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ABSTRACT

Congenital heart defect, accounting for about 30% of congenital defects, is the most common one. Data shows that
congenital heart defects have seriously affected the birth rate of healthy newborns. In Fetal and Neonatal Cardiology,
medical imaging technology (2D ultrasonic, MRI) has been proved to be helpful to detect congenital defects of
the fetal heart and assists sonographers in prenatal diagnosis. It is a highly complex task to recognize 2D fetal
heart ultrasonic standard plane (FHUSP) manually. Compared with manual identification, automatic identification
through artificial intelligence can save a lot of time, ensure the efficiency of diagnosis, and improve the accuracy
of diagnosis. In this study, a feature extraction method based on texture features (Local Binary Pattern LBP and
Histogram of Oriented Gradient HOG) and combined with Bag of Words (BOW) model is carried out, and then
feature fusion is performed. Finally, it adopts Support Vector Machine (SVM) to realize automatic recognition and
classification of FHUSP. The data includes 788 standard plane data sets and 448 normal and abnormal plane data
sets. Compared with some other methods and the single method model, the classification accuracy of our model
has been obviously improved, with the highest accuracy reaching 87.35%. Similarly, we also verify the performance
of the model in normal and abnormal planes, and the average accuracy in classifying abnormal and normal planes
is 84.92%. The experimental results show that this method can effectively classify and predict different FHUSP and
can provide certain assistance for sonographers to diagnose fetal congenital heart disease.
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1 Introduction

Congenital heart defect is one of the most common fetal congenital defects with an incidence rate
of about 30% to 40%, affecting 1% of newborns worldwide, and an incidence rate of 0.5% to 9% in
China, which means that nearly 90,000–150,000 newborns with congenital heart defects are introduced
in China every year [1]. This has become a sad experience for many families. Prenatal diagnosis is the
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key link in screening fetal heart abnormalities [2]. Parents-to-be can observe the abnormal situation
of fetus through prenatal diagnosis and take reasonable measures in follow-up treatments.

2D ultrasound is the primary technical way to check the health status of the fetus at this stage [2,3].
It has the advantages of low cost, portability, no radiation, no trauma and real-time imaging, which
plays an important role in fetal anatomy, diagnosis and treatment of congenital defects. Sonographers
can observe and diagnose the fetus with congenital defects through various standard planes collected
by ultrasound probes, which provide reliable guiding value for the follow-up clinical treatment plan.
However, in practical clinical work with the development of science and technology and popularization
of ultrasonic image application, more and more 2D ultrasonic images need to be manually identified
by qualified sonographers. In recent years, due to the popularity of prenatal ultrasound diagnosis
and standardized training of sonographers, the professional skills of prenatal sonographers have been
greatly improved [2]. However, image recognition itself is a tedious and complex job and there are still
factors that affect the manual identification of sonographers in daily ultrasound work. Factors such as
lack of experience, different cognitive levels and work fatigue will lead to misjudgment of subsequent
diagnosis. In this case, it is necessary to study a method that can not only improve the influence of
different qualifications of sonographers, but also improve the recognition accuracy.

Through detailed prenatal fetal heart ultrasound examination, the structure and function of
the fetal heart are observed. The relationship between atrioventricular position, atrioventricular
connection, ventricular artery connection, aorta and pulmonary artery are analyzed in detail [4]. It
is possible to find and diagnose congenital heart diseases with obvious abnormal morphology, such
as abnormal heart position, abnormal heart cavity, abnormal atrial septum and so on. In 2021, on
Nature Medicine, Arnaout et al. [5] took five standard planes dominated by abdomen (ABDO) to
define the FHUSP. However according to the latest international definition FHUSP [6], abdomen
(ABDO) is no longer applicable to analyze fetuses with congenital heart defects. The first step is to
scan and diagnose congenital heart disease from a 2D ultrasound video, including the apical three-
vessel catheter plane (3VC), the three-vessel trachea plane (3VT), the apical four-lumen cardiac plane
(A4C), the right ventricular outflow tract plane (RVOT) and the left ventricular outflow tract plane
(LVOT). Fig. 1 is a schematic diagram of the above five standard planes [7]. Fig. 2 shows some common
abnormal conditions of the fetal heart.

