augmentation is to input the original images into the network to obtain the
corresponding feature maps and attention maps, combine the two parts of the images, adopt attention
cropping and attention dropping, and return the images to the network for training to achieve the effect
of data augmentation. The process can be divided into two parts, the first part uses the attention-guided
data augmentation to enhance the images, and the second part trains the network using a combination
of raw and augmented images.

4 The Fine-Grained Children Pneumonia Diagnosis

This section presents the proposed Fine-Grained Children Pneumonia Diagnosis (FG-CPD), and
the mythologies of FG-CPD are shown.

4.1 The Structure of the Proposed FG-CPD
The structure of FG-CPD is shown in Fig. 4. Compared with FG-CNN, the FG-CPD model is

improved in two aspects.

Firstly, the data preprocessing part is added which aims to handle the raw chest X-ray directly. In
this process, the raw chest X-ray is converted from the DICOM medical data format to JPG format.
Then, the YOLOv4 algorithm is trained to detect the position of the chest X-ray in the converted
images. Finally, automatic data augmentation is used on the chest X-ray before feeding the FG-CNN
network.
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Figure 4: The overall structure of the proposed FG-CPD

Secondly, a new attention network, SGNet, is proposed to improve the representation ability of
attention maps. SGNet is an improved attention network that can perform 1 ∗ 1 convolution operation
based on channel attention maps, fuse information between different channels, and generate hybrid
attention maps to improve its characterization ability and model performance.

4.2 Data Preprocessing Part
4.2.1 Data Conversion

As the raw chest X-ray data is stored in the database using DICOM format, so they are converted
into the JPG format by using the Pydicom library. Fig. 5 shows some converted JPG images of the
chest X-ray images.

Figure 5: The converted chest X-ray images

4.2.2 The Chest Detection and Positioning using YOLOv4

As the raw images of the chest X-ray contain a lot of spare space, it can interfere with the
classification of FG-CPD. Therefore, the YOLOv4 algorithm was used to detect and locate the chest
region before using FG-CPD. YOLO series is the representative object detection algorithm, which has
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attracted remarkable attention in both academia and industry. YOLOv4 is the fourth version of the
YOLO series with the advantages of fast detection speed and high detection accuracy, so the YOLOv4
is used to detect and position the chest in the raw images.

As shown in Fig. 6, the structure of YOLOv4 consists of three parts: feature extraction network,
SPP module and PANet feature pyramid network, and YOLO Head prediction network. It should
be pointed out that this feature extraction network in YOVOv4 has nothing to do with the feature
extraction network in FG-CPD. Firstly, the raw chest X-ray images were fed into a feature extraction
network to extract the features of the images. Then, the features are handled by the SPP module and
PANet for feature fusion. Finally, the fused features are sent into the YOLO Head network to detect
the position of the chest in the raw chest X-ray images.

Feature Extraction 
Network

SPP

PANet YOLO Head

Medical Image 

Positioning Results

Figure 6: The structure of YOLOv4

During the training process of YOLOv4, 200 images were first annotated with labeling annotation
software, as shown in Fig. 7. These 200 images are used as a training dataset to train YOLOv4. The
training mAP for the chest X-ray of the YOLOv4 has reached 100% accuracy. Then, the chest region
detection by YOLOv4 would be located and cropped for further FG-CPD. Several cropped images
using YOLOv4 are shown in Fig. 8.

4.2.3 Automatic Data Augmentation

Data augmentation can increase the sample of the training set, effectively alleviate the model
overfitting situation and bring stronger generalization ability to the model. After cropping the chest
X-ray images, the images were augmented using automated data augmentation. In this research, the
augment policy [37], which is trained on the ImageNet, is used for automatic data augmentation. By
increasing the data, the diversity of samples, and the performance of the model for the diagnosis of
children with pneumonia. Several samples after the automatic data augmentation are shown in Fig. 9.
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Figure 7: Labeling annotated for the raw chest X-ray images

Figure 8: The cropped images using YOLOv4 after detection
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Figure 9: Several samples with automatic data augmentation

4.3 Attention Network
In FG-CPD, the SGNet is used to replace the attention network in FG-CNN. The structure of

the proposed SGNet attention network is shown in Fig. 10. Firstly, the image feature maps F are
sent to the channel attention branch to generate a channel attention map. The channel attention
map contains the Global Average Pooling (GAP) and two fully-connected (FC) layers with different
activation functions. Then, the channel attention branch is merged with the feature maps F using
element-wise multiplication to generate channel attention maps As ∈ RC×H×W .

