
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2022.020824

ARTICLE

Shape and Size Optimization of Truss Structures under Frequency Constraints
Based on Hybrid Sine Cosine Firefly Algorithm

Ran Tao, Xiaomeng Yang, Huanlin Zhou* and Zeng Meng*

School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China

*Corresponding Authors: Huanlin Zhou. Email: zhouhl@hfut.edu.cn; Zeng Meng. Email: mengz@hfut.edu.cn

Received: 14 December 2021 Accepted: 09 February 2022

ABSTRACT

Shape and size optimization with frequency constraints is a highly nonlinear problem with mixed design variables,
non-convex search space, and multiple local optima. Therefore, a hybrid sine cosine firefly algorithm (HSCFA) is
proposed to acquire more accurate solutions with less finite element analysis. The full attraction model of firefly
algorithm (FA) is analyzed, and the factors that affect its computational efficiency and accuracy are revealed. A
modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm (SCA) is proposed
to reduce the computational complexity and enhance the convergence rate. Then, the population is classified, and
different populations are updated by modified FA and SCA respectively. Besides, the random search strategy based
on Lévy flight is adopted to update the stagnant or infeasible solutions to enhance the population diversity. Elitist
selection technique is applied to save the promising solutions and further improve the convergence rate. Moreover,
the adaptive penalty function is employed to deal with the constraints. Finally, the performance of HSCFA is
demonstrated through the numerical examples with nonstructural masses and frequency constraints. The results
show that HSCFA is an efficient and competitive tool for shape and size optimization problems with frequency
constraints.
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1 Introduction

Since the natural frequency has an important influence on the vibration of the structural system,
it is necessary to constrain the natural frequency in the structural design to avoid resonance and
damage. Bellagamba et al. [1] presented the seminal work on frequency constrained truss shape and
size optimization, and since then researches in this area have developed rapidly over the past 30 years.

The structural optimization with frequency constraints aims to minimize the weight of the
structure while ensuring the satisfaction of frequency constraints. Nevertheless, frequency constraints
are highly nonlinear, nonconvex and implicit with respect to the design variables [2]. Moreover,
the mixture of shape and size variables can cause severe mathematical difficulties and divergence
because of the different magnitude orders. The characteristics of the optimization problem limit
the application of gradient-based algorithms in this field [3,4]. Consequently, non-gradient-based
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algorithms, especially metaheuristic algorithms were developed to deal with this problem. These
algorithms use stochastic searching techniques to select potential solutions, which have better global
search ability with fewer limitations in application [5–7]. However, metaheuristic algorithms still have
some drawbacks such as time-consuming search and expensive computational cost.

Firefly algorithm (FA) is one of the nature-inspired metaheuristic algorithms based on the flashing
patterns and social behavior of fireflies, and it can be considered as a generalization to particle swarm
optimization (PSO), differential evolution, and simulated annealing algorithms through parameter
adjustment [8,9]. Therefore, FA inherits the advantages of the three algorithms and shows an impres-
sive performance. Benefiting from the excellent global search ability, FA was successfully applied to
various fields [10–12]. However, the computational cost of FA is still expensive, and the exploitation
ability has the potential for progress. Accordingly, different algorithms and techniques were combined
with FA for improvements [13–16]. These results confirmed that such hybrid algorithms outperformed
the standard algorithms in terms of solution accuracy and convergence rate. Nevertheless, how to
simplify the computational complexity of FA is still an unsolved problem.

Sine cosine algorithm (SCA) [17] is a recently developed metaheuristic algorithm, which uses
the characteristics of sine and cosine trigonometric functions in the search process to solve global
optimization problems. SCA has competitive performance compared with other algorithms [18–21].
As SCA updates each candidate solution using the information of the global optimal solution, the
exploitation ability and convergence rate are impressive. However, SCA faces some difficulties like
falling into local optima and skipping of true solutions. Furthermore, SCA has not been applied to
shape and size optimization problems of truss structures.

In this paper, the computational complexity of FA is reduced and a hybrid sine cosine firefly algo-
rithm (HSCFA) with adaptive penalty function is proposed to deal with shape and size optimization
of truss structures with frequency constraints. HSCFA takes advantage of SCA, FA, and Lévy flight
to achieve a better balance between exploration and exploitation.

The remainder of this article is organized as follows. The mathematical model of the discrete
structural optimization problem is presented in Section 2. The introductions of SCA, FA, Lévy flight-
based local search technique, elitist selection technique and self-adaptive penalty function are given
in Section 3. HSCFA is proposed in Section 4. The efficiency of HSCFA is evaluated in Section 5.
Finally, the main conclusions are summarized in Section 6.

2 Mathematical Model of Optimization Problems

Generally, shape and size optimization for truss structures aims to minimize the weight while
satisfying functional constraints. The design variables include the cross-sectional area of the members
and the nodal positions of the critical members. Thus, the mathematical model can be expressed as the
following Eq. (1).

Minimize W = ∑n

i=1 ρiAiLi

(
xq

)
Subject to : ωj ≤ ωj,max

ωl ≥ ωl,min

Ai,min ≤ Ai ≤ Ai,max, i = 1, 2, . . . , n
xq,min ≤ xq ≤ xq,max, q = 1, 2, . . . , m

(1)

where W is the weight of the structure. For each member i, ρ i means the material density, Ai indicates
the cross-sectional area, Li is the length, xq is the nodal positions. n and m are the number of members
and nodes, respectively. ωj and ωj,max are the j-th natural frequency and its corresponding upper bound.
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ωl and ωl,min are the l-th natural frequency and its corresponding lower bound. Ai,min and A i,max are the
lower and upper bounds of Ai. xq,min and xq,max are the lower and upper bounds of xq.

3 Preliminaries
3.1 Firefly Algorithm

FA was developed by Yang in 2008 [22], and it was inspired by the social behavior of firefly.
In FA, three idealized rules are made including all fireflies are unisex, attractiveness is proportional
to the brightness, and brightness is proportional to the value of the objective function. Then, the
mathematical imitation of light intensity is settled. Obviously, the distance and air absorption affect
the variation of light intensity, and the firefly’s attractiveness is proportional to the light intensity seen
by adjacent fireflies. Therefore, the attractiveness β is formulated as the following Eq. (2).

β (r) = β0e−γ rij
2

(2)

where β0 is the attractiveness of r = 0. The light absorption coefficient γ indicates the strength of the
attraction. In general, γ distributes in [0.01,100]. The distance rij between fireflies i and j is defined as
the following Eq. (3).

rij = ∥∥Xi − Xj

∥∥ =
√√√√ d∑

k=1

(
Xi,k − Xj,k

)2
(3)

The movement of firefly i is calculated by the following Eq. (4).