The purpose of this study is to improve the recognition and classification efficiency of FHUSP
and reduce the influence of subjective factors on the recognition of FHUSP. From the point of view of
how to identify and obtain various FHUSP, a more convenient and quick artificial intelligence method
is adopted in the scanning stage to provide an automatic identification scheme for sonographers, so
as to minimize the dependence on sonographers’ qualifications. The influence of different ultrasonic
devices in obtaining the FHUSP can improve the efficiency of ultrasonic examination of fetal heart.
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Figure 1: The figure mainly shows five main FHUSP images: (a) 3VC, (b) 3VT, (c) A4C, (d) RVOT, (e)
LVOT

Figure 2: A is normal FHUSP, is LOVT, A4C, 3VC; from top to bottom; B are common congenital fetal
heart defects: (a) Single atrium and single ventricle defect, (b) Ventricular septal defect, (c) Tetralogy
of Fallot
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2 Related Work

With the application of artificial intelligence in different fields [8–11], computers have gradu-
ally emerged in medical research, realizing the cross-application between artificial intelligence and
medicine and automatically identifying and classifying ultrasonic standard planes through artificial
intelligence methods. However, 2D ultrasound imaging of the fetal heart itself has some problems:

1. Because its ultrasonic imaging realizes ultrasonic scanning, the image effect is greatly affected
by noise, and the image quality of ultrasonic acquisition equipment from different manufac-
turers are different.

2. According to the reason of sonographer’s artificial image acquisition and fetal dynamic
problems, the anatomical structure of each plane shows a changing position and direction of
the relationship.

3. There are individual differences in fat layer thickness, fetal growth cycle, amniotic fluid volume,
fetal birth mode and fetal orientation of pregnant women, which lead to different problems in
acquired images.

4. Different sonographers have different qualifications and work experience, which makes the
acquired images different.

As a result, artificial intelligence cannot adopt diversified methods for automatic recognition and
classification of FHUSP like other fields and needs more targeted methods. In the field of image
processing, recognition, classification and machine learning methods are based on traditional manual
features and deep learning methods based on depth features are generally adopted.

The machine learning method based on traditional manual features is a semi-supervised learning
method and its core steps are feature extraction and feature selection. In 2008, Liu et al. [12]
automatically searched for the best cross-section of heart 3D ultrasound by template matching method
and the method based on entropy correlation coefficient achieved high accuracy, which proved that
the artificial intelligence method was superior to manual search in searching these cross-sections. In
2013, Ni et al. [13] proposed a new positioning scheme of abdominal standard plane, using the radial
model to describe the key anatomical structure of the abdominal plane, and realized the preliminary
positioning of the standard plane. Then, in the same year, Zhang et al. [14] successfully screened the
two-dimensional ultrasound standard plane by using cascaded AdaBoost classifier and local context
information and put forward the concept of “intelligent ultrasound scanning”. In 2014, Lei et al. [15]
proposed a method of bottom features combined with Fisher vector feature coding to assist in
locating the standard plane. Due to the limitations of feature selection, the method still has room for
improvement. In 2015, Lei et al. [16] adjusted the underlying features and realized the classification of
the standard plane of the fetal face by using the densely sampled root scale invariant feature transform
(root SIFT) combined with the Fisher vector classifier. In 2017, Christopher et al. [17] of Oxford
University used the method of random forest regression to predict the visibility, position and direction
of fetal heart ultrasound images in order to determine the FHUSP from each video frame and obtained
the same accuracy as experts. In the same year, Oktay et al. [18] used a hierarchical decision tree to
segment and locate the anatomical structure of MRI cardiac image with high accuracy, and it was
superior to the method based on standard regression and classification.

Since the development of artificial intelligence entered the 2020s, deep learning began to be
excavated and accepted by people. Methods based of deep learning suddenly flooded into all walks of
life in society, including the medical field. Image recognition based on deep learning is slowly involved
in the field of ultrasound [19,20]. This fully automatic learning method can better reflect the intelligent
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mode of artificial intelligence. In 2015, Chen et al. [21] proposed the standard plane location in fetal
ultrasound by using the domain transfer depth neural network. By comparing with the original CNN
network, the ability of preventing over-fitting was greatly improved. In 2017, Baumgartner et al. [22]
proposed a deep learning method Sono-Net, which is based on convolutional neural network and
can be used to locate 13 standard sections of the fetus. In the same year, Chen et al. [23] proposed
a composite neural network, which replaced ultrasonic image recognition with video recognition,
and made great progress in various indicators. In 2019, Lin et al. [24] proposed a new faster regional
convolutional neural network (MFR-CNN) to control the quality of ultrasonic recognition in a multi-
task framework. In 2021, Wang et al. [25] proposed an adaptive soft attention scheme to directly
explore the raw antenatal ultrasound video data. In the same year, Pu et al. [26] proposed an automatic
fetal ultrasonic standard plane recognition model based on deep learning in the Industrial Internet
of Things (IIoT) environment, which combined the components of Convolutional Neural Network
(CNN) and Recycling Neural Network (RNN) to effectively improve the accuracy and robustness of
image recognition by the model.

Most of the scholars in the above articles have made good progress in their respective research
fields, which provided a solid foundation for the development of medical artificial intelligence and
smart medical care. However, there are also large and small problems in the research above:

1. The applicability of the research field is low and it is difficult to expand to other ultrasonic
images.

2. Some methods are not suitable for the current progress of ultrasonic images and artificial
intelligence, so they cannot be compared with the new methods in evaluation index.

