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ABSTRACT

It is important for the autonomous system to understand environmental information. For the autonomous system,
it is desirable to have a strong generalization ability to deal with different complex environmental information, as
well as have high accuracy and quick inference speed. Network ensemble architecture is a good choice to improve
network performance. However, it is unsuitable for real-time applications on the autonomous system. To tackle this
problem, a new neural network ensemble named partial-shared ensemble network (PSENet) is presented. PSENet
changes network ensemble architecture from parallel architecture to scatter architecture and merges multiple
component networks together to accelerate the inference speed. To make component networks independent of
each other, a training method is designed to train the network ensemble architecture. Experiments on Camvid and
CIFAR-10 reveal that PSENet achieves quick inference speed while maintaining the ability of ensemble learning.
In the real world, PSENet is deployed on the unmanned system and deals with vision tasks such as semantic
segmentation and environmental prediction in different fields.
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1 Introduction

Ensemble learning is widely considered to be a good way to strengthen generalization ability.
It has a wide application in many fields such as visual tracking [1], object detection [2,3], data
classification and recognition [4,5], and context processing [6]. Neural network ensemble [7–9] stacks
a finite number of neural networks and trains them for the same task, as shown in Fig. 1. Although
this parallel ensemble architecture could accurately extract environmental information in complex
environment, it is unsuitable for real-time applications on the autonomous system. On the one hand,
ensemble architecture does not meet the real-time requirement for real-time applications. For the
parallel ensemble architecture, the same input is fed into each component neural network one by
one during prediction. This process needs to spend lots of extra time. On the other hand, ensemble
architecture dramatically increases the model complexity and requires a lot of memory to run. This
poses a great challenge for embedded devices with limited computing resources. Therefore, how to
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design an effective network ensemble architecture that has less computing time while maintaining the
ability of ensemble learning is a challenging problem.

Figure 1: Structure of ensemble learning

To apply the network ensemble architecture to real-time tasks on the autonomous systems, a
diffusive network ensemble architecture named PSENet is designed to quickly extract environmental
information while maintaining good generalization ability and less parameters. PSENet uses fully
shared module, partially shared module, independent module to fuse all component neural networks
into one big network. Only one image passes through the above three modules in turn and simultane-
ously outputs the prediction results of each component network. PSENet could decrease the model
complexity and accelerate the computing speed during inference. Moreover, to maintain generalization
ability, a training method is designed to train the ensemble architecture and solve the dilemma between
single input and multiple outputs in different sub-training sets. Section 3 will introduce PSENet in
detail.

The main innovations of this paper are:

1) A lightweight network ensemble architecture named PSENet is designed and applied to real-
time vision tasks on the autonomous system. Compared with parallel ensemble structure,
PSENet compresses the model scale and accelerate the inference speed while maintaining
generalization ability.

2) As an extensible network ensemble structure, lots of lightweight neural networks can be put
into PSENet to form a lightweight network ensemble structure for real-time applications.

2 Related Works

Ensemble learning combines several weak classifiers as a strong classifier to improve generaliza-
tion ability. At present, ensemble learning is mainly divided into two categories: (1) traditional machine
learning algorithm ensemble such as RF [10] and (2) neural network ensemble. As for parallel machine
learning algorithm ensemble, the generation of component learners needed to be designed by ID3
[11], C4.5 [12] and CART. Those traditional methods achieved good performance for simple vision
tasks. However, those extracted features were limited by the manual design. So, they couldn’t deal with
complex tasks such as semantic segmentation in complex conditions. Neural network could learn and
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adjust weights to adapt to different conditions. So, facing most of complex tasks like object detection
and semantic segmentation, neural network ensemble tended to show better performance.