Xt+1
i = Xt

i + β0e−γ rij
2 (

Xt
j − Xt

i

) + α

(
rand − 1

2

)
(4)

where Xt
i is the position of the i-th firefly at t-th iteration. α and ‘rand’ are the randomization parameter

that take from [0,1]. α is a constant that adjusts the random step of FA, and ‘rand’ is a random vector
usually generated by Gaussian distribution, uniform distribution, and so on.

3.2 Sine Cosine Algorithm
SCA is a novel population-based optimization algorithm proposed by Mirjalili [17]. SCA updates

the movement of the search agents toward the best solution using a mathematical model based on sine
and cosine functions. In SCA, the following Eq. (5) is used for both exploration and exploitation.

Xt+1
i =

{
Xt

i + r1 × sin (r2) × ∣∣r3Pt − Xt
i

∣∣ , r4 < 0.5
Xt

i + r1 × cos (r2) × ∣∣r3Pt − Xt
i

∣∣ , r4 ≥ 0.5
(5)

where Xt
i is the position of the i-th solution at t-th iteration. Pt means the best solution at t-th iteration.

r1 is distributes in [0,2]. r2 can be taken from [0,2π ]. r3 is a random number in [0,2]. It can determine
the effect of destination Pt on the current movement. The parameter r3 brings a random weight for
the destination to stochastically emphasize (r3 > 1) or deemphasize (r3 < 1) the effect of destination in
defining the distance. r4 is a random number in [0,1] that decides the switch between sine and cosine
components. The range of sine and cosine changes adaptively as the following Eq. (6).

r1 = a (1 − t/T) (6)

where t and T are the current and maximum iteration. a is a positive constant. The search range of
SCA is illustrated in Fig. 1 with a = 2 [17].
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Figure 1: Search range of SCA

From Eq. (5) and Fig. 1, the next position is inside the space between X and P when the values of
r1sin(r2) are in [–1,1]. And it will be outside the space between X and P when the values of r1sin(r2) are
in (1,2] and [–2, –1). Thus, both r1 and r2 determine the movement distance and search space.

3.3 Lévy Flight-Based Search Technique
Lévy flight was a non-Gaussian random process proposed by Chechkin et al. [23] in 2008, and

its random walk is obtained by Lévy distribution. The direction of the flight is random, but the steps
are distributed as a power function. Lévy flight has been successfully used to improve the heuristic
algorithms due to its strong random search capability [24,25]. The Lévy distribution is generally
expressed as L (s) ∼ |s|−1−β , where s is distributed within the interval (0,2). Its mathematical expression
is defined as the following Eq. (7) [26].

L (s, γ , μ) =
{√

γ

2π
exp

[
− γ

2(s−μ)

]
1

(s−μ)3/2 if 0 < μ < s < ∞,

0 otherwise
(7)

where s, γ and μ are step size, control parameter of distribution scale and transmission parameter
respectively. The Fourier transform of Lévy flight can be expressed as the following Eq. (8).

Lévy (β) = exp
[−α |k|β] , 0 < β ≤ 2 (8)

where α∈[–1,1]. The stability factor β is also known as the Lévy index and distributes in (0,2). The step
size s can be determined by the Mantegna algorithm as the following Eq. (9).

s = u

|v|1/β
(9)

where u and v have Gaussian distribution as the following Eqs. (10) and (11).

u ∼ N
(
0, σ 2

u

)
, v ∼ N

(
0, σ 2

v

)
(10)

σu =
{

	 (1 + β) sin (πβ/2)

	 [(1 + β) /2] ∗ β ∗ 2(β−1)/2

}(1/β)

, σv = 1 (11)

where 	 (z) is a gamma function that can be defined as the following Eq. (12).

	 (z) =
∫ ∞

0

tz−1ekdk (12)

Then, the Lévy flight-based local search technique can be defined as the following Eq. (13).

Xt+1
i = Xt

i + Xt
i ⊕ Lévy (β) , if Q = NgorNs = Na (13)
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where ⊕ denotes Hadamard product. The values of the stagnation times of the particle Ns and the
number of constraint violation Q are evaluated before updating the solution. The number of constraint
functions Ng and the allowable stagnation times Na are constants. The solutions will be updated by
Eq. (13), when Q = Ng or Ns = Na.

3.4 Elitist Selection Technique
The elitist selection technique was proposed for the selection progress [27]. This mechanism is

performed as follows: firstly, the last generation of population is combined with this generation of
population to create a new group of population. Then, reorder the new population according to the
fitness value. Choose the best half individuals of the new population to construct the population for
the next generation. In this way, the better population of the two generations is always stored for the
next generation. This technique helps the algorithm eliminate the poor individuals and obtain a better
convergence rate.

3.5 Self-Adaptive Penalty Function
The penalty function method is one of the most popular constraint handling techniques [28,29].

Based on this method, Tao et al. [12] proposed a self-adaptive penalty function strategy to solve
constrained optimization problems. The fitness function is written as the following Eqs. (14)–(16).

F(X) = f (X) + Q
Q∑

i=1

h(t)gi(X)f (X) (14){
gi(X) = |σi/σiall − 1| if ith constraint violated
gi(X) = 0 if ith constraint satified (15)

h(t) = 1 + t/T (16)

where gi (X) is the ith normalized constraint function. σ i and σ iall are the actual value and allowable
value of ith constraint, h(t) is the penalty parameter. The value of penalty function will increase with
the increase of iterations, violation number and violation degree. It also makes sure that the second
item of Eq. (14) has the same dimension and order of magnitude as the objective function.

4 Proposed New Developments

Generally, the accuracy of the optimal solution and the computational cost are two core indices to
evaluate the performance of metaheuristic algorithms. In this section, HSCFA is proposed to enhance
the solution accuracy and computational cost of FA.

4.1 Modified Firefly Algorithm
4.1.1 Motivation

The full attraction model defines the movement of fireflies in FA during the search process
[30]. In this model, one firefly is attracted by all other brighter fireflies. Moreover, the brightest
one is not attracted by any firefly, and the darkest firefly is attracted by all other fireflies. The full
attraction model is represented in Fig. 2, in which both the volume and the luminous organ relate to
the brightness of the firefly. The larger the volume is, the brighter the firefly is.
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Figure 2: Attraction model among fireflies

As shown in Fig. 2, firefly 8 is the darkest one, and firefly 1 is the brightest one. The seven brighter
fireflies are attractive to the firefly 8, and no firefly is attractive to firefly 1. Thus, firefly 8 is hard to
approach to the brightest firefly 1 with such an attraction model. To further investigate the attraction
model, the real update formula for firefly 8 is given as shown in Eq. (17).

