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ABSTRACT

We propose new hybrid Lagrange neural networks called LaNets to predict the numerical solutions of partial
differential equations. That is, we embed Lagrange interpolation and small sample learning into deep neural
network frameworks. Concretely, we first perform Lagrange interpolation in front of the deep feedforward neural
network. The Lagrange basis function has a neat structure and a strong expression ability, which is suitable to
be a preprocessing tool for pre-fitting and feature extraction. Second, we introduce small sample learning into
training, which is beneficial to guide the model to be corrected quickly. Taking advantages of the theoretical support
of traditional numerical method and the efficient allocation of modern machine learning, LaNets achieve higher
predictive accuracy compared to the state-of-the-art work. The stability and accuracy of the proposed algorithm are
demonstrated through a series of classical numerical examples, including one-dimensional Burgers equation, one-
dimensional carburizing diffusion equations, two-dimensional Helmholtz equation and two-dimensional Burgers
equation. Experimental results validate the robustness, effectiveness and flexibility of the proposed algorithm.

KEYWORDS
Hybrid Lagrange neural networks; interpolation polynomials; deep learning; numerical simulation; partial
differential equations

1 Introduction

In this paper, we consider partial differential equations (PDEs) of the general form in Eqs. (1.1)–
(1.3):

ut + Lu(t, x) = f , t ∈ [0, T ], x ∈ �, (1.1)

u(0, x) = u0, x ∈ �, (1.2)

u(t, x) = u�, t ∈ [0, T ], x ∈ ∂�, (1.3)

where L is a differential operator, � is a subset of R
N, and ∂� represents its boundary. u denotes

the unknown function that needs to be solved, u0 and u� represent initial and boundary conditions,
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respectively. Different governing equations and homologous initial/boundary conditions can describe
many physical phenomena in nature, but it is practically difficult to find the analytical solutions.
Therefore, more and more scholars have tried a variety of numerical methods to solve PDEs in recent
years.

At first, traditional numerical methods, including finite element method [1], finite volume method
[2] and finite difference method [3], were usually used to solve partial differential equations. After-
wards, with the rapid development of machine learning [4–6], the universal approximation ability
of neural networks is considered to be helpful for obtaining approximated solutions of differential
equations. Han et al. [7–9] proposed deep learning-based numerical approaches to solve variational
problems, backward stochastic differential equations and high-dimensional equations. Then Chen
et al. [10] extended their work to solve Navier-Stokes and Cahn-Hillard equation. Sirignano et al.
[11] combined Galerkin method and deep learning to solve high-dimensional free boundary PDEs.
Raissi et al. [12] proposed the physics-informed neural network (PINNs) framework which acts
as the benchmark algorithm in this field. In PINNs, physical constraints are added to limit the
space of solutions to improve the accuracy. Futhermore, many scholars carry out research based on
this method. Dwivedi et al. [13] incorporated PINNs with extreme learning machine to solve time-
dependent linear partial differential equations. Pang et al. [14] solved space-time fractional advection-
diffusion equations by expanding PINNs to fractional PINNs. Raissi et al. [15] subsequently developed
a physics-informed deep learning framework that is able to encode Navier-Stokes equations into the
neural networks. Kharazmi et al. [16] constructed a variational physics-informed neural network to
effectively reduce the training cost in network training. Yang et al. [17] proposed Bayesian physics-
informed neural networks for solving forward and inverse nonlinear problems with PDEs and noisy
data. Meng et al. [18] developed a parareal physics-informed neural network to significantly accelerate
the long-time integration of partial differential equations. Gao et al. [19] proposed a new learning
architecture of physics-constrained convolutional neural network to learn the solutions to parametric
PDEs on irregular domains.