3. The deep learning convolution network model is complex, difficult to build, takes a long time
to train, and requires advanced computer equipment.

To solve the problems above, this study proposes a classification method of FHUSP based on
traditional manual features. It has been proved that the LBP-HOG method is suitable for other
ultrasonic fetal standard planes [27]. In this study, the visual Bag of Words (BOW) feature is added to
LBP-HOG, which improves the accuracy of classification and makes good progress. With the approval
and examination of the ethics committee, and with the patient’s knowledge, 1,236 prenatal fetal heart
images were collected and used as the training automatic classification model, of which 80% were
used in training and 20% were used in the test. The fetal heart images were used in the automatic
classification model designed in this study. Finally, the models designed in this study were compared
and analyzed under the condition of multiple evaluation indexes.

The main contributions of this study are as follows:

1. It is expected to establish a large domestic fetal heart ultrasound database by collecting 2D
ultrasound fetal heart standard planes in stages.

2. In this study, an automatic classification model of FHUSP based on texture features (Local
Binary Pattern LBP and Histogram of Oriented Gradient HOG) and visual Bag of Words
(BOW) model coding features of accelerated stability features (SURF) is proposed. After
verification of several evaluation criteria, it is proved that this method can effectively identify
and classify FHUSP and has the potential to assist sonographers in screening FHUSP.

3. Also, this model also has a good performance in identifying normal and abnormal fetal heart
plane, which can provide a certain basis for ultrasound doctors to diagnose congenital heart
disease.
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3 Materials and Methods
3.1 Image Acquisition

Although some prenatal fetal heart ultrasound databases can be found from the Internet, this data
is not easy to obtain because of the privacy of patients. Because the ultrasonic data is not easy to obtain,
the data of five ultrasonic standard planes of the fetal heart (the three-vessel tracheal plane, the three-
vessel catheter plane, the apical four-chamber cardiac plane, the right ventricular outflow tract plane
and the left ventricular outflow tract plane), normal and abnormal fetal heart plane involved in this
study were provided by the second affiliated hospital of Fujian Medical University, first-class hospital
at Grade 3. This data was collected and further screened by professional sonographers through GE,
Mindray, Philips and other ultrasonic instruments, which were agreed to be used after the patient was
informed. The size of the obtained data is 720 × 960 or 852 × 1136, which ensures the accuracy of the
experimental data to the greatest extent. Finally, a total of 1236 (788 + 448) plane data of fetal cardiac
ultrasound were added to the experiment. The data were collected from pregnant women who were
diagnosed during 18–22 weeks of pregnancy. The data volume of various planes and the distribution
principle of experimental data sets are shown in Table 1. The data distribution of normal and abnormal
fetal heart plane is shown in Table 2.

Table 1: FHUSP data sets distribution

Class Total Train Test

3VC 157 126 31
3VT 154 123 31
A4C 156 125 31
RVOT 155 124 31
LVOT 156 125 31
Total 788 633 155

Table 2: Normal and abnormal plane data sets distribution

Class Total Train Test

Normal 219 174 ± 5 45 ± 5
Abnormal 229 184 ± 5 45 ± 5
Total 448 358 90

3.2 Model Architecture
The model designed in this study is mainly to overcome a series of problems caused by sonogra-

phers scanning ultrasound images, such as angle and scale problems caused by ultrasound imaging,
manpower and time problems caused by scanning ultrasound images, etc. In the method of artificial
intelligence deep learning, the training of deep features takes a lot of time, so this study adopts the
method based on traditional manual features to save manpower and time. Aiming at the imaging and
angle problems of the ultrasonic image, this study proposes a global texture feature method: Texture
feature extraction using Local Binary Pattern (LBP) with gray scale invariance and Histogram of
Oriented Gradient (HOG) with direction invariance. In order to solve the problem of different image
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scales caused by ultrasonic probe scanning and post-imaging, this study proposes a visual word bag
feature method: Speeded Up Robust Features (SURF) with scale invariance and rotation invariance,
from feature vectors through Bag of Words (BOW), and solves the problem of different scales of
ultrasonic image imaging. After feature fusion and Principal Component Analysis (PCA) dimension
reduction, texture features and visual word bag features are learned by the support vector machine,
automatic recognition and classification of FHUSP are realized. The detailed experimental design
process is shown in Fig. 3. In addition, we compared this method with some existing methods. The
method of the model is introduced in detail:

Figure 3: Model flow chart. First, the original image is preprocessed. The image is divided into two
parts: Training set and test set. Then, the texture feature extraction and visual word bag feature
extraction are carried out on the training set and the test set, respectively. The extracted features are
connected in series and then PCA is used to reduce dimension for feature selection. Finally, it is handed
over to SVM classifier for classification