Xt+1
8 = 7 · Xt

8 +
7∑

j=1

β0e
−γ r2

8j
(
Xt

j − Xt
8

) + 7 · α

(
rand − 1

2

)
(17)

If the value of Xt
j is larger than Xt

8, the value of Xt+1
8 is far larger than Xt

8. Thus, the value of Xt+1
8

is easily beyond the upper bound of the design variable. Then, the value of Xt+1
8 will be automatically

adjusted to the upper bound based on the boundary control method of FA. This makes it difficult for
the algorithm to obtain a variety of solutions.

The distance rij between fireflies i and j is affected by the different magnitude orders of the
variables, especially for the shape and size optimization problems. If the value of r is always large,
it will affect the convergence of the algorithm. In order to further investigate the change of r through
the iteration, benchmark functions with different design variable spaces are tested. The mathematical
definition, search range and global minimum are listed in Table 1. The changes of the distance r during
the search process are illustrated in Fig. 3. In the test, n = 5 and d = 5.

Table 1: Benchmark functions

Name Function Range Minimum

Sphere f1 (x) = ∑d

i=1 x2
i [–100,100] 0

Zakharov f2 (x) =
(∑d

i=1 x2
i

)
+

(
1
2

∑d

i=1 ixi

)2

+
(

1
2

∑d

i=1 ixi

)4

[–5,10] 0

Griewank f3 (x) = −∏d

i=1 cos
(

xi√
i

)
+ ∑d

i=1

x2
i

4000
+ 1 [–600,600] 0

Michalewicz f4 (x) = −∑d

i=1 sin (xi) sin2·10

(
ix2

i

2

)
[0,π ] –4.687658
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Figure 3: The changes of distance r

From Fig. 3, the values of r are different with varying search ranges. According to Eq. (2), the
influence of different magnitude orders should be eliminated in the calculation of r to ensure the
effectiveness of the algorithm for different structural optimization problems.

Moreover, it also can be concluded from the full attraction model that the total number of
attractions at each generation for population n is n(n–1)/2. Let O(f ) be the computational time
complexity of the fitness evaluation function f (·) [31]. The Firefly algorithm contains an external loop
based on the number of algorithm iterations T and two internal cycles based on the population number
n, so the computational time complexity of the standard FA is O(T · n2 · f ).

4.1.2 Modification

Although the attraction can enhance the exploitation ability, too many attractions on a firefly
lead to uncertain search direction and weaken the exploitation ability. Therefore, the attraction model
is modified and only one solution in the top three is selected to update the worse solutions to reduce
the time complexity. Furthermore, the search range is introduced into the calculation of r to address
the different magnitude orders of the mixed variables. In addition, the fixed randomization parameter
α slows down the convergence, and the redundant parameters of a hybrid algorithm will increase the
difficulty of the algorithm’s operation. Thus, r1 of SCA is utilized to replace α of FA to accelerate the
convergence. Eqs. (3) and (4) can be modified as the following Eqs. (18) and (19).

rij =
√√√√ d∑

k=1

(
Xi,k − Xj,k

)2

(Ubk − Lbk)
2 (18)

Xt+1
i = Xt

i + β0e−γ rrj
2 (

Xt
r − Xt

i

) + r1

(
rand − 1

2

)
(19)

where Ubk and Lbk are the upper and lower bound of kth variable. Xt
r is randomly selected one of the

top three fireflies. In the modified FA (MFA), the total number of attractions at each generation is n.
Consequently, the time complexity is reduced to O (T · n · f ). The changes of the distance r of MFA
are illustrated in Fig. 4. In the test, n = 5 and d = 5.

From Fig. 4, the values of r are distributed in [0,0.5]. Therefore, the different magnitude orders of
variables are conquered by the modification to fit different structural optimization problems.
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Figure 4: The changes of distance r

4.2 Hybrid Sine Cosine Firefly Algorithm (HSCFA)
A hybrid sine cosine firefly algorithm (HSCFA) integrating modified FA, SCA, Lévy flight and

adaptive penalty function is proposed in this section. HSCFA takes advantage of modified FA’s
exploration ability, SCA’s exploitation ability, and Lévy flight’s strong random search ability. In
order to ensure varied population diversity, the population is divided into two equivalent parts that
used modified FA and SCA for solution update respectively. The random search strategy based on
Lévy flight is employed to update the solutions that stagnate for several iterations or severely violate
constraints to improve the population diversity. Thus, the stagnation times of each solution Ns is stored
during the iteration, and the allowable stagnation times Na is set. The constraints number of each
optimization problem is set as Ng. In HSCFA, the elitist selection technique is adopted to replace the
original selection way of FA and SCA to improve the convergence speed.

4.3 Framework of HSCFA
The detailed operation steps of HSCFA are presented in this section. The flowchart of HSCFA is

shown in Fig. 5.

As shown in Fig. 5, the steps of the proposed algorithm are given in details as follows:

Step 1. Initialize the parameters γ , β0, a, Na.

Step 2. Initial solutions and the fitness values.

Step 3. If Q = Ng or Ns = Na, the solutions update by Eq (13). Otherwise, the population is
divided into two equivalent parts that used modified FA and SCA for solution update. For i∈(1,n/2),
every solution is updated by Eq. (5). For i∈(n/2+1,n), every solution is updated by Eq. (18).

Step 4. The finite element analysis is applied.

Step 5. The results obtained by finite element analysis are treated by the adaptive penalty function
method. Count the number of stagnations Ns per solution.

Step 6. Use the elitist selection technique to select the solution.

Step 7. If the terminal condition is satisfied, end the iteration. Otherwise, it goes to Step 3.
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Figure 5: The flowchart of HSCFA

5 Experiments and Results

In this section, the initial parameters of HSCFA are investigated and four well-known structural
design problems including two size optimization and two shape and size optimization examples are
tested. These structural design examples are all minimization problems with frequency constraints
[32–34]. The optimization results of HSCFA are compared with SCA, FA and results of other methods
in the existing researches. Different population sizes and iteration times are assigned to different
experiments. Every experiment runs 20 times for SCA, FA, modified FA (MFA), HSCFA without
Levy-flight and self-adaptivity of penalty function (HSCFA-1), HSCFA without self-adaptivity of
penalty function (HSCFA-2) and HSCFA.

5.1 Investigation of Initial Parameters
Since the performance of HSCFA is influenced by β0, a and Na, different initial parameters

are tested by the benchmark functions in Table 1. The dimension of the problems is set to 10. The
population size and the iteration time are 20 and 100, and HSCFA runs 20 times for all the cases. For
convenience, some of the results are illustrated in Figs. 6 and 7.