Neural network is a black box model, its approximation ability depends partly on the depth and
width of the network, and thus too many parameters will cause a decrease in computational efficiency.
One may use Functional Link Artificial Neural Network (FLANN) [20] model to overcome this
problem. In FLANN, the single hidden layer of neural network is replaced by an expansion layer
based on distinct polynomials. Mall et al. [21] used Chebyshev neural network to solve elliptic partial
differential equations by replacing the single hidden layer of the neural network with Chebyshev
polynomials. Sun et al. [22] replaced the hidden layer with Bernstein polynomials to obtain the
numerical solution of PDEs as well. Due to the application of polynomials, neural network has no
actual hidden layers, and the number of parameters is greatly reduced.

On the other hand, deep learning is a type of learning that requires a lot of data. The performance
of deep learning depends on large-scale and high-quality sample sets but the cost of data acquisition is
prohibitive. Moreover, sample labeling also needs to consume a lot of human and material resources.
Therefore, a popular learning paradigm named Small Sample Learning (SSL) [23] has been used in
some new fields. SSL refers to the ability to learn and generalize under a small number of samples. At
present, SSL has been successfully applied in medical image analysis [24], long tail distribution target
detection [25], remote sensing scene classification [26], etc.

In this paper, we integrate Lagrange interpolation and small sample learning with deep neural
networks frameworks to deal with the problems in existing models. Specifically, we replace the first
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hidden layer of the deep neural network with a Lagrange block. Here, Lagrange block is a pre-
processing tool for preliminary fitting and feature extraction of input data. The Lagrange basis
function has a neat structure and strong expressive ability, so it is fully capable of better extracting
detailed features of input data for feature enhancement. The main thought of Lagrange interpolation
is to interpolate the function values of other positions between nodes through the given nodes, so as
to make a prefitting behaviour without adding any extra parameters. Then, the enhanced vector is
input to the subsequent hidden layer for the training of the network model. Furthermore, we add the
residual of a handful of observations into cost function to rectify the model and improve the predictive
accuracy with less label data. This composite neural network structure is quite flexible, mainly in that
the structure is easy to modify. That is, the number of polynomials and hidden layers can be adjusted
according to the complexity of different problems.

The structure of this paper is as follows. In Section 2, we present the introduction of Lagrange
polynomials, the structure of the LaNets and the steps of algorithm. Numerical experiments for one-
dimensional PDEs and two-dimensional PDEs are described in Section 3. Finally, conclusions are
incorporated into Section 4.

2 LaNets: Theory, Architecture, Algorithm

In this section, we start with illustrations on Lagrange interplotation polymonials. After that, we
discuss the framework of LaNets. And finally, we clarify the detatils of the proposed algorithm.

2.1 Lagrange Interpolation Polynomial
Lagrange interpolation is a kind of polynomial interpolation methods proposed by Joseph-Louis

Lagrange, a French mathematician in the 18th century, for numerical analysis [27]. Interpolation is an
important method for the approximation of functions, which uses the value of a function at a finite
point to estimate the approximation of the function at other points. That is, the continuous function
is interpolated on the basis of discrete data to make the continuous curve pass through all the given
discrete data points. Mathematically speaking, Lagrange interpolation can give a polynomial function
that passes through several known points on a two-dimensional plane.

Assuming x1, x2, . . . , xn+1 are the distinct n + 1 points in the complex panels, and y1, y2, . . . , yn+1

are the corresponding values at x1, x2, . . . , xn+1. The Lagrange polynomial L(x) corresponding to their
degree not exceeding n is unique. Indeed, the uniqueness of L(x) arises from the fact that the difference
of two such polynomials vanish at points x1, . . . , xn+1 without a degree greater than n. The following
polynomial clearly possesses all the necessary properties in Eqs. (2)–(3):

L(x) =
n+1∑
j=1

yj

(x − x1) · · · (x − xj−1) · (x − xj+1) · · · (x − xn+1)

(xj − x1) · · · (xj − xj−1) · (xj − xj+1) · · · (xj − xn+1)

=
n+1∑
j=1

yj

w(x)

(x − xj)w′(xj)
,

(2)

where

w(x) = (x − x1) · · · (x − xn+1). (3)

Here, the polynomial L(x) is called Lagrange interpolation polynomial. And the distinct points
x1, . . . , xn+1 are called the interpolation points. It can be seen that the corresponding Lagrange
polynomial can be obtained by given n+1 value points: (x0, y0), . . . ,(xn, yn). The Lagrange interpolation
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polynomial obtained from only some points can replace the function to obtain the solution at any other
points. The correctness of Lagrange polynomials has been proved in the literatures [27,28].