3.2.1 Image Preprocessing

The original 2D ultrasound images we obtained contain a lot of redundant information, such as
the medical record information of pregnant women and the source of information in related pictures.
In addition, 2D ultrasound images have excessive speckle noise and low contrast [28,29]. Problems
such as imaging angle, imaging scale, and position relationship in the process of probe scanning will
lead to distortion of some images. This will greatly limit the ability of the computer to extract texture
and visual word bag features. We preprocessed the collected images. First, we cut out the ROI area of
the original image, kept the key information area with large contrast, cut out the 256 ∗ 256 ROI from
the original image, then preprocessed the cut image. The preprocessing method adopted in this study
is mainly Anisotropic Filter [30]. For Anisotropic Filter, the whole image is regarded as a heat field
and each pixel is regarded as a heat flow. The flow of the heat depends on the relationship between the
current pixel and the surrounding pixels. If the neighboring pixel is an edge pixel, its flow diffusion
coefficient will be relatively small, that is, the heat flow will not diffuse to the neighboring pixels, or
the diffusion will be weakened. If it is not an edge pixel, the diffusion coefficient changes toward the
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flowing direction, and the flowing place becomes smooth, so that the noise area is smoothed while the
edge is kept. The effect after pretreatment is shown in Fig. 4.

Figure 4: Flow chart of smooth denoising and schematic diagram of effect after smooth denoising: (a)
Original picture entered, (b) Clipping ROI area, (c) Clipped ROI area, (d) Preprocessing the smoothed
image

3.2.2 Texture Feature Extraction

LPB is one of the best methods to describe texture features at present [31]. Compared with most
texture feature methods, LPB has remarkable advantages such as rotation invariance and gray scale
invariance. In this study, the original LBP operator is extended. The original LBP operator is defined
in the 3 ∗ 3 neighborhood of eight pixels formed by the central pixel and its surrounding matrix and
takes the central pixel as the threshold. Formula (1) represents the original LBP imputation method,
which in this experiment extends the operator to above 20 ∗ 20. Formula (2) serves as a determination
formula for the central and surrounding pixels.

The specific calculation formula of LBP is as follows:
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LBP(xc,yc) =
i=7∑
i=0
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gc is the gray value of the center pixel, P represents the pixels around the central pixel (XC, YC), gp

indicates the gray value of the P neighborhood pixel.

HOG is one of the most important texture feature extraction methods in the field of computer
vision at present [32]. It has been proved to have a good application in grayscale images, especially
in the fields of object detection and tracking. For each central pixel, the idea of gradient direction
histogram is to use gradient operators

[−1 0 1
]

and
[−1 0 1

]T
to convolution with the image to

get the gradient amplitude and gradient direction of any pixel, as shown in formula (3). Formulas (4)
and (5) calculates the size of the gradient and the direction of the pixels, respectively.{

Ix = F (x + 1, y) − F (x − 1, y)

Iy = F (x, y + 1) − F (x, y − 1)
(3)

m (x, y) =
√

I 2
x + I 2

y (4)

θ (x, y) = tan−1
Iy
Ix

∈ [0, 360◦) or ∈ [0, 180◦) (5)

where Ix and Iy are the horizontal and vertical gradient values at pixel point (x, y) of the image, m (x, y)

is the modulus size of the gradient of pixel (x, y), θ (x, y) is the direction of pixel (x, y).

In the phase of texture feature extraction, we divide the target image according to Cellsize, and
reshape LBP feature and HOG feature into many adjacent cell arrays to access the histogram of each
cell. Histogram parameters determine how to aggregate the distribution of binary pattern and gradient
direction histogram on the image to generate output features. The binary pattern is calculated for each
Cell, and the histogram of gradient direction is obtained. Each Cell has the same size and does not
overlap to obtain different position information. Calculate the number of cells as Cellsize. Specific
problem feature extraction is shown in Fig. 5.

3.2.3 Visual Bag of Words

In 1999, a new feature description algorithm, Scale Invariant Feature Transform (SIFT), was
proposed by Canadian professor David Lowe [33] and was approved in 2004 [34]. SIFT is an image
local feature description algorithm based on scale space and has good robustness because of the reason
of constructing local scale space.