Neural network ensemble comes from [13], which demonstrated that the generalization ability
of a neural network system could be significantly improved through ensembling a number of neural
networks. Since ensemble structure has good generalization performance, it had been widely adopted
in many fields [14–17] and was classified into 3 categories. The first category was the combination of
neural networks and traditional ensemble algorithms. Neural networks were used as feature extractors
to extract multi-scale features and then those features were fed into the classifiers composed of
traditional ensemble algorithms [18–21]. The second category was that neural networks were used
as component learners. New neural network was designed to to improve individual performance and
then a number of neural networks were stacked as parallel component learners [9,22–24]. This was
a common method to improve ensemble performance by improving the performance of individual
learners. To expand the differences among component neural networks, incorporating two, two-and-
a-half and three-dimensional architecture will strengthen generalization ability [25]. Those methods
mentioned in second category produced lots of parameters and slowed down inference speed. BENN
[26], a neural network ensemble of Binarized Neural Network [27,28], had few parameters and
less inference time meanwhile maintaining a better performance with high accuracy due to a fact
that Binarized Neural Network had the potential advantages of high model compression rate and
fast calculation speed. However, compared with Binarized Neural Network, BENN produced lots
of additional parameters and increase additional inference time. The third category was how to
train the component neural networks. The most prevailing approaches were Bagging [29] based on
Bootstrap [30] and Boosting [31,32]. In addition, data disturbance such as sample disturbance and
parameter disturbance was usually used to increase diversity of component neural networks [33–
35]. There is no doubt that most of researches of the neural network ensemble were focused on
how to improve the generalization ability and accuracy. For complex tasks in complex conditions,
they could achieve good and stable results. However, those methods needed to spend lots of time to
predict results. After ensembling m component neural networks, the inference speed would be m times
larger than that of a component neural network. Therefore, lightweight neural network ensemble was
no longer a lightweight network and was unsuitable for real-time applications on the autonomous
system. Although ensemble pruning [36,37] could remove some component neural networks to reduce
storage-spend and inference-time-spend, it was extremely limited in many situations and possible to
decrease the network ensemble performance. Besides, research on ensemble strategy and generation of
component learners, how to design a neural network ensemble architecture with few parameters and
less computing time has wide applicability and far-reaching significance.

3 Proposed Algorithm
3.1 Neural Network Ensemble

In this section, we describe the proposed neural network ensemble architecture in detail. In all
experiments, we choose bagging to train the component neural networks and choose plurality voting
as the combination strategy. To our knowledge, the neural network ensemble usually stacks a number
of neural networks that are parallel with each other, as shown in Fig. 2.
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Figure 2: Neural network ensemble architecture

Lots of parallel neural networks make the neural network ensemble architecture become very
wide, which leads to two problems. The first problem is lots of parameters. When the neural network
ensemble consists of n component neural networks, its parameters will be n times larger than that
of a component neural network. This poses a challenge to the storage of embedded AI computing
devices. The second problem is inference time. Component neural networks are independent of each
other and are run one by one. Those need to spend lots of meaningless time. If there are n component
neural networks, when we use the neural network ensemble to predict results, all component neural
networks need to be calculated in turn and its inference time is n times larger than that of a component
neural network. Slow inference speed limits the applications of neural network ensemble architecture
in real-time tasks.