2.2 The Architecture of LaNets
Fig. 1 displays the structure of LaNets, which is composed of two main parts. One is a prepro-

cessing part based on Lagrange polynomials, the other is the training of deep feedforward neural
network. Thus, the LaNets model we designed is a joint feedforward neural network composed of
input layer, Lagrange block, hidden layers and output layer. As described in Section 2.1, we can also
write Lagrange interpolation polynomial in Eq. (4):

L(x) :=
k∑

j=0

yjlj(xj), (4)

where xj and yj in the above formula correspond to the position of the independent variable and the
value of function at this position, respectively. Here, we call lj(x) the Lagrange interpolation basis
function, and the expression of lj(x) is as follows:

lj(x) :=
k∏

i=0,i �=j

x − xi

xj − xi

= x − x0

xj − x0

· · · x − xj−1

xj − xj−1

· x − xj+1

xj − xj+1

· · · x − xk

xj − xk

. (5)

Figure 1: The schematic drawing of the LaNets

As shown in Fig. 1, the original input vector is extended to a new enhanced vector by Lagrange
block primarily, and then sent to deep feedforward neural network for training. The black Lagrange
block on the right shows the Lagrange interpolation basis functions l0, l1 and l2 visually. Spatio-
temporal variables can be both handled with Lagrange basis functions. Actually, the proposed model
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not only increases the reliability and stability of the single-layer polynomial neural network, but also
improves the predictive accuracy of the deep feedforward neural network without adding any extra
parameters.

2.3 Loss Function & Algorithm
The problem we aim to solve is described as Eqs. (1.1)–(1.3). Following the original work of Raissi

et al. [12], F(t, x) can be defined as Eq. (6):

F := ut + Lu − f . (6)

We continue to approximate u(t, x) with the deep neural network u(t, x; θ), where θ represents the
parameter set of the network. The model is then trained by minimizing the following compound loss
function J(θ) in Eq. (7):

J(θ) = 1
Nu

Nu∑

i=1

(u(ti
u, xi

u) − ui)2 + 1
Nin

Nin∑

i=1

(u(ti
in, xi

in) − ui)2 + 1
Nf

Nf∑

i=1

f (ti
f , xi

f )
2. (7)

Here, (ti
u, xi

u, ui)
Nu
i=1 denotes the initial and boundary value, (ti

in, xi
in, ui)

Nin
i=1 represents the small sample

data on u(t, x), and (ti
f , xi

f )
Nf
i=1 specifies the collocation points on f (t, x). The first loss term satisfies

the initial and boundary conditions, the second term corresponds to the residuals of the small sample
data on the domain and the third term serves as a constraint on the governing equation itself. The
optimization method used here is L-BFGS-B algorithm [29], which converges faster in calculations
and has lower memory overhead.

An entire overview of this work is shown in Algorithm 1. In the algorithm description, we consider
the spatio-temporal variables x and t. Without a doubt, the proposed method is also applicable to time-
independent partial differential equations, and related examples will be mentioned in the following
experiments.