In 2008, Herbert et al. proposed a local feature operator Speeded up Robust Features (SURF)
[35], which is faster and can guarantee stability. SURF is an improved version based of SIFT, because
it not only keeps the stability of SIFT, but can significantly improve the speed. The data consumed by
SURF on the same data set is only one third to one seventh of SIFT, so SURF has been widely used.
The specific implementation process is divided into five steps: construct the Hessian matrix, generate
scale space, locate feature points, determine the main direction, and generate feature descriptors.
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Figure 5: After the preprocessed image is obtained, the part above is LBP feature extraction operation,
and the following part is HOG feature extraction operation. After concatenation, it is the texture
feature to be extracted in this paper

BOW was originally used in text classification [36] and has been widely used in natural language
processing in the application field of computer vision. Its basic idea is to assume that for a text, its
word order, grammar and syntax are ignored. It is only regarded as a collection of some words, and
each word in the text is independent. In the field of images, people gradually find that images are
transformed into matrices or vectors, which can be regarded as the lexical expression of BOW [37].
To express images as vectors of BOW, the first thing is to get the “vocabulary” of images. Usually, it
is necessary to extract the local features of the image in the whole image database, and then use the
clustering method (K-means) to merge the similar features. The center of the cluster can look at visual
vocabulary one by one, and the collection of visual vocabulary constitutes a visual dictionary. After
the visual vocabulary set is obtained, the frequency of each visual vocabulary in the image is counted
and the BOW representation of the image is obtained. Fig. 6 briefly introduces the framework of the
word bag model.
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Figure 6: Carry out K-means clustering on the extracted SURF feature descriptors, cluster them into
a visual dictionary, and extract the visual word bag features according to the distance between each
feature descriptor and the cluster center

3.3 Feature Fusion and Feature Selection
At the end of the feature extraction stage, each picture can extract the three feature vectors in

the upper part as 1 ∗ M, 1 ∗ N and 1 ∗ P, where 1 represents the number of pictures, and M, N
and P represent the feature vectors extracted by the three feature extraction methods above. There
are three situations of feature fusion, which are feature fusion in feature layer, feature score layer and
classification layer. In this study, the fusion at feature layer is adopted, but the reason why the fusion at
feature score layer is not adopted is because the experimental results are not good after normalization.
The reason why the classification layer is not adopted is that this method has a great influence on the
actual verification results. In this study, the three feature vectors above are operated in series. Finally,
the features extracted from a single picture are changed into 1 ∗ (M + N + P) complex feature vectors.
PCA [38] was adopted to reduce the dimension and remove the redundant features, thereby increasing
the training speed, reducing the testing time and improving the efficiency of this model.
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3.4 Multiclassification Classifier
Support vector machines (SVM) [39], as one of the best classifiers in traditional methods, has an

unshakable position in the field of target recognition and classification. SVM uses statistical learning
theory and the structural risk minimization principle to find the global optimal solution. Traditional
SVM is a binary classification model, which maps the provided feature vectors to a plane. Its purpose
is to find the hyperplane that best distinguishes two types, so as to classify the two types. However, this
study studies the problem of five classifications, adopting a one-to-many scheme, which takes one class
as A first and the other classes as B. After five experiments in turn, five two-classified SVM classifiers
are obtained, and the purpose of five classifications is achieved after combination.

y : wTxi + b = 0 i = 0, 1, 2 . . . n (6)

In the formula above, w represents weighted vector, xi represents input vector, T represents vector
transposition, and b represents offset parameter. The main purpose of SVM is to find the optimal
weighting vector and then find the hyperplane coefficient that best distinguishes the two classes.

4 Experiments and Analysis
4.1 Experimental Environment

In this experiment, the computer configuration is as follows: Intel(R)Core(TM)i7-10700K is used
as CPU, NVIDIA GeForce GTX-1080Ti is used as GPU, with 16 G video memory and 32G memory,
64-bit Windows10 as computer operating system, MATLABR2018b and PyCharm 2020.2.2 x64 as
programming software.

4.2 Evaluation Index
Important evaluation indexes for the multi-classification model used are accuracy, precision and

recall. They are used for testing the advantages and disadvantages of the algorithm model. However,
in some scenarios, there are some contradictions in the operation modes of recall rate and precision
rate. Here, we introduce the commonly used comprehensive evaluation index F-Measure, which is the
weighted harmonic average of precision rate and recall rate. The higher the F value, the more effective
the model is. The above evaluation indexes are given in the following corresponding calculation
formulas:

Accuracy = (TP + TN) × 100%
TP + TN + FP + FN

(7)

Precision = TP
TP + FP

(8)

Recall = TP
TP + FN

(9)

F1 = 2 × Precision × Recall
(Precision + Recall)

(10)

True Positive (TP) refers to the number that has been correctly classified after testing. False
Positive (FP) refers to the number of non-classes that have been wrongly classified by experiments.
True negative (TN) refers to the number of non-native classes that have been correctly classified by
experiments. False Negative (FN) refers to the number that has been wrongly classified by experiments.