Three conditions are considered: (1) the ability of ensemble learning requires network ensemble
architecture to consist of a number of parallel component neural networks, (2) less computing time
requires all component neural networks to reason the results simultaneously, and (3) few parameters
require component neural networks to share finite layers. Strong generalization ability is the main
advantage of the ensemble architecture. Here, the main research focuses on how to accelerate the
inference speed while maintaining generalization ability. Starting from the generalization ability, the
disagreement between different component networks is explored. When two component networks
share partial layers to extract initial features, they also maintain large disagreement. Based on this
discovery, a diffusive network ensemble architecture named PSENet is proposed. PSENet consists of
fully shared module, partially shared module, and independent module. Shared module is to decrease
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the parameters and connect input to each component neural network, including fully shared module
and partially shared module. Fully shared module is a common module shared by all component
neural networks, being directly connected to the input. As a connecting hub, it provides all component
neural networks with the same input. Partially shared module, a module shared by partially component
neural networks, is to decrease the parameters and mitigate the relevance among component neural
networks. Independent module, usually placed at the end of the encoder, has lots of parallel branches
and plays an important role in maintaining the independence among component neural networks.
When the vision task is the semantic segmentation task, the next module following independent
layer is the upsampling [38–40]. When the vision task is the classification task, the next module
following independent layer is the classifier. Firstly, the input image is fed into the fully shared module
to extract initial features. Fully shared module, including several consecutive layers named as fully
shared layers, only consists of one branch. Several component networks share a same initial feature
extraction module to decrease the model complexity, computing time, and parameters. Then, the initial
features are fed into the partially shared module. Partially shared module consists of several parallel
branches which are connected to the branch from fully connected module. Finally, features extracted
by partially shared module are fed into the independent module. Independent module consists of
lots of branches which have as many as component neural networks, and usually is placed at the
end of the encoder. Its main role is to extract different features for each component network and
ensure that each component network is independent of each other to maintain the generalization
ability. From input to output, above three modules are connected in turn, which fuse all parallel
component neural networks into one network, as shown in Figs. 3–5. The neural network ensemble
architecture, called full-full-full architecture, as shown in Fig. 3, consists of three fully shared modules,
followed one classier layer. Above three fully shared modules extract spatial features that are fed
into component neural networks. Compared with traditional neural network ensemble architecture,
this architecture has fewer parameters and quicker inference speed, but it significantly weakens the
generalization ability. The neural network ensemble architecture, called full-full-partial architecture,
as shown in Fig. 4, consists of two fully shared modules, one partially shared module. Compared with
full-full-full architecture, full-full-partial architecture adds the partially shared module which enhances
the diversity of the extracted features to a certain extent. Therefore, full-full-partial architecture
strengthens the independence among component neural networks by adding intermediate module
(partially shared module) and has stronger generalization ability than full-full-full architecture. The
neural network ensemble architecture, called full-partial-independent architecture, as shown in Fig. 5,
consists of one fully shared module, one partially shared module, and one independent module.
Each branch of independent module is parallel with each other and is trained independently. This
is beneficial to strengthen the diversity of component neural networks and maintain the independence
among component neural networks. However, lots of parallel branches produce more parameters.
Moreover, full-partial-independent architecture, mixing multiple modules that are distributed in
different stages, is difficult to be trained.
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Figure 3: Proposed neural network ensemble architecture with three fully shared modules. This
architecture is called as full-full-full

Figure 4: Proposed neural network ensemble architecture with two fully shared modules and one
partially shared module. This architecture is called as full-full-partial
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Figure 5: Proposed neural network ensemble architecture with one fully shared module, several
partially shared modules and several independent modules. This architecture is called as full-partial-
independent

3.2 Training Method
In order to maintain the disagreement among component networks, all component networks need

to be trained in different sub-training datasets to obtain different feature representations. PSENet
has only one input connected with multiple component networks. If it is seen as a whole to train,
component networks will learn similar features and lose ensemble ability. The learning of neural
networks includes forward propagation and back propagation [41]. Generally, a combination of
forward propagation and back propagation completes one update of parameters. Different from the
traditional neural network ensemble architecture, the proposed neural network ensemble architecture
fuses a number of component neural networks into one network and all/some component neural
networks have some shared layers. This causes that those shared parameters cannot be updated only
by a component training dataset. Besides, to strengthen generalization ability, component neural
networks are trained in different training subsets. So multiple forward propagation followed by
one back propagation completes an update of the neural network ensemble. Here, each forward
propagation only propagates in the corresponding component neural network and the direction of
each forward propagation is controlled by the connection among fully shared layers, partially shared
layers, and independent layers. Through forward propagation, we can get the predicted results of the
component learner:

Hj = FD

(
Dj

)
, Dj ⊆ D (1)

where Hj is the prediction result on jth training subset. F is the function of component neural network.
Dj is the training subset produced by bootstrap sampling. D is training set. The loss of each component
neural network can be expressed by:
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Lj = Floss(Hj, Tj) (2)

Floss is the loss function. Tj is the corresponding labels. Due to all component neural networks
have the same structure and task, we take the average of losses from corresponding component neural
networks as the final loss for back propagation.

L = 1
n

n∑

j=1

Lj (3)

The proposed neural network ensemble architecture mixes the fully shared layers, partially shared
layers, and independent layers and it is inappropriate to regard the encoder as a whole to train. Here,
we divide encoder into several stage and fully shared layers, partially shared layers, and independent
layers are trained one by one. Eq. (1) is expressed by the following formula:

Hj = Fωi

(
Fωp

(
Fωf

(
Dj

)))
, Dj ⊆ D (4)

where Fωf, Fωp, and Fωi are the non-linear relationships about fully shared layers, partially shared layers,
and independent layers, respectively. Here, three stages are used to train the weights. The first stage is
to train the fully shared layers and all training data are fed into a component neural network. After the
training of fully shared layers, the weights of fully shared layers in the component learner are directly
transplanted to the fully shared layers in the network ensemble architecture.