Algorithm 1 Overview of the Proposed Algorithm.
Require: Initial and boundary data points, (ti

u, xi
u, ui)

Nu
i=1;

Small sample data points, (ti
in, xi

in, ui)
Nin
i=1;

Collocations points, (ti
f , xi

f )
Nf
i=1;

Ensure: Predicted LaNets solution, u(t, x);
1: Specify the data set including initial/boundary training data (ti

u, xi
u, ui)

Nu
i=1, small sample training data

(ti
in, xi

in, ui)
Nin
i=1 and residual training data (ti

f , xi
f )

Nf
i=1;

2: Construct the LaNets u(t, x; θ) with parameters θ;
3: Specify the cost function by summing the initial/boundary conditions, the residuals of small sample
data points and the residuals of governing equations;
4: Train the neural network to find the optimal parameter set θ by minimizing the loss function J(θ);
5: Get the predicted composite network solution u(t, x) on the entire domain;
6: Return u(t, x).
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3 Numerical Experiments

In this section, we verify the performance and accuracy of LaNets numerically through experi-
ments with benchmark equations. In Subsection 3.1, we provide three typical one-dimensional time-
dependent PDEs to validate the robustness and validity of the proposed algorithm. In Subsection 3.2,
two-dimensional PDEs are shown to illustrate the reliability and stability of the method.

3.1 Numerical Results for One-Dimensional Equations
In this subsection, we demonstrate the predictive accuracy of our method on three one-

dimensional time-dependent PDEs including Burgers equation, carburizing constant diffusion
coefficient equation and carburizing variable diffusion coefficient equation.

3.1.1 Burgers Equation

We start with the following one-dimensional time-dependent Burgers equation in Eqs. (8.1)–(8.3):

ut + u · ux = λ · uxx, x ∈ [−1, 1], t ∈ [0, 1], (8.1)

u(0, x) = −sin(π · x), (8.2)

u(t, −1) = u(t, 1) = 0, (8.3)

where λ is the viscosity parameter. In this case, we take λ = 0.01/π .

Here, the LaNets model consists of one Lagrange block and 7 hidden layers with 20 neurons in
each layer. Lagrange block contains three Lagrange basis functions. By default, the Lagrange block is
composed of three Lagrange basis functions unless otherwise specified. Fig. 2a illustrates the predicted
numerical result of the Burgers equation, and the relative L2 error measured at the end is 3.84 × 10−4.
The loss curve vs. iteration is displayed in Fig. 2b. The mean square error loss decreases steadily, which
illustrates the stability of the proposed method.

Figure 2: (a) The predicted solution of one-dimensional Burgers equation. Here, we adopt a 9-layer
LaNets. The size of small sample points is 100. The relative L2 error measured is 3.84 × 10−4. (b) The
loss curve vs. iteration

To further verify the effectiveness of the proposed algorithm, we compare the predicted solution
with the analytical solution provided in the literature [30] at four timesnapshots, which are presented in
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Fig. 3. It seems that there is almost no difference between the predicted solution and the exact solution.
Moreover, the sharp gap formed near time t = 0.65 is also well captured.

(a) 0.1t = (b) 0.25t =

(c) 0.65t = (d) 0.99t =

Figure 3: The comparison of predicted solutions obtained by LaNets and exact solutions at four time
snapshots t = (0.1, 0.25, 0.65, 0.99) for the one-dimensional Burgers equation

A more detailed numerical result is summarized in Table 1. It has to be noted that the early work
[31] serves as a benchmark. In order to observe the influence of a different number of small sample
points in the algorithm, we add 50 small sample points each time to calculate the corresponding results.
From Table 1, one can visually see that the error of the LaNets model is one order of magnitude lower
than that of PINNs. In addition, we can clearly find that 50 sample points used here can achieve
a higher predictive accuracy than the 300 sample points used in the benchmark model. It means
that using less label data to get more accurate predicted results is achievable, thereby saving a lot of
manpower and material resources and increasing computational efficiency.