CMES, 2023, vol.134, no.2 1081

4.3 Experiments Results
In our limited data set, we divide the data set into five parts A, B, C, D and E by five-fold cross

validation. The model is trained through the flowchart in Fig. 3 the experimental results show that
the overall recognition average accuracy of this model for FHUSP is as high as 87.35%, the average
precision is 87.94%, the average recall is 87.43%, and the F1 coefficient is 87.58%, Table 3 shows the
detailed results of five-fold cross validation. From the analysis of the results, it can be seen that the
overall model effect is above 85%. In order to better distinguish the advantages and disadvantages of
this model, the experimental performances of this model and other known models are carried out,
respectively.

Table 3: Five-fold cross validation results of FHUSP

Method Group Accuracy Precision Recall F1 score

Ours

A 0.8774 0.8925 0.8810 0.8843
B 0.8709 0.8750 0.8709 0.8717
C 0.8645 0.8675 0.8645 0.8656
D 0.8709 0.8753 0.8710 0.8725
E 0.8839 0.8870 0.8839 0.8851

AVG 0.8735 0.8794 0.8743 0.8758

4.4 Comparison Experiments
As this model adopts multiple fusion models, this comparative experiment is mainly compared

with a single model and the deep learning model, which has been successfully applied to FHUSP at
present. The experiment is carried out in the same environment with the same data. Table 4 shows
the experimental comparison between this model and LBP [31], HOG [32], BOW model [35,37],
LBP+HOG [27], Res-Net18 [5] and Sono-Net32 [20].

Table 4: Comparative results of different experimental models

Method Accuracy Class Precision Recall F1 score

LBP [31] 0.7483 3VC 0.9231 0.3871 0.5455
3VT 0.7179 0.9032 0.8000
A4C 0.9032 0.9032 0.9032
RVOT 0.8214 0.7419 0.7797
LVOT 0.5952 0.8621 0.7042

HOG [32] 0.7548 3VC 0.9310 0.8710 0.9000
3VT 0.7241 0.6774 0.7000
A4C 0.7575 0.8065 0.7813
RVOT 0.5385 0.6774 0.6000
LVOT 0.9200 0.7419 0.8214

(Continued)
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Table 4 (continued)

Method Accuracy Class Precision Recall F1 score

SURF-BOW
[35,37]

0.7871 3VC 0.9655 0.9032 0.9333
3VT 0.6667 0.7742 0.7164
A4C 0.9333 0.9032 0.9180
RVOT 0.6316 0.7742 0.6957
LVOT 0.8182 0.5806 0.6792

LBP+HOG
[27]

0.8000 3VC 0.9333 0.9032 0.9180
3VT 0.7931 0.7419 0.7667
A4C 0.7568 0.9032 0.8235
RVOT 0.6875 0.7097 0.6984
LVOT 0.8519 0.7149 0.7913

Res-Net18 [5] 0.8322 3VC
3VT

0.9333
0.8387

0.9032
0.8387

0.9180
0.8387

A4C 0.7714 0.8710 0.8182
RVOT 0.7188 0.7419 0.7302
LVOT 0.9259 0.8065 0.8621

Sono-net32
[20]

0.7935 3VC 0.8387 0.8667 0.8525
3VT 0.6970 0.7419 0.7188
A4C 0.9630 0.8667 0.9123
RVOT 0.7241 0.6774 0.7000
LVOT 0.8438 0.9000 0.8710

Ours 0.8735 3VC 1.0000 0.9000 0.9474
3VT 0.7917 0.9048 0.8444
A4C 0.9091 0.8796 0.8889
RVOT 0.9048 0.8636 0.8837
LVOT 0.8571 0.8571 0.8571

It can be seen from each evaluation index that the model adopted in this experiment had achieved
very good results. The accuracy rate of the model proposed in this study was 87.35%, which is the
result of parameter optimization. It is carried out when the clustering center of word bags is 400, and
the Cellsize of LBP and HOG is [30 * 30]. The accuracy rate is much higher than that of single models
such as LBP, HOG and the visual word bag model. Experiments show that the performance of this
method is excellent.

Compared with the method of deep learning Res-Net18 [5] and Sono-Net32 [20], all the evaluation
indexes in this paper are slightly lower than Sono-Net32 in A4C plane and are improved in the other
four planes. In the process of classification, this study has the same problems as Sono-Net32, and the
accuracy of 3VT and RVOT planes has declined. To analyze the reason:

1. The overall structure of A4C plane is easy to identify, and it is composed of four independent
atria and ventricles. Compared with the other four planes, the features that the model needs
to extract are more comparative. Although the medium-term training of Sono-Net32 takes a
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lot of time, the deep learning of Sono-Net32 is more like a black box, and the extracted depth
features are more abundant, which is unmatched by our model.