From Fig. 6, the values of Fmean decrease with the increase of β0 for all the functions except for
Michalewicz function. It is difficult to determine which value of β0 is the most reasonable one for
Michalewicz function. From Fig. 7, the values of Fmean change irregularly with the increase of a. The
relationship between the values of Fmean and Ns are also hard to be summarized from Figs. 6 and 7.
Therefore, the Friedman and Wilcoxon tests are implemented to provide a more accurate evaluation
of the initial parameters. The results are listed in Tables 2–9. The results of Wilcoxon tests below 0.05
denote the performance is much better than others.
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Figure 6: The changes of Fmean with β0
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Figure 7: The changes of Fmean with a
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Table 2: Mean ranks of different β0 achieved by the Friedman test

Functions β0 = 0 β0 = 0.1 β0 = 0.2 β0 = 0.3 β0 = 0.4 β0 = 0.5 β0 = 0.6 β0 = 0.7 β0 = 0.8 β0 = 0.9 β0 = 1
Sphere 11.00 9.98 9.02 8.00 7.00 5.93 5.02 3.98 3.02 2.04 1.00
Griewank 10.91 10.09 8.98 7.91 6.17 5.59 4.70 4.02 3.32 2.72 1.59
Zakharov 10.87 9.93 8.69 7.64 6.80 5.91 5.18 4.24 3.16 2.36 1.22
Michalewicz 4.11 2.63 4.37 5.64 6.51 7.70 7.77 6.39 7.09 7.10 6.69
Summation 11 9.98 9.02 8 7 5.93 5.02 3.98 3.02 2.04 1

Table 3: Wilcoxon test between β0 = 1 and others

Functions β0 = 0 β0 = 0.1 β0 = 0.2 β0 = 0.3 β0 = 0.4 β0 = 0.5 β0 = 0.6 β0 = 0.7 β0 = 0.8 β0 = 0.9
Sphere 5.16E-09 5.17E-09 5.17E-09 5.18E-09 5.18E-09 5.18E-09 5.18E-09 5.18E-09 5.18E-09 5.18E-09
Griewank 5.18E-09 5.18E-09 5.18E-09 5.18E-09 7.25E-09 6.34E-09 8.30E-09 6.22E-08 5.25E-06 1.30E-03
Zakharov 5.18E-09 5.18E-09 5.18E-09 5.18E-09 5.18E-09 5.18E-09 9.48E-09 2.23E-08 2.42E-07 3.35E-05
Michalewicz 4.57E-05 7.42E-07 1.29E-03 1.15E-01 9.50E-01 1.62E-01 8.22E-02 5.76E-01 5.13E-01 2.62E-01
Summation 5.16E-09 5.17E-09 5.17E-09 5.18E-09 5.18E-09 5.18E-09 5.18E-09 5.18E-09 5.18E-09 5.18E-09

Table 4: Mean ranks of different a achieved by the Friedman test

Functions a = 1 a = 2 a = 3 a = 4 a = 5

Sphere 3.06 3.10 3.15 2.74 2.96
Griewank 2.45 2.88 3.05 3.16 3.46
Zakharov 2.44 3.09 3.18 3.02 3.26
Michalewicz 2.44 2.81 3.30 3.15 3.29
Summation 2.60 2.97 3.17 3.02 3.24

Table 5: Wilcoxon test between a = 1 and others

Functions a = 2 a = 3 a = 4 a = 5

Sphere 9.93E-01 9.17E-01 3.94E-01 2.67E-01
Griewank 4.55E-01 1.04E-01 2.23E-01 7.00E-03
Zakharov 5.00E-03 3.80E-02 1.11E-01 1.82E-01
Michalewicz 4.54E-02 7.32E-05 1.29E-03 7.23E-05
Summation 3.96E-03 3.79E-04 7.73E-03 3.21E-03

Table 6: Wilcoxon test between a = 4 and others

Functions a = 1 a = 2 a = 3 a = 5

Sphere 3.94E-01 3.14E-01 5.53E-01 9.06E-01
Griewank 2.23E-01 4.92E-01 8.45E-01 4.30E-02
Zakharov 1.11E-01 9.61E-01 2.14E-01 5.16E-01
Michalewicz 1.00E-03 2.97E-01 2.91E-01 2.39E-01
Summation 1.29E-03 2.97E-01 2.91E-01 2.39E-01
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Table 7: Mean ranks of different Na achieved by the Friedman test

Functions Na = 2 Na = 3 Na = 4 Na = 5 Na = 6

Sphere 2.85 3.11 2.72 3.00 3.32
Griewank 3.09 3.08 2.87 2.53 3.44
Zakharov 2.98 2.89 2.89 3.00 3.23
Michalewicz 2.77 2.97 3.15 2.90 3.20
Summation 2.92 3.01 2.91 2.86 3.30

Table 8: Wilcoxon test between Na = 4 and others

Functions Na = 2 Na = 3 Na = 5 Na = 6

Sphere 6.59E-01 3.04E-01 2.72E-01 1.20E-02
Griewank 5.27E-01 3.91E-01 6.42E-01 3.00E-02
Zakharov 9.71E-01 9.78E-01 6.53E-01 2.26E-01
Michalewicz 2.06E-01 7.18E-01 7.75E-01 9.10E-01
Summation 9.69E-01 4.71E-01 5.21E-01 4.04E-03

Table 9: Wilcoxon test between Na = 5 and others

Functions Na = 2 Na = 3 Na = 4 Na = 6

Sphere 6.66E-01 7.33E-01 2.72E-01 6.89E-01
Griewank 1.31E-01 7.90E-02 6.42E-01 1.90E-02
Zakharov 5.38E-01 6.25E-01 6.53E-01 5.00E-02
Michalewicz 2.92E-01 8.67E-01 7.75E-01 4.06E-01
Summation 1.92E-01 4.13E-01 5.21E-01 1.36E-02

From Table 2, HSCFA performs best for Sphere, Griewank, and Zakharov functions when β0 = 1.
Furthermore, it can be concluded from Table 3 that the algorithm performance is significantly better
than others when β0 = 1. From Table 4, a = 1 ranks first for three functions and a = 4 ranks first
for one function. From Tables 5 and 6, when a = 1, the results are significantly better than the other
values for most of the cases. From Table 7, the rankings are different for each function and Na = 5
ranks first in Summation. From Tables 8 and 9, Na = 4 and Na = 5 are better than Na = 6 for two
functions. Based on the Friedman and Wilcoxon tests, β0 = 1, a = 1 and Na = 5 are the proper initial
parameters corresponding to the optimal performance of HSCFA.