Table 1: The relative L2 errors for one-dimensional Burgers equation

Nin size 0 50 100 200 300

PINNs 1.6×10e-03 - - - -
Benchmark - 1.1×10e-03 7.9×10e-04 5.5×10e-04 2.4×10e-03
LaNets - 4.77×10e-04 3.84×10e-04 1.11×10e-03 5.13×10e-04
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3.1.2 Carburizing Diffusion Model

We consider the one-dimensional carburizing diffusion model [32] in Eqs. (9.1)–(9.4):

ut = (D(u) · ux)x, x ∈ [l, r], t ∈ [0, T ], (9.1)

u(0, x) = u0(x), x ∈ [l, r], (9.2)

u(t, l) = ul, t ∈ [0, T ], (9.3)

u(t, r) = ur, t ∈ [0, T ], (9.4)

where D(u) represents the diffusion coefficient and u is the concentration of carbon. Here, l and r
denote the left and right boundary of the model. Diffusion is a fundamental process of carburizing, and
the diffusion coefficient is related to temperature, the content of alloy elements, systems, etc. Next we
consider carburizing diffusion equation with constant and variable diffusion coefficient, respectively.

1. Constant diffusion coefficient

We start with the constant diffusion coefficient D(u) according to Eq. (10):

D(u) = D0 · exp(−Q/(RT2)), (10)

where D0, Q, R and T2 are already given. In a practical sense, D0 represents the pre-exponential factor,
Q denotes the activation energy of carbon, R describes the gas constant and T2 is the temperature
during the carburizing process (K).

In this numerical experiment, we take D0 = 16.2 mm2/s, Q = 137800 J/mol, R = 8.314 J/(K ×mol)
and T2 = 1123 K. The corresponding exact solution is written as Eq. (11):

u(t, x) = up − (up − ud)erf (x/(2 · √
D · t)), (11)

where we have up = 1.2 and ud = 0.2. The terminal time T of this model is 36000, the left boundary l
is 0, and the right boundary r is 2.5.

Regarding the training set, we take Nu = 150, Nin = 300, Nf = 10000. Moreover, we employ a
8-layer LaNets to represent the solution u(t, x) in this simulation. The LaNets model contains one
Lagrange block, six hidden layers with 20 hidden neurons per layer and one output layer. Here, the
relative L2 error is measured at 1.35 × 10−3.

In order to evaluate the performance of our algorithm in multiple ways, we compare the simulation
results with the simulation results obtained by the PINNs model and our earlier model. The results for
the three models are shown in Fig. 4. We can clearly see that the predicted solution of the PINNs model
is not quite consistent with the exact solution, and the differences become more and more obvious
over time. And it is here that the LaNets model fits more accurately than the benchmark model. Thus,
the proposed method has obvious advantages in the long time simulation of time-dependent partial
differential equations. A more intuitive error value obtained by three algorithms is listed in Table 2,
from which we find that the predicted error of the benchmark model is one order of magnitude lower
than PINNs. Meanwhile, the predicted error of LaNets when using 300 sample points is almost one
order of magnitude lower than the benchmark model. The decline curve of the loss function in the
training process is shown in the Fig. 5a. It can be seen that the loss has been declined to a small value
in few iterations during the training process.
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(g) PINNs t = 0.1h (h) PINNs t = 1.0h (I) PINNs t = 10.0h 

(a) LaNets t = 0.1h (b) LaNets t = 1.0h (c) LaNets t = 10.0h 

(d) Benchmark t = 0.1h (e) Benchmark t = 1.0h (f) Benchmark t = 10.0h 

Figure 4: Predicted solutions for one-dimensional carburizing constant diffusion coefficient equation.
Top row: LaNets model; Middle row: benchmark model; bottom row: PINNs model. First column:
t = 0.1 h; Middle column: t = 1.0 h; last column: t = 10.0 h

Table 2: The relative L2 errors for one-dimensional carburizing constant diffusion coefficient equation

Nin size 0 50 100 200 300

PINNs 6.72×10e-01 - - - -
Benchmark - 2.38×10e-02 1.48×10e-02 1.19×10e-02 1.22×10e-02
LaNets - 2.13×10e-02 1.43×10e-02 1.31×10e-02 1.35×10e-03