Feature Maps

Channel Attention 
Maps

GAP

FC+RELU

FC+Sigmoid

Attention Maps

Conv Operation

CxHxW

CxHxW

HxWxM

Figure 10: The overall architecture of the SGNet

The dimension of the channel attention maps is the same as the images. Then, the 1 ∗ 1 convolution
operation is followed by the channel attention maps. Therefore, the final attention maps A ∈ RM×H×W

of the mixed channel domain can be formulated as Eq. (6).

f (As) = A (6)
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4.4 Attention Regularization
In the training of FG-CPD, the loss used is the cross-entropy loss function. To make the attention

maps A more centralized, attention regularization is added to the loss of FG-CPD.

The attention regularization is inspired by center loss. It forces attention maps to converse with
virtual centers, which can make them more compact. The k-th global feature center is denoted as Ck

and the loss of the attention regularization is shown in Eq. (7). The Ck is initialized from 0 and updated
by moving average, as shown in Eq. (8), where β is the update factor and fk is the feature matrix.

LA =
M∑
k

||fk − Ck||2
2 (7)

Ck + β(fk − Ck) → Ck (8)

L = LA + 1/3(Lcross_raw + Lcross_crop + Lcross_drop) (9)

Specifically, as shown in Eq. (9), L is the total loss function of the network, Lcross_raw is the
cross-entropy loss function of the original image, Lcross_crop is the cross-entropy loss function with
augmentation cropping in attention-guided data augmentation, and Lcross_drop is the cross-entropy
loss function with augmentation dropping in attention-guided data augmentation.

5 Case Studies and Experimental Results

In this section, the proposed FG-CPD is tested on the public Chest X-ray 2017 dataset and real-
world chest X-ray images. The Chest X-ray 2017 dataset is a well-known benchmark dataset and the
real-world chest X-ray images are from Tongji Hospital.

In the following experiments, the Inception V3 network which has been pre-trained on ImageNet
is selected as feature extraction network, random gradient descent (SGD) as optimizer, cross-entropy
loss function as finally loss function, learning rate 0.001, momentum value 0.9, training epoch 100
times, weight attenuation impairment value 1e-5 and batch size 4, using a CPU of Intel Core i9-9900X
3.5 GHz ∗ 20, the GPU is RTX2080Ti, and the Python version is 3.6.4.

To test the performance of the FG-CPD network, four indicators including accuracy, precision,
recall rate, and F1 are used to verify the potential of the model.

Accuracy = TP + TN
TP + TN + FP + FN

(10)

Precision = TP
TP + FP

(11)

Recall = TP
TP + FN

(12)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(13)

where TP is the number of correctly classified pneumonia samples, TN is the number of correctly
classified normal samples, FP is the number of incorrectly classified pneumonia samples, and FN is
the number of incorrectly classified normal samples. This research applied the 8-fold cross-validation
to validate the performance.
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5.1 Case Study 1: Chest X-Ray 2017
5.1.1 Dataset Description

The Chest X-ray 2017 dataset was provided by Guangzhou Women and Children’s Medical Center
and has been widely used in pneumonia diagnosis. In this dataset, a total of 5826 chest X-ray images
were collected and labeled. The training set consisted of 5232 images (1346 images belong to the normal
and 3883 images belong to pneumonia). The remaining 624 images were used to test the FG-CPD
performance. Several raw images of the dataset are shown in Fig. 11. The dataset is available at the
following: https://data.mendeley.com/datasets/rscbjbr9sj/3.

Figure 11: Raw images of the Chest X-ray 2017 dataset, from left to right, are the bacterial image, viral
image, and normal image

5.1.2 Experimental Results and Comparison

To compare the performance of FG-CPD, different kinds of backbones are researched as feature
extraction networks. Experiments on the Chest X-ray 2017 dataset were performed 8 times. Except for
Inception v3, Resnet34, Resnet50, Resnet101, and VGG19 are used as backbones. The denotation
FG-CPD-Inception v3 means that FG-CPD uses Inception v3 as its backbone. The FG-CPD is
also compared with the CNN models without the FG part, and the selected CNN models include
Resnet34, Resnet50, and Resnet101. The above networks are pre-trained on the ImageNet dataset.
The comparison results are presented in Table 1.