5.2 Size Optimization
5.2.1 72-Bar Space Truss Structure

The 72-bar space truss including 16 size design variables is adopted as the first example. The
geometry and support conditions are shown in Fig. 8. As shown in Fig. 8, four additional mass are
located at nodes 1–4. Table 10 summarizes the design parameters and the frequency constraints. The
results of PSO [35], harmony search (HS) [36], particle swarm ray optimization (PSRO) [37], harmony
search-based mechanism to PSO with an aging leader and challengers (HALC-PSO) [38], cyclical
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parthenogenesis algorithm (CPA) [6], SCA and FA are used for the comparison. Table 11 displays
the comparison of the results, where “Best” and “Mean” are the best and mean results, “NS” is the
number of analyses, and “SD” is the standard deviation of results. Table 12 presents the first five
natural frequencies of the optimal results. Fig. 9 shows the convergence histories of the best result
of SCA, FA and HSCFA.

Figure 8: A 72-bar space truss structure

Table 10: Data for the 72-bar space truss structure

Parameters Value

Modulus of elasticity E (N/m2) 6.895 × 1010

Material density ρ (kg/m3) 2770
Added mass (kg) 2268
Lower bound of cross sections (cm2) 0.645
Upper bound of cross sections (cm2) 25
Frequency constraints (Hz) f 1 = 4, f 3 ≥ 6

Table 11: Optimal design comparison for 72-bar space truss structure

A(cm2) PSO
[35]

HS
[36]

PSRO
[37]

HALC-PSO
[38]

CPA
[6]

SCA FA MFA HSCFA-1 HSCFA-2 HSCFA

A1-4 2.987 3.6803 3.840 3.3437 3.329 3.6389 3.6874 8.1938 5.2647 3.5810 3.4873
A5-12 7.849 7.6808 8.360 7.8688 7.841 7.5260 7.2800 7.1640 9.9000 8.1125 8.0009
A13-16 0.645 0.6450 0.645 0.6450 0.645 4.3052 1.0533 0.6450 0.6450 0.6450 0.6450
A17-18 0.645 0.6450 0.699 0.6450 0.645 0.9348 2.3171 1.2907 0.6450 0.6450 0.6450
A19-22 8.765 9.4955 8.817 8.1626 8.416 11.8417 12.3247 7.2060 8.7338 8.1744 8.2722
A23-30 8.153 8.2870 7.697 7.9502 8.160 8.7219 7.3960 8.9467 7.3477 7.9444 7.9557
A31-34 0.645 0.6450 0.645 0.6452 0.645 1.4480 0.6450 2.4139 0.6450 0.6455 0.6450
A35-36 0.645 0.6461 0.651 0.6450 0.645 2.4655 1.8202 0.8822 0.6450 0.6478 0.6450
A37-40 13.450 11.4510 12.136 12.2668 13.078 11.7052 11.9591 13.8707 13.2774 13.3592 13.0688
A41-48 8.073 7.8990 8.839 8.1845 8.043 7.9695 8.5632 7.8524 7.0860 8.0817 8.0573
A49-52 0.645 0.6473 0.645 0.6451 0.645 0.6450 0.6523 1.0628 0.8842 0.6450 0.6450

(Continued)
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Table 11 (continued)

A(cm2) PSO
[35]

HS
[36]

PSRO
[37]

HALC-PSO
[38]

CPA
[6]

SCA FA MFA HSCFA-1 HSCFA-2 HSCFA

A53-54 0.645 0.6450 0.645 0.6451 0.645 6.8792 4.9077 2.0244 0.6450 0.6450 0.6450
A55-58 16.684 17.4060 17.059 17.9632 16.943 15.6249 15.1759 15.0925 15.2041 16.6489 16.9026
A59-66 8.159 8.2736 7.427 8.1292 8.143 8.1066 9.5957 8.8736 8.6888 8.0145 8.1348
A67-70 0.645 0.6450 0.646 0.6450 0.647 2.8991 1.2811 0.8432 0.6450 0.6455 0.6523
A71-72 0.645 0.6450 0.645 0.6450 0.653 7.5037 6.6776 0.6556 1.2711 0.6581 0.6524
Best (kg) 328.823 328.334 329.80 327.77 328.49 390.254 370.625 351.237 338.282 328.245 328.158
Mean (kg) 332.24 332.64 334.95 327.99 330.91 424.13 405.29 360.59 341.24 331.93 330.37
SD (kg) 4.23 2.39 2.86 0.19 1.84 22.35 16.10 8.15 3.46 3.74 1.71
NS N/A 50,000 6,000 8,000 12,800 10,000 10,000 10,000 10,000 10,000 10,000

Table 12: Natural frequencies of the optimal designs for 72-bar planar truss structure

Number PSO
[35]

HS
[36]

PSRO
[37]

HALC-PSO
[38]

CPA
[6]

SCA FA MFA HSCFA-1 HSCFA-2 HSCFA

1 4.000 4.0000 4.000 4.000 4.000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
2 4.000 4.0000 4.000 4.000 4.000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
3 6.000 6.0000 6.004 6.000 6.000 6.0041 6.0264 6.0374 6.0225 6.0002 6.0001
4 6.219 6.2723 6.249 6.418 6.238 7.5954 9.7073 7.9627 6.3633 6.2584 6.2496
5 8.976 9.0749 8.972 9.143 9.035 10.3349 10.0459 10.2556 9.4220 9.0940 9.0710

Figure 9: Iteration histories of 72-bar planar truss structure

For this experiment, the population size is 10 and the iteration is 1000 for SCA, FA, MFA,
HSCFA-1, HSCFA-2, and HSCFA. Table 11 shows that HSCFA ranks second. However, the natural
frequencies of HALC-PSO are 3.9985, 3.9985, 5.9985, 6.2285 and 9.0377, which violate the frequency
constraints. HSCFA achieves a significant improvement compared to SCA and FA, and HSCFA
makes at least 11.46% reduction in structural weight. It also can be found that the modification of FA
and the hybrid technique improve the solution accuracy of the algorithm by comparing FA, MFA and
HSCFA-1. The Lévy flight and self-adaptive penalty function can enhance the robust of the algorithm
through the comparison of HSCFA-1, HSCFA-2 and HSCFA. Table 12 denotes the results of HSCFA
satisfy the frequency constraints. Fig. 9 shows HSCFA has a faster convergence rate than SCA and
FA. It is worth mentioning that the solution of HSCFA still gains improvement at the later iterations,
which means the algorithm still has the ability to jump out of the local optimal.
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5.2.2 120-Bar Dome Truss Structure

The 120-bar dome truss including 7 size design variables is adopted as the second example. The
geometry and support conditions are shown in Fig. 10. Constant concentrated masses are added
to Node 1, Nodes 2–13, and the rest of all free nodes, respectively. Table 13 summarizes the design
parameters and the frequency constraints. The results of PSRO [37], PSO [38], HALC-PSO [38], set
theoretical multi-phase teaching-learning-based optimization (STMP-TLBO) [39], enhanced forensic-
based investigation algorithm (EFBI) [40], SCA and FA are used for the comparison. Table 14 lists the
comparison of the results, and Table 15 presents the first five natural frequencies of the optimal results.
Fig. 11 shows the convergence histories of the best result of SCA, FA and HSCFA.