2. Variable diffusion coefficient

In this experiment, the carburizing diffusion coefficient D(u) varies with the temperature, systems
and ratio of the element. Here, we consider D(u) = cos u, and add a source term s(t, x) as Eq. (12):

s(t, x) = sin(e−d·t · sinx) · e−2d·t · cos2x − d · e−d·t · sinx + cos(e−d·t · sinx) · e−d·t · sinx. (12)

The analytical solution corresponding to this setting is Eq. (13):

u(t, x) = sinx · e−d·t. (13)



666 CMES, 2023, vol.134, no.1

In this example, we have d = 0.5, the left boundary l = −π , the right boundary r = π and the
ending time T = 1. Moreover, we use a 8-layer LaNets to denote the spatio-temporal solution u(t, x).
The curve of loss function during training is shown in the Fig. 5b.

Figure 5: (a) The loss curve vs. iteration for the one-dimensional carburizing diffusion equation with
constant diffusion coefficient. (b) The loss curve vs. iteration for the one-dimensional carburizing
diffusion equation with variable diffusion coefficient

Further, we make a contrast between the simulation results obtained by the proposed model and
the benchmark model. The detailed results for them are displayed in Fig. 6. While all experimental
results seem to be consistent with the analytical results, one can find that the predicted solution of the
LaNets model is more closer to the exact solution. A more accurate error evaluation is summarized in
Table 3, from which we see that the prediction error of the LaNets model is always lower than that of
the benchmark model when using the same number of small sample points.

(a) LaNets t = 0.1 (b) LaNets t = 0.5 (c) LaNets t = 1.0

(d) LaNets t = 0.1 (e) LaNets t = 0.5 (f) LaNets t = 1.0 

Figure 6: Predicted solutions for one-dimensional carburizing variable diffusion coefficient equation.
Top row: LaNets model; bottom row: benchmark model. First column: t = 0.1; middle column: t =
0.5; last column: t = 1.0
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Table 3: The relative L2 errors for one-dimensional carburizing variable diffusion coefficient equation

Nin size 0 50 100 200 300

PINNs 2.25×10e-03 - - - -
Benchmark - 5.93×10e-04 5.95×10e-04 6.29×10e-04 1.20×10e-03
LaNets - 1.38×10e-04 1.67×10e-04 3.22×10e-04 2.07×10e-04

3.2 Numerical Results for Two-Dimensional Equations
In this section, we consider two-dimensional problems including the time-independent Helmholtz

equation and time-dependent Burgers equation to verify the effectiveness of the LaNets model. These
two types of two-dimensional problems aim to demonstrate the generalization ability of our methods.

3.2.1 Helmholtz Equation

In this example, we consider a time-independent two-dimensional Helmholtz equation as Eq. (14):

uxx + uyy + k2(u) − f (x, y) = 0. (14)

with homogeneous Dirichlet boundary conditions and the source function f (x, y) is given by Eq. (15):

f (x, y) = 2 · π · cos(π · x) · sin(π · y) + 2 · πcos(π · y) · sin(π · x) + (x + y) · sin(π · x)sin(π · y)

− 2 · π 2 · (x + y) · sin(π · x) · sin(π · y), [x, y] ∈ [−1, 1]2. (15)

Here, we take k = 1 and the analytical solution is Eq. (16):

u(x, y) = (x + y) · sin(π · x) · sin(π · y). (16)

The training set of this example is generated according to the exact solution in the above equation.
The problem is solved using the 4-layer LaNets model on the domain [−1, 1]×[−1, 1]. And each hidden
layer consists of 40 hidden neurons. The relative L2 error measured is 5.28 × 10−4. The training set is
specified as Nu = 400, Nin = 200, Nf = 10000.

The visual comparison among LaNets, benchmark and PINNs results is displayed in Fig. 7. From
Fig. 7, we find that the predicted solution of the benchmark model is not quite consistent with the exact
solution. In addition, the proposed model is more accurate than the PINNs model especially on the
boundary. Detailed error values for the three models are shown in Table 4, from which we see that the
predicted error of the LaNets model is always minimal. The loss curve during the training process is
shown in Fig. 8a. From Fig. 8a, we see that the value of the loss decreases continuously and smoothly
from a higher value to a lower value, which shows the stability and robustness of the proposed model.