The second step is to train the partially shared modules. In this step, the weights of fully shared
layers are fixed and other weights are initialized randomly. Several training subsets are obtained by
the Bootstrap method. Eq. (4) is expressed by the following formula:

Hj = Fωi

(
FI ,ωp

(
Ff

(
Dj

)))
, Dj ⊆ D

I
(5)

where Ff() is the fully shared layers with fixed weights in the component learners. DI is the Ith training
subset. FI,ωp is the partially shared layers in the Ith partially shared module that need to be trained in
the Ith training subset. The training process of partially shared modules is shown in Algorithm 1.

Algorithm 1 The training process of partially shared module
Require: a trained weights Ff, I ≥ 0
Ensure: FI,ωp

Fωf ← Ff

while I ≤ N do
randomly initialize Fωi and Fωp

calculate the output Hj with Eq. (5)
calculate and update the weights of partially shared layer Fωp

set FI,ωp ← Fωp

end while

The third step is to train the independent modules. In this step, the weights of fully shared layers
and partially shared layers are fixed and other weights are initialized randomly. According to the
Bootstrap method, the training dataset is divided into subsets as many as the component neural
networks. Eq. (4) is expressed by the following formula:

Hj = FJ,I ,ωi

(
FI ,p

(
Ff

(
Dj

)))
, Dj ⊆ D

J
(6)
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where FI,p is the Ith partially shared module with fixed weights. FJ,I,ωi is the independent layers in
the Jth independent module that is directly connected to the Ith partially shared module, which need
to be trained in the Jth training subset. The training process of independent modules is shown in
Algorithm 2.

Algorithm 2 The training process of independent module
Require: a trained weights Ff, and FI,p, I ≥ 0, J ≥ 0
Ensure: FJ,I,ωi

Fωf ← Ff

Fωp ← FI,p

while J ≤ M do
randomly initialize Fωi

while I ≤ N do
if Jth independent module is connected to Ith partially shared module then

calculate the output Hj with Eq. (6)
set FJ,I,ωi ← Fωi

break
else

continue
end if

end while
end while

3.3 Diversity Measure of Component Neural Networks
Disagreement measure is used to evaluate the diversity measure of component neural networks.

For a given dataset D = {(x1, y1) , (x2, y2) , ··, (xn, yn)}, facing the multiple categories task, there exists
yi ∈ {0, 1, · ·, m − 1,m} and we can get the contingency table between any two component neural
networks named as M and N respectively, as shown in Table 1.

Table 1: Contingency table between any two component neural networks

Component
learners

N = 0 N = 1 . . . .. N = m − 1 N = m

M = 0 b0,0 b0,1 . . . b0,m−1 b0,m

M = 1 b1,0 b1,1 . . . b1,m−1 b1,m

. . . . . . . . . . . . . . .

M = m − 1 bm−1,0 bm−1,1 . . . bm−1,m−1 bm−1,m

M = m bm ,0 bm ,1 . . . bm,m−1 bm ,m
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Here, bi,j is the number of the samples when M = i and N = j. The disagreement measure between
any two component neural networks can be expressed by:

disi,j =
∑
i=j

bi,j

m∑
i=0

m∑
j=0

bi,j

(7)

In terms of neural network ensemble architecture, it consists of lots of component neural networks.
Therefore, we get the statistics as the disagreement measure of neural network ensemble:

dis =

m−1∑
i=0

m∑
j=i+1

disi,j

m∑
k=1

k
(8)

4 Experimental Results

We evaluate the performance of the PSENet on Camvid [42,43] and CIFAR-10 [44] with the tradi-
tional parallel neural network ensemble architecture in terms of accuracy, parameters, inference speed,
and disagreements measure. In this section, through several experiments, we prove the relationships
and roles between different stages. Besides, compared with parallel neural network ensemble, we show
the advantages of the proposed neural network ensemble architecture.

4.1 Performance Evaluation on the Camvid Dataset
The Camvid dataset consists of 701 color-scale road images collected in different locations. For

easy and fair comparison with prior work, we adopt the common split [45]. Training dataset includes
367 images, validation dataset includes 101 images and testing dataset includes 233 images. Segmenting
11 classes on the Camvid Dataset is used to verify performance.