Figure 10: A 120-bar dome truss structure

Table 13: Data for the 120-bar dome truss structure

Parameters (unit) Value

Modulus of elasticity E (N/m2) 2.1 × 1011

Material density ρ (kg/m3) 7971.810
Added mass (kg) m1 = 3000, m2 = 500, m3 = 100
Lower bound of cross sections (cm2) 1.0
Upper bound of cross sections (cm2) 129.3
Constraints on frequencies (Hz) f 1 ≥ 9, f 2 ≥ 11
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Table 14: Optimal design comparison for 120-bar dome truss structure

A(cm2) PSRO
[37]

PSO
[38]

HALC-PSO
[38]

STMP-TLBO
[39]

EFBI
[40]

SCA FA MFA HSCFA-1HSCFA-2HSCFA

1 19.972 18.4132 19.8905 19.5554 19.4744 20.891 15.916 19.8824 19.2110 19.6623 19.8064
2 39.701 47.8316 40.4045 40.2398 40.3940 36.038 52.489 37.7172 41.1982 40.0977 39.6874
3 11.323 15.6585 11.2057 10.5967 10.6238 10.147 10.304 11.6455 10.3171 10.6235 10.3824
4 21.808 28.7868 21.3768 21.1778 21.0395 22.604 17.138 21.1772 20.8726 21.3319 21.2291
5 10.179 9.1114 9.8669 9.8356 9.9007 10.443 28.038 10.4279 10.2465 9.7480 9.6936
6 12.739 15.1059 12.7200 11.8421 11.7354 20.197 33.376 11.2160 12.2075 11.8030 12.0102
7 14.731 14.4374 15.2236 14.7767 14.9079 14.358 28.980 15.2947 14.9217 14.6846 14.8588
Best (kg) 8892.33 10163.998889.96 8708.894 8707.74 9179.50 12131.14 8769.327 8724.799 8713.531 8709.871
Mean (kg) 8921.3 11134.778900.39 8710.040 8715.18 10120.17 16435.68 9038.162 8741.344 8734.964 8729.092
SD (kg) 18.54 526.67 6.38 0.693 2.15 579.86 1930.97 206.79 10.48 16.07 11.75
NS 4,000 18,800 17,000 20,000 5000 10,000 10,000 10,000 10,000 10,000 10,000

Table 15: Natural frequencies of the optimal designs for 120-bar dome truss structure

Number PSRO
[37]

PSO
[38]

HALC-PSO
[38]

STMP-TLBO
[39]

EFBI
[40]

SCA FA MFA HSCFA-1 HSCFA-2 HSCFA

1 9.000 9.067 9.000 9.0004 9.0000 9.056 9.063 9.0004 9.0035 9.0052 9.0000
2 11.000 11.199 11.000 11.0001 11.0000 11.015 11.059 11.001 11.0026 11.0001 11.0000
3 11.005 11.214 11.000 11.0001 11.0000 11.015 11.059 11.001 11.0063 11.0001 11.0000
4 11.012 11.695 11.010 11.0001 11.0007 11.323 11.598 11.072 11.0063 11.0012 11.0003
5 11.045 11.726 11.050 11.0669 11.0679 11.387 11.720 11.140 11.0717 11.0675 11.0670

Figure 11: Iteration histories of 120-bar dome truss structure

For this experiment, the population size is 10 and the iteration is 1000 for SCA, FA, MFA,
HSCFA-1, HSCFA-2, and HSCFA. Table 14 shows that HSCFA gains 5.12% and 28.20% loss of
weight compared to the two original algorithms. The comparison of SCA, FA, MFA, HSCFA-1,
HSCFA-2 and HSCFA denotes that the proposed strategies can improve the solution accuracy and
robust. Table 15 indicates the adaptive penalty function can handle the frequency constraints well.
Fig. 11 shows that SCA, HSCFA-1, HSCFA-2 and HSCFA have fast convergence rate at the early
iterations. However, SCA has the problem of update stagnation at the later iterations. The solutions
of HSCFA-1, HSCFA-2 and HSCFA update iteratively until the termination.
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5.3 Shape and Size Optimization
5.3.1 37-Bar Planar Truss Structure

The 37-bar planar truss including 5 shape and 14 size design variables is used as the third example.
The geometry and support conditions are shown in Fig. 12. Table 16 lists the design parameters and the
allowable multiple natural frequency constraints. All the members in the lower chord have a constant
cross-sectional area 40 cm2, and all the nodes in the lower chord attach a constant concentrated mass
10 kg. All nodes of the upper chord can vary from 1 m to 2.5 m in the y-axis. The results of NHPGA
[41], HS [36], DPSO [5], PSRO [37], HALC-PSO [38], CPA [6], STMP-TLBO [39], SCA and FA are
used for the comparison. Table 17 lists the comparison of optimal results, where “N/A” means the
value is not available in the relative literature. Table 18 shows the first five natural frequencies of the
optimal results. Fig. 13 illustrates the convergence histories of the best result of SCA, FA and HSCFA.

Figure 12: A 37-bar planar truss structure

Table 16: Design parameters of the 37-bar planar truss structure

Design parameters (units) Values

Young’s modulus (N/m2) 6.89 × 1010

Material density ρ (kg/m3) 2770.0
Added mass (kg) 10
Lower bound of cross sections (cm2) 1
Upper bound of cross sections (cm2) 10
Frequency constraints (Hz) f 1 ≥ 20, f 2 ≥ 40, f 3 ≥ 60

Table 17: Optimal design comparison for 37-bar planar truss structure
A(cm2) NHPGA

[41]
HS
[36]

DPSO
[5]

PSRO
[37]

HALC-
PSO
[38]

CPA
[6]

STMP-
TLBO
[39]