Figure 7: (Continued)
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Figure 7: Predicted solutions for the two-dimensional Helmholtz equation. Top row: LaNets model;
Middle row: benchmark model; bottom row: PINNs model. First column: x = −0.8; middle column:
x = 0.1; last column: x = 0.5

Table 4: The relative L2 errors for two-dimensional Helmholtz equation

Nin size 0 50 100 200 300

PINNs 4.95×10e-03 - - - -
Benchmark - 1.10×10e-2 6.03×10e-03 2.43×10e-03 1.26×10e-03
LaNets - 7.31×10e-04 6.32×10e-04 5.28×10e-04 1.23×10e-03

Figure 8: (a) The loss curve vs. iteration for two-dimensional Helmholtz equation. (b) The loss curve
vs. iteration for two-dimensional Burgers equation
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3.2.2 2D Burgers Equation

In the last experiment, we consider a two-dimensional time-dependent Burgers equation as
Eq. (17):

ut + u · (ux + uy) − λ · (uxx + uyy) = 0, (x, y) ∈ [0, 1] × [0, 1], t ∈ [0, T ], (17)

where u represents the predicted spatio-temporal solution. The corresponding initial and boundary
conditions are given by Eq. (18):

u(t, x, y) = 1
1 + exp( x+y−t

2·λ ))
(18)

In this example, we take λ = 0.1 and T = 3. The training set is generated by the exact solution
Eq. (18), which is utilized to assess the accuracy of our method. The computing domain is set to [0, 1] ×
[0, 1] × [0, 3]. We apply an 8-layer LaNets model and each hidden layer consists of 20 neurons. The
residual training points are 20000 and the initial and boundary points are 150 whereas the Nin points
are 300.

The decline curve of the loss function is shown in Fig. 8b. It can be seen that the loss value
drops steadily to a small value over fewer iterations. Fig. 9 displays the 3D plot of the solution at
t = 0.5, and the relative L2 error calculated is 2.06×10−4. The experiment of the two-dimensional time-
dependent Burgers equation proves that the proposed method can effectively solve high-dimensional
time-dependent PDEs. In theory, the LaNets model can solve PDEs in arbitrary dimensions, and
the remaining research is left for future work. The detailed relative L2 errors obtained by LaNets,
benchmark and PINNs are given in Table 5, from which we can know that the predicted error of
LaNets is lower than that of the benchmark model and PINNs model.

Figure 9: The predicted solution of the two-dimensional Burgers equation at t = 0.5

Table 5: The relative L2 errors for the two-dimensional Burgers equation

Nin size 0 50 100 200 300

PINNs 1.64×10e-03 - - - -
Benchmark - 5.13×10e-4 3.81×10e-04 2.7×10e-04 4.0×10e-04
c - 2.19×10e-04 3.69×10e-04 2.39×10e-04 2.06×10e-04
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4 Conclusion

In this paper, we propose hybrid Lagrange neural networks called LaNets to solve partial
differential equations. We first perform Lagrange interpolation through Lagrange block in front of
deep feedforward neural network architecture to make pre-fitting and feature extraction. Then we
add the residuals of small sample data points in the domain into the cost function to rectify the
model. Compared with the single-layer polynomial network, LaNets greatly increase the reliability and
stability. And compared with general deep feedforward neural network, the proposed model improves
the predictive accuracy without adding any extra parameters. Moreover, the proposed model can
obtain more accurate prediction with less label data, which makes it possible to save a lot of manpower
and material resources and improve computational efficiency. A series of experiments demonstrate the
effectiveness and robustness of the proposed method. In all cases, our model shows smaller predictive
errors. The numerical results verify that the proposed method improves the predictive accuracy,
robustness and generalization ability.
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