We divide the training dataset into a lot of component training datasets which include 220
images randomly selected from 367 images and are used to train independent layers. Besides, we make
some special component training datasets, including 220 images randomly selected from the several
corresponding component training datasets, to train the shared modules. Here, a random self-designed
neural network is used as the component neural network to do ablation experiment, as shown in Fig. 6.

On the basis of this component neural network, we stack many component neural networks
to build a traditional neural network ensemble architecture and build several proposed neural
network ensemble architecture. To show the performance between different neural network ensemble
architecture, we design an ablation experiment and the results are shown in Table 2. In Table 2, we
design 7 experiments on different neural network structures. One of them is used as a parallel neural
network ensemble and the rest remaining structures belong to different proposed neural network
ensemble architectures. We measure the performance of different networks by Mean Intersection over
Union (MIoU), disagreement measure, FPS, and parameters. The “full”, “partial”, and “-” expresses
the fully shared modules, the partially shared module, and the independent module respectively. The
“partial3” expresses that partially shared module includes 3 shared branches. The “independent3-9”
expresses that the first half of the independent module includes 3 shared branches, and the second half
includes 9 independent branches.
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Figure 6: Random self-designed neural network

Table 2: Ablation experiment

Item Model

Stage
1 full full full full full full -

2 full full full partial3 partial3 - -

3 full partial3 - Independent3-9 - - -

Classifier
number

9 9 9 9 9 9 9

Accuracy of
component
neural
network

63.44 62.61 64.30 64.42 64.29 64.22 64.20
63.43 62.96 64.24 64.33 63.95 64.11 64.78
63.40 62.87 63.62 64.14 62.64 63.23 64.13
63.18 63.08 62.90 63.75 63.15 63.54 64.23
63.49 62.81 62.43 63.11 62.79 62.81 63.34
63.29 62.77 63.20 63.68 63.27 64.47 63.27
63.33 63.12 63.47 64.02 63.56 64.10 64.17
63.43 63.80 64.14 64.77 63.80 64.69 63.77
63.30 63.78 63.05 64.63 63.39 64.53 63.26

Ensemble
accuracy

63.43 65.44 66.46 67.21 67.26 67.93 67.96

Disagreement
measure

0.0122 0.0652 0.0882 0.09271 0.09810 0.1018 0.1020

FPS 114.94 89.28 57.14 62.11 51.55 39.37 20.75

Parameters 0.3269 M 0.8444 M 2.3927 M 1.8041 M 2.4664 M 2.6876 M 2.8404 M
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The parallel neural network ensemble significantly improves the generalization ability of neural
networks and produces higher accuracy that is higher 3.1 MIoU than that of component neural
networks, but it produces lots of parameters due to the factor that it stacks lots of component neural
networks. Besides, component neural networks are independent of each other and are run one by
one. So, we need to repeatedly feed the same input into the different component neural networks
when we reason the results. Fully shared module is directly connected to the input and shared by all
component neural networks, so we can simultaneously run all component neural networks with only
one input. This will accelerate inference speed and save much inference time. From Table 2, compared
with traditional neural network ensemble, the neural network ensemble with fully shared module could
spend less time to complete the same task. The encoder of the proposed neural network ensemble
architecture includes three modules: fully shared module, partially shared module, and independent
module. Fully shared module could decrease the parameters and accelerate inference speed, but it
makes all component neural networks become similar to each other. So too many fully shared modules
(fully shared layers) make neural network ensemble lose the ability of the ensemble (generalization
ability). Independent module tends to make all component neural networks become independent of
each other, but it produces lots of parameters and slows down the inference speed. The performance
of partially shared module is between fully shared module and independent module. It tends to
make a trade-off between inference speed and accuracy. Full-independent-independent has similar
accuracy, disagreement measure, and parameters to traditional neural network ensemble. However,
in terms of inference speed, it is 1.89 times quicker than that of traditional neural network ensemble.
This demonstrates that the combination of too many independent layers and fully shared layers will
accelerate the inference speed meanwhile maintaining the excellent performance of traditional neural
network ensemble. When we replace the independent module with the partially shared module, the
inference speed is further accelerated due to the reduction of some branches. However, the accuracy
will decrease accordingly. With the increase of fully shared module, although the inference speed and
parameters of the neural network ensemble are improved, the accuracy and disagreement measure will
decrease a lot. When three stages consist of fully shared module, the neural network ensemble basically
loses integration ability.