2. Because there are similar anatomical structures between 3VT and RVOT, which can be
observed through (a) and (d) of Fig. 1, which leads to the misjudgment of the experimental
model in real classification. In the later communication with professional sonographers we also
confirmed this point. The observed anatomical structure 3VT is composed of (main pulmonary
artery, ascending aorta, superior vena cava), and RVOT is composed of (main pulmonary
artery, aortic arch, superior vena cava). After being confirmed by medical standards, the
similarity between these two planes is very high.

3. Different from Res-Net18, it has achieved excellent results in Nature medicine, and the
accuracy of classification has reached 99%. The number of images collected by the laboratory
of the University of California, San Francisco has reached 107,823. Our experiments show
that deep learning is excellent in identifying large samples, but the effect of deep learning on
small and medium samples is not good enough. In the process of reappearance, it takes 6–8 h
for Res-Net18 to train and test data, and there may be a problem of hardware configuration.
Under the condition of the same data set, this model should be completely superior to Res-
Net18. After expanding the data set in the future, we will continue to explore different series
of networks such as Res-Net50 and Res-Net101.

Next, the parameter optimization of this model will be discussed.

4.5 Parameter Optimization Experiment

4.5.1 Cellsize Optimization of Texture Features

LPB and HOG feature extraction methods are designed to extract local texture features by
dividing the image into several independent cell operators, so texture features are essentially the
distribution features between pixels and the design of cell operator size directly determines the quality
of texture features extracted later. Therefore, in this study, the optimal parameters of the cell operator
are extracted experimentally. The experimental range is from [20 * 20] to [30 * 30], as one value is
taken every two steps. Twelve experiments are carried out on the basis of keeping the bag clustering
center of the visual bag model at 400. The specific experimental results and average indexes are shown
in Table 5.

After 12 rounds of parameter training, the optimal operator is obtained when the value of the cell
operator is [30 * 30]. Experimental results show that the cell operator with LPB and HOG features is an
index that affects the performance of the model and presents a benign change trend to the experimental
results.

4.5.2 Optimization of Bow Center

In this part, we have conducted parameter optimization experiments aiming at the influence of
visual word bag center size on classification performance. The word bag model in the algorithm
adopted in this study takes K-means algorithm as the clustering core of visual word bags, and the
performance index based on the word bag model is determined by the K value of the clustering
center point. The size of the word bag center directly determines the distance between the extracted
SURF feature descriptor and the center point, which will lead to the performance of extracting visual
dictionary features from dictionaries. The experimental range of adjusting the center of the word bag
is 50–600 center points, and 12 rounds of experiments are carried out with every 50 steps in turn
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(experiments are carried out on the basis of keeping LPB and HOG cell operators as [30 * 30]). The
specific experimental results are shown in Table 6.

Table 5: Under the condition of ensuring that the center of visual dictionary is 400, the influence of
Cellsize of different texture features on the indexes of this model

Cellsize ACCURACY AVG-Precision AVG-Recall AVG-F1 score

20 ∗ 20 0.7097 0.7929 0.6667 0.6903
22 ∗ 22 0.7871 0.8367 0.7688 0.7892
24 ∗ 24 0.8000 0.8308 0.7823 0.7992
26 ∗ 26 0.8387 0.8846 0.8353 0.8503
28 ∗ 28 0.8322 0.8703 0.8318 0.8455
30 ∗ 30 0.8735 0.8794 0.8743 0.8758
32 ∗ 32 0.8581 0.8849 0.8695 0.8746
34 ∗ 34 0.8194 0.8552 0.8123 0.8271
36 ∗ 36 0.7677 0.7733 0.7442 0.7533
38 ∗ 38 0.7871 0.8352 0.7740 0.7952
40 ∗ 40 0.7741 0.8107 0.7601 0.7556
42 ∗ 42 0.7677 0.7940 0.7558 0.7686

It can be seen from Table 6 of the above-mentioned changes in the size of the center of the word
bag, that when the center changes from small to large, all the evaluation indicators will show an
upward trend. When the cluster center is 400, the best indexes are obtained. When the size of the
word bag continues to transition, this index tends to be stable and fluctuates between 85% and 87%.
It can be proved by experiments that the size of the center of the word bag affects the performance of
the classifier. When the center of the word bag is small, there are few center points. Therefore, when
calculating the distance between the feature descriptor and the small word bag, many descriptors are
replaced, resulting in poor classification performance. When the center of the word bag reaches a
certain scale, the classification performance is gradually optimized and tends to a stable trend.