Table 1: Comparison results of FG-CPD with different backbones and CNN models on case 1

Methods Accuracy (%)

FG-CPD-Inception v3 100
FG-CPD-Resnet34 98.30
FG-CPD-Resnet50 98.09
FG-CPD-Resnet101 98.76
FG-CPD-VGG19 98.24

Resnet34 96.95
Resnet50 96.63
Resnet101 96.75
Inception v3 98.00

https://data.mendeley.com/datasets/rscbjbr9sj/3
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From Table 1, it can be seen that the accuracy of FG-CPD-Inception v3 has achieved remarkable
performance and it is the accuracy is 100%. FG-CPD methods using other CNN as backbones have
achieved 98.30%, 98.09%, 98.76%, and 98.24%, showing that FG-CPD-Inception v3 is superior to
other FG-CPD variants.

Resnet34, Resnet50, and Resnet101 are different variants in Resnet, and they are widely used in
image classification. In this research, they are used as the baseline models. From the results, it can be
seen that these three models have achieved 96.95%, 96.63%, and 96.75%, respectively, which means
that FG-CPD-Inception v3 is superior outperform to these classic CNN models.

Through the above experiments, it is not difficult to see that compared with other CNNs, the
accuracy rate of Inception v3 alone is up to 98%, which proves that the feature extraction ability is the
strongest in the Chest X-ray 2017 dataset. Therefore, in FG-CPD, Inception v3 is used as a feature
extraction module to obtain feature information of chest X-ray images, which is conducive to the
accurate diagnosis of pneumonia.

5.1.3 Analysis for FG-CPD

In this subsection, several key components in FG-CPD are analyzed, including the number of the
attention map M, the attention-guided data augmentation, and the automatic data augmentation. As
the images have been cropped well, the YOLOv4-based chest detection and position have been ignored
in this case.

Fig. 12a presents the effect of the value of M on the performance of FG-CPD. It can be seen that
M can influence the final accuracy of FG-CPD. When the M value is too low, such as set to be 16, the
performance of FG-CPD degrades sharply. But when its value is higher than 32, the effect has been
reduced. The performance of FG-CPD shows to be stable the value of M at 32, 48, 64, and 80. The
best performance of FG-CPD occurs at the M = 64.

To show the effect of the attention-guided data augmentation, four configurations, which
are denoted as FG-CPD-o, FG-CPD-w-C, FG-CPD-w-D, and FG-CPD-wCD, are investigated.
FG-CPD-o is the configuration of FG-CPD without both attention-guided cropping and dropping.
FG-CPD-w-C/D means that FG-CPD only with attention-guided cropping or dropping, and FG-
CPD-wCD is that FG-CPD with both attention-guided cropping and dropping. The results are
shown in Fig. 12b. It can be seen that the attention-guided cropping and dropping can improve the
performance of FG-CPD, and both of them can be used together to improve FG-CPD.

On the automatic data augmentation aspect, the FG-CPD with or without the automatic data
augmentation is presented. The random data augmentation is used as the baseline to show the
effectiveness of the automatic data augmentation. The results are shown in Fig. 12c. Automatic
data augmentation can significantly improve the performance of FG-CPD by expanding the dataset
samples.

Fig. 13 gives four attention maps of this case study. From the figures, it can be seen that the subtle
differences in pneumonia X-ray chest ray can be accurately found with the FG-CPD. This indicates
that FG-CPD has an excellent performance in fine-grained image classification and validates the
potential of the proposed FG-CPD.
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Figure 12: The effect of three key components in FG-CPD in case 1

Figure 13: Four attention maps obtained by FG-CPD in case 1

5.1.4 Comparison with Other Published DL Methods

In this subsection, the FG-CPD is compared with other DL methods which are published in
recent years. The comparison methods contain image-based deep learning (IMDT) [24], Transfer
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learning-based approach for pneumonia detection (TLPD) [26], Deep learning to detect and evaluate
pneumonia (DL-DEP) [38], Childhood pneumonia using convolutional neural networks (CP-CNN)
[39], Deep convolutional neural network (DCNN) [25] and Adaptive median filter convolutional
neural network recognition model based on random forest (ACNN-RF) [40], and the comparison
results are shown in Table 2.

Table 2: Comparison with other published DL methods in case 1

Methods Accuracy (%)

IMDT 92.80
TLPD 96.39
DL-DEP 92.57
CP-CNN 95.30
DCNN 96.09
ACNN-RF 96.90
FG-CPD 100

It can be seen that the proposed FG-CPD has achieved the best result among these DL methods.
The prediction accuracy of FG-CPD is 100%, while that of other methods such as IMDT, TLPD,
DL-DEP, CP-CNN, DCNN, and ACNN-RF is 92.80%, 96.39%, 92.57%, 95.30%, 96.09%, and
96.90%. The results show that compared with other advanced CNN or DCNN methods in fine-grained
image classification. FG-CPD, with its excellent feature extraction, and feature fusion module, can
identify subtle differences in images and is effective in diagnosing chest X-ray pneumonia.