Table 3 shows the disagreement measure between any two component neural networks in full-full-
partial. Here, partially shared module consists of three branches and each branch is directly connected
to three classifiers. When one branch is shared by several classifiers in stage 3, the corresponding
component neural networks are similar. From Table 3, every three component neural networks have
similar performance and basically lose integration ability. This results in that some component neural
networks are redundant and has little effect on the ensemble ability.

Table 3: Disagreement measure between any two component neural networks

Component learners 1 2 3 4 5 6 7 8 9

1 n/a 0.0149 0.0136 0.0871 0.0872 0.0871 0.0842 0.0843 0.0843
2 n/a n/a 0.0093 0.0858 0.0859 0.0860 0.0830 0.0831 0.0831
3 n/a n/a n/a 0.0865 0.0865 0.0865 0.0834 0.0835 0.0835
4 n/a n/a n/a n/a 0.0122 0.0126 0.0793 0.0796 0.0796
5 n/a n/a n/a n/a n/a 0.0097 0.0792 0.0793 0.0793
6 n/a n/a n/a n/a n/a n/a 0.0789 0.0790 0.0790
7 n/a n/a n/a n/a n/a n/a n/a 0.0100 0.0100

(Continued)
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Table 3 (continued)

Component learners 1 2 3 4 5 6 7 8 9

8 n/a n/a n/a n/a n/a n/a n/a n/a 0.0100
9 n/a n/a n/a n/a n/a n/a n/a n/a n/a

Other neural networks like FCN [46], ENet [47], and DABNet [48], BiseNet [49] are used as
component neural networks respectively and we stack them to build different traditional neural
network ensemble architecture. And then we compare the corresponding proposed neural network
ensemble architecture with parallel neural network ensemble architecture in terms of ensemble
accuracy, inference speed, and parameters. The results are shown in Table 4. With the increase of
the shared layers, the neural network ensemble architecture produces few parameters and accelerates
the inference speed (FPS). However, its diversity is also decreased. So, a finite number of shared
layers followed by enough independent layers produce quick inference speed and few parameters while
maintaining ensemble accuracy.

Table 4: The ensemble results between different component neural networks

Model Classifier
number

Ensemble
accuracy

FPS Parameters

Component
neural network

Ensemble
method

FCN-32
Full-partial-
independent

9

56.25 5.34 86.59 M

Parallel
architecture

57.14 1.67 132.48 M

ENet
Full-partial-
independent

55.59 6.91 2.23 M

Parallel
architecture

54.41 4.58 3.24 M

DABNet
Full-partial-
independent

69.43 13.39 4.61 M

Parallel
architecture

69.71 6.04 6.84 M

BiseNet V2
Full-partial-
independent

74.97 17.47 10.37 M

Parallel
architecture

74.68 8.68 11.61 M
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Ensemble accuracy. Ensemble architecture has better generalization ability and tends to produce
high accuracy. In parallel neural network ensemble architecture, component neural networks are
parallel, which makes the component neural networks independent of each other. The parallel
architecture is benefit to strengthen the ensemble ability. Based on the parallel network ensemble
architecture, the proposed network ensemble architecture fuses parallel component neural networks
into a big ensemble architecture in which all component neural networks could predict the results
with only one input. From Table 4, compared with parallel architecture, full-partial-independent
architecture achieves similar accuracy while having simple model complexity.

Inference speed. Component neural networks in the parallel ensemble architecture predict the
results one by one. Besides, each forecast result of the component neural network needs to input the
same data repeatedly. This results in the cost of much extra time. Full-partial-independent architecture
changes the reasoning method. All component neural networks are connected to the fully shared
module. So when one input is fed into the full-partial-independent architecture, all component neural
networks could predict the results simultaneously. From Table 4, full-partial-independent architecture
has the obvious advantage than parallel architecture in terms of inference speed. For example, when
FCN is used as component neural network, the inference speed of full-part-independent is 3.2 times
quicker than that of parallel neural network ensemble architecture while maintaining high ensemble
accuracy as parallel network ensemble architecture. When ENet is used as component neural network,
the advantage of full-part-independent architecture is weakened in terms of inference speed that is 1.5
times quicker than that of traditional neural network ensemble architecture due to lots of independent
layers.