Table 6: When the Cellsize of texture features is [30 * 30], the influence of the central scale of visual
word bag features of different visual word generations on the indexes of this model

BOW centre ACCURACY AVG-Precision AVG-Recall AVG-F1 score

50 0.7032 0.7871 0.6668 0.5486
100 0.7226 0.7931 0.6763 0.6974
150 0.7806 0.8258 0.7732 0.7907
200 0.8000 0.8306 0.7823 0.7992
250 0.8258 0.8494 0.8200 0.8314
300 0.8451 0.8550 0.8318 0.8411
350 0.8516 0.8615 0.8466 0.8518
400 0.8735 0.8794 0.8743 0.8758
450 0.8645 0.8850 0.8695 0.8746
500 0.8709 0.8937 0.8529 0.8682

(Continued)
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Table 6 (continued)

BOW centre ACCURACY AVG-Precision AVG-Recall AVG-F1 score

550 0.8581 0.8853 0.8439 0.8596
600 0.8581 0.8885 0.8383 0.8553

4.6 Abnormal and Normal Plane Classification Experiment
During the later evaluation, we further verified the recognition performance of the model in

normal and abnormal fetal heart sections. Similarly, in this supplementary experiment, we took the
same steps as Fig. 3 In the case of five-fold cross validation, the results are shown in Table 7.

Table 7: Five-fold cross validation results of abnormal and normal fetal heart plane

Method Group Accuracy Precision Recall F1 score

A 0.8511 0.8698 0.8463 0.8495
B 0.8182 0.8657 0.8200 0.8127

Ours C 0.9268 0.9287 0.9246 0.9261
D 0.8571 0.8846 0.8637 0.8559
E 0.7927 0.7973 0.7911 0.7912

AVG 0.8492 0.8692 0.8544 0.8471

The results of the five-fold cross validation show that the average accuracy of the model in identi-
fying abnormal and normal planes has reached 84.92%. Through the later analysis with professional
sonographers, this result is superior to the diagnosis results of most junior sonographers, which further
proves the advantages of the model and can provide some reference value for sonographers to diagnose
congenital heart disease.

4.7 Discussion
Prenatal 2D ultrasound is one of the important methods to check fetal congenital heart defects at

present. At present, sonographers have found that 9–11 ultrasonic planes of fetal heart are very impor-
tant in the examination of fetal congenital heart defects. The most fetal heart structural malformations
can be screened and diagnosed through these planes. In the process of clinical screening:

1. The number of pregnant women who do prenatal screening every day is large, and the
qualifications of different sonographers are different.

2. The fetal heart is different from other organs. Factors such as the small size of the fetal heart
and the fetal position makes it difficult to scan FHUSP.

This requires sonographers to spend more time observing with human eyes. Based on this, the
study puts forward a classification model of FHUSP with faster speed and more accurate classification
effect, which is promising in the future and has the potential to be used in clinics to provide help to
sonographers.
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Experiments show that the proposed texture features combined with visual BOW can effectively
and accurately classify FHUSP. The classification model of machine learning based on traditional
methods is not a black box like deep learning in the model. It can make greater use of the characteristics
of feature methods to solve problems for extracted features. To a great extent, it solves the problems of
training difficulties, complex processes and slow operation caused by deep learning in the process of
training and testing, while achieving accurate classification while ensuring efficiency.

However, there are still some shortcomings in this study, which will be the goal of the later research.
First, this study uses the classification model. Whether it is the modification of the model method or
the application of different ultrasound fetal standard planes, the model in this study is worth further
digging. Studying more representative models will be the focus and core of the later period. Secondly,
it is necessary to identify the specific anatomical structure of different standard planes, explore the
design of the identification and positioning model, find standard and non-standard planes, provide
risk assessment for congenital heart defect pathology, and provide favorable auxiliary conditions for
the diagnosis and treatment of congenital heart defects in the later stage. Finally, we will continue to
collect enough data to build a larger database of FHUSP.

5 Conclusion

In this study, an effective automatic recognition and classification model of 2D FHUSP based
on texture features and visual BOW is proposed. This is used to improve the automatic classification
performance of FHUSP, and can solve the inconvenience caused by prenatal fetal screening more
quickly and accurately at this stage. First, 788 images of FHUSP were preprocessed to reduce
speckle noise and enhance the contrast of ROI. Then, the preprocessed image is subjected to texture
feature extraction (Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG)) and
visual BOW extraction. Next, the extracted texture features and visual BOW are fused. Because the
high-dimensional redundant features will affect the classification efficiency, the fused features are
selected by principal component analysis (PCA). Finally, Support Vector Machine (SVM) is used
to learn the processed features to classify FHUSP. Compared with some other methods and the
single method model, the classification accuracy of our model has been obviously improved, with
the highest accuracy reaching 87.35%. Similarly, we also verify the performance of the model in
normal and abnormal planes, and the average accuracy in classifying abnormal and normal planes is
84.92%. Experiments show that the model proposed in this study can effectively identify and classify
FHUSP images, which lays a foundation for the automatic standardization of prenatal fetal ultrasound
examination procedures, so it is worthy of further exploration. In addition, this method can effectively
save manpower and time to improve work efficiency in clinical work. It is also expected to provide
more concise training and learning methods for junior qualified sonographers.
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