SCA FA MFA HSCFA-
1

HSCFA-
2

HSCFA

A1-A27 2.6246 3.2031 2.6208 2.6368 2.5000 2.9166 2.9972 3.794 3.820 4.8742 2.7357 3.2860 2.7040
A2-A26 1.0000 1.1107 1.0397 1.3034 1.2319 1.0089 1.0490 2.637 6.873 1.1339 1.3855 1.2361 1.0015
A3-A24 1.0018 1.1871 1.0464 1.0029 1.3669 1.0000 1.0000 2.533 2.464 1.0139 1.1186 1.0113 1.0006
A4-A25 2.0759 3.3281 2.7163 2.3325 2.2801 2.3965 2.5917 1.715 9.977 2.8225 3.3667 2.3434 2.5844
A5-A23 1.2207 1.4057 1.0252 1.2868 1.0011 1.3489 1.1576 1.067 2.206 1.0871 1.0043 1.0427 1.0373
A6-A21 1.4892 1.0883 1.5081 1.0704 0.9750 1.2240 1.2046 2.123 3.893 1.0017 1.1144 1.2825 1.1459
A7-A22 2.3085 2.1881 2.3750 2.4442 1.3577 2.5091 2.5445 1.229 1.341 2.5107 2.8253 2.0126 3.3189
A8-A20 1.4324 1.2223 1.4498 1.3416 1.5520 1.2656 1.4090 3.844 1.000 1.4780 1.4898 1.4237 1.5469
A9-A18 1.6468 1.7033 1.4499 1.5724 1.6920 1.4866 1.4821 1.446 6.325 1.3159 1.3095 1.2992 1.4883
A10-A19 2.8707 3.1885 2.5327 3.1202 1.7688 2.5584 2.4796 5.008 1.291 1.3959 2.5477 2.6817 2.3607
A11-A17 1.5041 1.0100 1.2358 1.2143 2.9652 1.1977 1.1702 2.059 2.867 1.4379 1.1787 1.1981 1.1884
A12-A15 1.3133 1.4074 1.3528 1.2954 1.0114 1.4003 1.3042 2.748 1.412 1.4078 1.2065 1.2815 1.1774
A13-A16 2.3228 2.8499 2.9144 2.7997 1.0090 2.5323 2.3958 4.545 2.272 2.4685 2.1471 2.4616 2.3834
A14 1.0426 1.0269 1.0085 1.0063 2.4601 1.0000 1.0000 1.484 2.983 1.2587 1.1687 1.0178 1.0093
Y3, Y19 1.0969 0.8415 0.9482 1.0087 1.2300 0.9592 0.9703 1.056 1.000 1.0526 1.0161 1.0110 1.0006

(Continued)
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Table 17 (continued)
A(cm2) NHPGA

[41]
HS
[36]

DPSO
[5]

PSRO
[37]

HALC-
PSO
[38]

CPA
[6]

STMP-
TLBO
[39]

SCA FA MFA HSCFA-
1

HSCFA-
2

HSCFA

Y5, Y17 1.4556 1.2409 1.3439 1.3985 1.2064 1.3480 1.3614 1.555 1.665 1.4063 1.3578 1.4082 1.3707
Y7, Y15 1.5954 1.4464 1.5043 1.5344 2.4245 1.5236 1.5318 1.627 1.982 1.6133 1.5158 1.5421 1.5137
Y9, Y13 1.7655 1.5334 1.6350 1.6684 1.4618 1.6617 1.6602 1.881 1.965 1.8633 1.6175 1.6581 1.6200
Y11 1.8741 1.5971 1.7182 1.7137 1.4328 1.7431 1.7404 2.024 2.129 1.8244 1.6948 1.7188 1.6997
Best (kg) 363.032 368.84 360.4 360.97 359.93 359.93 359.854 391.12 424.20 365.280 360.520 359.870 359.650
Mean
(kg)

381.2 N/A 362.21 362.65 360.23 360.93 360.261 405.77 449.73 371.975 361.759 361.976 359.985

SD (kg) 4.26 N/A 1.68 1.30 0.24 0.65 0.097 8.82 11.24 4.731 1.330 1.830 0.287
NS 125,000 N/A 6,000 4,000 10,000 12,800 20,000 6,000 6,000 6,000 6,000 6,000 6,000

Table 18: Natural frequencies of the optimal designs for 37-bar planar truss structure

Number NHPGA
[41]

HS
[36]

DPSO
[5]

PSRO
[37]

HALC-
PSO
[38]

CPA
[6]

STMP-
TLBO
[39]

SCA FA MFA HSCFA-
1

HSCFA-
2

HSCFA

1 20.0819 20.193 20.019 20.1023 20.0216 20.0000 20.0055 20.965 20.951 20.1693 20.0074 20.0238 20.0077

2 40.0961 40.416 40.011 40.0804 40.0098 40.0002 40.0015 43.653 41.868 40.2835 40.1420 40.0283 40.0180

3 60.0321 61.849 60.008 60.0516 60.0017 60.0024 60.0306 66.424 65.042 60.3482 60.0453 60.0442 60.0652

4 73.4648 76.886 76.990 75.8918 76.7857 77.3492 76.0899 86.760 91.214 75.5901 75.6668 76.4078 74.0695

5 88.7942 98.073 97.222 97.2470 96.3543 96.4671 96.2735 116.132 123.555 95.8378 97.0759 96.5769 95.0637

Figure 13: Iteration histories of 37-bar planar truss structure

For this experiment, the population size is 10 and the iteration is 600 for SCA, FA, MFA,
HSCFA-1, HSCFA-2, and HSCFA. It can be concluded from Table 17 that HSCFA and STMP-
TLBO rank first and second, but HSCFA obtains the lightest design with less analyses compared to
CPA. Compare to SCA, FA, MFA, HSCFA-1 and HSCFA-2, the values of “Best”, “Mean” and “SD”
indicate that HSCFA makes a great improvement in the solution accuracy and robustness. Table 18
shows the results of HSCFA satisfying the frequency constraints. Fig. 13 illustrates that HSCFA has
the fastest convergence rate among the algorithms.

5.3.2 52-Bar Dome Truss Structure

The 52-bar dome truss including 8 size and 5 shape design variables is adopted as the fourth
example. The geometry and support conditions are shown in Fig. 14. Table 19 summarizes the design
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parameters and the allowable frequency constraints. All free nodes are permitted to move ±2 m in
each allowable direction from their initial position on the basis of ensuring the symmetry of the whole
structure. And constant concentrated mass is added to each free node. The results of NHPGA [41],
HS [36], DPSO [5], PSRO [37], HALC-PSO [38], CPA [6], STMP-TLBO [39], EFBI [40], SCA and FA
are used for the comparison. Comparison of the results and the first five frequency of best results for
all the algorithms are reported in Tables 20 and 21. Fig. 15 shows the convergence histories of the best
result of SCA, FA and HSCFA.