Parameters. Component neural networks in parallel ensemble architecture are independent with
each other. In full-partial-independent architecture, all/some component neural networks have some
shared layers. So compared with parallel ensemble architecture, full-partial-independent architecture
has fewer parameters.

4.2 Performance Evaluation on the CIFAR-10 Dataset
The CIFAR-10 Dataset consists of 60000 32 × 32 color images. Training dataset includes 50000

images and testing dataset includes 10000 images. This dataset has 10 classes containing 6000 images
each. There are 5000 training images and 1000 testing images per class.

Similarly, we divide the training dataset into a lot of component training datasets which include
30000 images randomly selected from 50000 images and are used to train independent layers.
Neural networks like MobileNet [50], Xception [51], and SqueezeNet [52] are used as component neu-
ral network respectively. On the basis of those component neural networks, we compare parallel neural
network ensemble architecture with the proposed neural network ensemble architecture in terms of
ensemble accuracy, inference speed, disagreement measure, and parameters. The results are shown in
Table 5.
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Table 5: The results on CIFAR-10

Model Classifier
number

Ensemble
accuracy

FPS Parameters
Disagreement
measureComponent

neural network
Ensemble
method

MobileNet
Full-partial-
independent

9

99.25 84.03 21.45 M 0.21901

Parallel
architecture

99.19 35.84 29.50 M 0.22105

SqueezeNet
Full-partial-
independent

98.10 77.94 5.16 M 0.16942

Parallel
architecture

98.53 42.00 6.67 M 0.17721

Xception
Full-partial-
independent

99.24 28.89 132.03 M 0.12962

Parallel
architecture

99.43 16.20 186.96 M 0.13434

Ensemble accuracy, Inference speed, and parameters. From Table 5, parallel neural network
ensemble could improve the accuracy, but it significantly sacrifices the inference speed and produces
lots of parameters. When we introduce fully shared module and fuse those parallel component neural
networks into one network named full-independent-independent, all component neural networks
can be simultaneously run with only one input. This saves much time and accelerates the inference
speed. On the basis of full-independent-independent architecture, when we replace an independent
module with a partially shared module, inference speed is further accelerated. At the same time,
introducing a partially shared module slightly decreases the disagreement measure and full-partial-
independent architecture keeps the ensemble accuracy basically consistent with the full-independent-
independent architecture. Generally, neural network ensemble architecture could significantly improve
the accuracy, but introduces a lot of parameters and slows down the inference speed. The proposed
neural network ensemble architecture compresses ensemble architecture and accelerates the inference
speed meanwhile keeping the ensemble accuracy basically consistent with the traditional neural
network ensemble architecture.

Disagreement measure. Disagreement measures the difference between any two component neural
networks. Small disagreement means that any two component neural networks extract similar features,
which are adverse to the generalization ability. Parallel architecture has good disagreement, but it leads
to many problems such as slow inference speed and lots of parameters. Here, the proposed full-partial-
independent architecture mitigate the above problems. Shared modules reduce the parameters and
accelerate the inference speed. Independent modules keep component neural networks independent
with each other. From Table 5, compared with parallel ensemble architecture, full-partial-independent
architecture produces similar disagreement. This reveals that the proposed ensemble architecture has
a good generalization ability while producing quick inference speed and few parameters.
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4.3 Performance in the Real World
4.3.1 Environment Understanding of Unmanned Robot

In the real world, unmanned robot needs to perform various tasks in different environments.
Here, two vision tasks are tested on the unmanned robot to show the PSENet performance. One
is the semantic segmentation, a key technology for unmanned robot to understand environmental
information. 11 classes such as road, sky, car, building, tree, and so on are segmented from the image.
The other is a classification task. According to different targets in the image, the scene is divided into 4
classes: experimental area, garden, parking lot, and main road. The environmental perception system
is shown in Fig. 7 and the unmanned robot is shown in Fig. 8.