5.1.5 Comparison with Other Attention Modules

To verify the superiority of the SGNet attention module proposed in this research, the attention
module was replaced by Channel Attention Module, Spatial Attention Module, and Hybrid Attention
Module for a control experiment, The channel attention module used is Squeeze-and-Excitation
Networks (SENet) [41], the spatial attention module used is Spatial Transformer Networks (STN)
[42], and the hybrid attention module used is Convolutional Block Attention Module (CBAM) [43].
These three attention networks are used in image recognition and classification widely. Experimental
results are shown in Table 3. The accuracy of the Channel Attention Module used was 98.6%, the
accuracy of the Spatial Attention Module used was 98.6%, and the accuracy of the Hybrid Attention
Module used was 98.804%. SGNet has a superior performance compared to other attention modules.

Table 3: Comparison with another attention module in case 1

Methods Accuracy (%) Recall (%) Precision (%) F1 (%)

FG-CPD + SENet 98.60 99.18 99.07 99.12
FG-CPD + STN 98.32 98.60 99.29 98.94
FG-CPD + CBAM 98.80 99.65 98.73 99.19
FG-CPD + SGNet 100 100 100 100
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In addition, three performance indicators (Precision, Recall, F1) of FG-CPD on the Chest X-ray
2017 dataset are 100%, proving that FG-CPD has excellent performance and great potential in fine-
grained classification.

5.2 Case Study 2: Chest X-Ray Dataset from Tongji Hospital
5.2.1 Dataset Description

This dataset is a real-world dataset provided by Tongji Hospital in Tongji Medical College of
Huazhong University of Technology and Science. It is a chest X-ray dataset for children with or
without pneumonia. The chest X-ray dataset includes 7251 images from 3–12 years old children, and it
was collected between August 2020 and May 2021. The chest X-ray has been diagnosed by professional
doctors, and there are 4726 samples with pneumonia and 2555 samples without pneumonia. During
the training process of FG-CPD, the training dataset and testing dataset are randomly divided with
a proportion of 8:2. Therefore, there are 5825 images in the training dataset and 1426 images in the
testing dataset. The detail of the division of the training and testing dataset can be found in Table 4.
Several raw chest images (after being converted from DICOM to JPG format) are shown in Fig. 5.

Table 4: Tongji Hospital chest X-ray dataset for training and testing dataset

Category Training set (No. of images) Test set (No. of images)

Normal 2065 490
Pneumonia 3760 966
Total 5825 1426

5.2.2 Experimental Results and Comparison

The comparison of FG-CPD using different backbones and other baseline DL methods is
presented in Table 5. Experiments on the Chest X-ray Dataset from Tongji Hospital were performed
8 times. The above networks are pre-trained on the ImageNet dataset.

Table 5: Comparative results of FG-CPD with different backbone and CNN models in case 2

Methods Accuracy (%)

FG-CPD-Inception v3 96.91
FG-CPD-Resnet34 79.30
FG-CPD-Resnet50 80.09
FG-CPD-Resnet101 81.76
FG-CPD-VGG19 80.24

Resnet34 78.32
Resnet50 78.84
Resnet101 79.19
Inception v3 75.00

The results show that the FG-CPD-Inception v3 has achieved the most superior accuracy. Its
accuracy is around 96% with a little fluctuation, and the specific accuracy is 96.91%, 97.26%, 96.91%,
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97%, 96.6%, 96.6%, 97.26%, and 96.91%, which outperforms FG-CPD-Resnet34, FG-CPD-Resnet50,
FG-CPD-Resnet101, and FG-CPD-VGG19 a lot. Table 5 also presents the comparison of FG-CPD
with other DL methods which are directly used without the FG parts. It can be seen that FG-CPD is
superior to Resnet34, Resnet50, Resnet101, and Inception v3.

Through comparison, it is found that in the Chest X-ray Dataset from Tongji Hospital, Inception
v3 still plays a good feature extraction effect, indicating that FG-CPD-Inception v3 has excellent
pneumonia diagnosis effect and generalization performance.

5.2.3 Analysis of FG-CPD

In this subsection, four key components in FG-CPD are analyzed. They are the effect of YOLOv4
cropping, the number of attention map M, the attention-guided data augmentation, and the automatic
data augmentation. Their effects on FG-CPD have been shown in Fig. 14.