Figure 14: A 52-bar dome truss structure

Table 19: Data for the 52-bar dome truss structure

Parameters (unit) Value

Modulus of elasticity E (N/m2) 2.1 × 1011

Material density ρ (kg/m3) 7800
Lower bound of cross sections (cm2) 1
Upper bound of cross sections (cm2) 10
Added mass (kg) 50
Constraints on the first two frequencies (Hz) f 1 ≤ 15.916, f 2 ≥ 28.648

Table 20: Optimal design comparison for 52-bar dome truss structure
A(cm2),
Z, X
(m)

NHPGA
[41]

HS
[36]

DPSO
[5]

PSRO
[37]

HALC-
PSO
[38]

CPA
[6]

STMP-
TLBO
[39]

EFBI
[40]

SCA FA MFA HSCFA-
1

HSCFA-
2

HSCFA

A1-4 1 1.0085 1.0001 1.0007 1.0001 1.000 1.0005 1.0002 1.000 1.603 1.0189 1.0000 1.0014 1.000
A5-8 2.142 1.4999 1.1397 1.0312 1.1654 1.1077 1.1005 1.1620 1.293 1.389 1.0757 1.0000 1.0093 1.085
A9-16 1.486 1.3948 1.2263 1.2403 1.2323 1.1988 1.1881 1.1992 1.437 1.511 1.7228 1.1400 1.1887 1.203
A17-20 1.402 1.3462 1.3335 1.3355 1.4323 1.4899 1.4705 1.4108 1.135 1.508 1.7027 1.4717 1.4933 1.452
A21-28 1.911 1.6776 1.4161 1.5713 1.3901 1.9337 1.4212 1.3945 1.449 1.568 1.3407 1.4046 1.5178 1.421
A29-36 1.011 1.3704 1.0001 1.0021 1.0001 1.0001 1.0000 1.0000 1.000 1.000 1.0107 1.0000 1.0000 1.000
A37-44 1.469 1.4137 1.575 1.3267 1.6024 1.5998 1.4751 1.4876 1.417 1.857 1.3126 1.4653 1.4755 1.556
A45-52 2.141 1.9378 1.4357 1.5653 1.4131 1.4135 1.4714 1.4899 1.568 1.849 1.6947 1.5354 1.4083 1.391
ZA 5.885 4.7374 6.1123 6.252 5.9362 5.9227 6.0207 6.0445 5.819 4.126 4.0423 6.0152 6.0426 6.002
XB 1.762 1.5643 2.244 2.456 2.2416 2.3048 2.3090 2.2002 2.146 1.548 2.7944 2.4943 2.4604 2.304
ZB 4.409 3.7413 3.8321 3.826 3.7309 3.7061 4.0113 4.0032 3.874 3.951 3.7616 3.7000 3.7182 3.733

(Continued)
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Table 20 (continued)
A(cm2),
Z, X
(m)

NHPGA
[41]

HS
[36]

DPSO
[5]

PSRO
[37]

HALC-
PSO
[38]

CPA
[6]

STMP-
TLBO
[39]

EFBI
[40]

SCA FA MFA HSCFA-
1

HSCFA-
2

HSCFA

XF 3.441 3.4882 4.0316 4.179 3.9630 3.9768 3.7424 3.8088 4.049 2.347 4.3068 4.0706 4.0815 3.998
ZF 3.187 2.6274 2.5036 2.501 2.5000 2.5001 2.5000 2.5000 2.519 2.810 2.5000 2.5000 2.5007 2.500
Best
(kg)

236.046 214.940 195.351 197.186 194.85 194.826 193.432 193.60 198.23 222.25 211.111 194.6235 194.5406 193.20

Mean(kg) 274.164 229.88 198.71 213.42 196.85 198.81 197.23 194.17 216.75 283.32 246.74 200.68 199.00 198.53
SD
(kg)

37.462 12.44 13.85 10.11 2.38 3.71 3.698 0.48 16.77 32.76 31.93 7.89 4.53 3.01

NS 13,519 20,000 6,000 4,000 7,500 12,800 20,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Table 21: Natural frequencies of the optimal designs for 52-bar dome truss structure

Number NHPGA
[41]

HS
[36]

DPSO
[5]

PSRO
[37]

HALC-
PSO
[38]

CPA
[6]

STMP-
TLBO
[39]

EFBI
[40]

SCA FA MFA HSCFA-
1

HSCFA-
2

HSCFA

1 13.114 12.2222 11.3115 12.311 11.434 11.736 11.7075 11.2011 11.812 14.836 10.3058 12.4623 12.9066 11.667

2 29.356 28.6577 28.648 28.648 28.648 28.648 28.6480 28.6479 28.673 28.846 28.6817 28.6517 28.6504 28.648

3 29.356 28.6577 28.648 28.649 28.648 28.648 28.6480 28.6479 28.673 28.856 28.6817 28.6517 28.6504 28.648

4 30.270 28.6618 28.650 28.715 28.648 28.654 28.6505 28.6503 28.759 28.856 31.3955 28.8062 28.7968 28.648

5 30.992 30.0997 28.688 28.744 28.685 28.690 28.6518 28.6578 29.856 29.518 31.4684 28.9906 28.9297 28.683

For this experiment, the population size is 10 and the iteration is 1000 for SCA, FA, MFA,
HSCFA-1, HSCFA-2, and HSCFA. Table 20 shows that the best solution is acquired by HSCFA. The
comparison of SCA, FA, MFA, HSCFA-1, HSCFA-2 and HSCFA indicates that the improvements
can successfully enhance the performance of the algorithm. Table 21 shows the design of HSCFA
satisfies the frequency constraints. It can be seen from Fig. 15 that HSCFA has a faster convergence
rate than SCA and FA through the entire search process.

Figure 15: Iteration histories of 52-bar dome truss structure

6 Conclusions

A new hybrid metaheuristic method HSCFA is proposed to address the shape and size optimiza-
tion of truss structures with nonstructural masses under multiple frequency constraints. The modified
FA, SCA, Lévy flight, elitist selection technique and adaptive penalty function are integrated to
construct the new method. The modified FA improves the attraction model of the standard FA by
reducing the attraction number of each firefly, thus the solution accuracy is improved. The modified
FA also uses the parameter of SCA instead of the original randomization parameter, which strengthens
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the exploitation ability of the algorithm. Lévy flight is utilized to improve the population diversity
of the algorithm during the search process. Elitist selection technique is introduced into HSCFA
for population selection to accelerate the convergence rate. An adaptive penalty function method
considering the iteration stage, the degree and the number of constraint violations is adopted to deal
with the frequency constraints. HSCFA takes advantage of the modified FA, SCA and Lévy flight to
update different solutions. The modification enhances the exploration and exploitation abilities of FA
and SCA with the reduction of computational complexity.

Four shape and size truss optimization problems with multiple frequency constraints are used
to test the performance of HSCFA. The results demonstrate HSCFA performs better than other
algorithms in the literature and achieves significant improvement compared to SCA and FA. HSCFA
can obtain the lightest designs and cost the least computational time. Consequently, HSCFA provides
an efficient and competitive tool for shape and size optimization problems with frequency constraints.
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