(a)  CCD camera (b) Nvidia Jetson AGX Xavier

Figure 7: Environmental perception system

Figure 8: Unmanned system

While the unmanned system is moving, the camera captures the images, and those captured images
are transmitted to the AI embedded device. Then PSENet deals with those images in real time and the
results are fed back to the unmanned system. Fig. 9 shows some results of semantic segmentation and
scene recognition in continuous road scenes.
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(a) Classification (b) Single network (c) PSENet 

Figure 9: Results in the real world

Semantic segmentation. In the whole road scenes, a single neural network could better segment
large classes such as road, sky, tree, building, and car from the image. However, a lot of noise are existed
in each large classes. PSENet synthesizes the results of multiple networks and effectively mitigate the
problem. For small classes such as bicyclist, fence, column, both the single neural network and PSENet
produce coarse semantic segmentation results. Overall, compared with the single neural network,
PSENet achieves smooth boundary and high accuracy.

Classification. The whole road scenes are divided in 4 categories: experimental area, garden, park-
ing lot, main road. The unmanned mobile recognizes different scenes to finish different operations. For
example, when passing through the parking lot, the unmanned system can perform parking operation.
When passing through the main road, the unmanned system needs to drive to the right and increases
its speed appropriately. In road scenes, PSENet could recognize the category of each scene well.

4.3.2 Classification of Tobacco Leaf State during Curing

Intelligent baking requires to identify the drying degree of tobacco leaves and adjust the temper-
ature. Therefore, it is a key technology to accurately identify the current stage of tobacco leaf. The
intelligent baking system is shown in the Fig. 10. The CCD camera is used to collect tobacco leaves,
and the pictures are transmitted to the processor for processing. Finally, the results are fed back to the
controller to adjust the temperature. State discrimination results of tobacco leaves are shown in the
Table 6 and Fig. 11.

https://www.techscience.com/uploads/video/21525video1.mp4
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Figure 10: Intelligent baking system

Table 6: Classification results of tobacco leaf state

Item AlexNet ResNet Xception MobileNet PSENet

Accuracy 97.2% 98.7% 98.3% 98.1% 99.6%

Figure 11: State discrimination results of tobacco leaves

It is necessary for tobacco leaves to adjust the temperature under different baking conditions.
Tobacco leaves are divided into 10 states, and each state corresponds to a different baking temperature.
The intelligent baking control of tobacco leaf is realized by judging the current tobacco leaf state and
adaptively adjusting the baking temperature. For 2217 continuous images, PSENet is used for state

https://www.techscience.com/uploads/video/21525video2.mp4
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recognition. Results in the real world show that PSENet can well distinguish each state of tobacco.
As the early method, AlexNet has 95.2% accuracy. ResNet introduces the residual structure and
greatly deepens the network structure, so as to obtain better performance. Compared with AlexNet,
ResNet could improve the accuracy from 97.2% to 98.7%. Based on Inception V3, Xception simplifies
the calculation of convolution. It replaces the standard convolution with the combination of 1 × 1
convolution and separable convolution. For classification of tobacco leaf state, Xception produces
98.3%. MobileNet, a lightweight neural network, produces similar accuracy like Xception. Xception
and MobileNet produce lower accuracy than ResNet. However, they achieve a quicker inference speed.
As a ensemble architecture, PSENet achieves 99.6% accuracy that outperform other algorithms. For
classification of tobacco leaf state, it is difficult to classify the last four stages due to similar appearance.
PSENet could overcome this problem and achieve stable and accurate classification results.

5 Conclusions

We present a new lightweight neural network ensemble architecture that compresses the parallel
neural network ensemble architecture. This ensemble architecture divides the parallel structure into
fully shared module, partially shared module, and independent module. A fully shared module is
shared by all component neural networks and makes all component neural networks simultaneously
run with only one input. Independent module tends to keep component neural networks independent
of each other and makes the neural network ensemble architecture have a good ensemble ability. We
test on Camvid and CIFAR-10 and the results show that the proposed neural network ensemble
architecture not only decreases the parameters but also significantly accelerates the inference speed
while keeping the ensemble ability similar to the parallel neural network ensemble architecture. This
revealed that partially shared layers also maintain the independence of the component neural network
and have a greater advantage than the parallel ensemble structure. In the real world, PSENet could
deal with semantic segmentation and scene recognition well. In the future, the work mainly focuses on
how to determine the relationship between various modules such as the number of shared components.
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