Figure 14: The effect of four key components in FG-CPD in case 2

Fig. 14a shows the effect of YOLOv4 on the FG-CPD. From the result, it can be seen that FG-
CPD using raw images have an accuracy of 68.63%, which is obviously inferior to the result of FG-CPD
with cropping using YOLOv4. Because the cropping can remove the irrelevant part of the chest images
and can ensure the FG-CPD learns more discriminative information from the chest X-ray images.

The number of the attention map has a great influence on the final performance of FG-CPD, as
shown in Fig. 14b. It can be seen that the accuracy of FG-CPD is lower than 85% when the value of M
is smaller than 48. The best value for M is 64. When M is set to be 80, the accuracy is slightly degraded



890 CMES, 2022, vol.133, no.3

to 92.42%. Therefore, the number of attention maps M used in this experiment is 64 to obtain the best
effect of FG-CPD in pneumonia diagnosis.

On the effect of attention guided data augmentation aspect, it can be seen that both the attention
guide cropping and dropping have positive effects on the performance, as shown in Fig. 14c. FG-CPD
with both of them can promote the performance a lot. The accuracy of FG-CPD-o is 81.95%, which
is significantly worse than FG-CPD-wCD.

The auto data augmentation also has a positive effect on FG-CPD, as shown in Fig. 14d. It
can be seen that FG-CPD with random data augment is 84.21%, while FG-CPD with automatic
data augmentation is 96.91%, which means that the automatic data augmentation can improve the
performance of FG-CPD a lot.

5.2.4 Comparison with Other Attention Module

To verify the superiority of the SGNet attention module proposed in this research, the SGNet
was replaced by Channel Attention Module (SENet), Spatial Attention Module (STN), and Hybrid
Attention Module (CBAM) for a control experiment. The remaining parameters were set unchanged
and were tested in the Chest X-ray Dataset from Tongji Hospital. Experimental results are shown in
Table 6, the accuracy of the Channel Attention Module used was 95.96%, the accuracy of the Spatial
Attention Module used was 95.85%, the accuracy of the Hybrid Attention Module used was 96.49%,
SGNet has a more superior performance compared to other attention modules.

Table 6: Comparison with another attention module in case 2

Methods Accuracy (%) Recall (%) Precision (%) F1 (%)

FG-CPD + SENet 96.09 94.29 94.09 94.19
FG-CPD + STN 95.95 94.49 93.54 94.01
FG-CPD + CBAM 96.49 95.51 94.17 94.83
FG-CPD + SGNet 96.91 96.12 94.80 95.44

In addition, three performance indicators (Precision, Recall, and F1) of FG-CPD on the Chest
X-ray Dataset from Tongji Hospital all showed high results, proving that FG-CPD has excellent
performance and great potential in fine-grained classification.

6 Conclusion and Future Research

In this research, a new fine-grained CNN for childhood pneumonia diagnosis (FG-CPD) is
proposed. The main contribution of this research is as follows. Firstly, the fine-grained classification
is introduced for the diagnosis of children with pneumonia. To acquire the raw images from the real-
world chest X-ray database, the YOLOv4 algorithm is trained to detect the position of the chest and
remove the irrelevant place in the raw chest X-ray images. Secondly, a new attention network, SGNet,
is adopted in the proposed FG-CPD to enhance the ability to locate the discriminative parts in the raw
chest X-ray images. Thirdly, automatic data augmentation and attention guided data augmentation
is used to increase the diversity of the training data and avoid the overfitting of the FG-CPD. The
proposed FG-CPD has been conducted on the public Chest X-ray 2017 dataset and it has achieved
the state-of-the-art performance by comparing with other published methods. Then, FG-CPD was
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tested on real-world Chest images from the children from Tongji Hospital, and the results show the
potential of FG-CPD.

Although FG-CPD has achieved remarkable results, the limitations of FG-CPD can be summa-
rized as follows. Firstly, the backbone network has a significant effect on the performance of FG-CPD.
Therefore, how to select the right backbone network in practice can be investigated. Secondly, several
data augment techniques have been applied in this research, and the results show that they can avoid the
overfitting of FG-CPD. But these data augmentation techniques are selected by experiments. Based on
the limitations, further research can be conducted to promote this work. Firstly, Auto Deep Learning
can be introduced to this field, and it can select the right backbone network and the hyper-parameters
of FG-CPD automatically. Secondly, as data augmentation is effective in FG-CPD, the investigation
of the right data augmentation methods can be done to avoid the overfitting of FG-CPD further.
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