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ABSTRACT

The joint location planning of charging/battery-swap facilities for electric vehicles is a complex problem. Consid-
ering the differences between these two modes of power replenishment, we constructed a joint location-planning
model to minimize construction and operation costs, user costs, and user satisfaction-related penalty costs. We
designed an improved genetic algorithm that changes the crossover rate using the fitness value, memorizes, and
transfers excellent genes. In addition, the present model addresses the problem of “premature convergence” in
conventional genetic algorithms. A simulated example revealed that our proposed model could provide a basis
for optimized location planning of charging/battery-swapping facilities at different levels under different charging
modes with an improved computing efficiency. The example also proved that meeting more demand for power
supply of electric vehicles does not necessarily mean increasing the sites of charging/battery-swap stations. Instead,
optimizing the level and location planning of charging/battery-swap stations can maximize the investment profit.
The proposed model can provide a reference for the government and enterprises to better plan the location of
charging/battery-swap facilities. Hence, it is of both theoretical and practical value.
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1 Introduction

With the ever-growing energy consumption and increase in the environmental effects of fossil-fuel
based energy sources, the use of collection technology of clean energies has undergone a remarkable
growth in the Chinese market [1]. In 2020, the ownership of electric vehicles (EVs) in China reached
approximately 4.5 million, which is expected to exceed 21 million by 2025, and 65 million by 2030.
The number of battery-swap EVs has also exhibited an evident growth tendency. In fact, the number
of EVs in 2021 was 155,900, an increase of more than 30% compared to that of 2019, including
approximately 79,000 private passenger vehicles, accounting for nearly 50%. With the advancement
of wind energy, solar energy, and other new energy industries, the demand for energy storage systems
is worth increasing [2]. Moreover, as reported by the Chinese Electric Vehicle Charging Infrastructure
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Promotion Alliance, the number of charging facilities (public and private) reached 1.87 million
nationwide in May 2021, marking a 43.9% annual growth. Nevertheless, half of the owners of
EVs have no household charging piles and must rely on public charging facilities. As the central
government proposed the need to “increase the number of charging piles and battery-swap stations”
in China’s Government Work Report, for the first time in March 2021, battery-swap stations have
gained popularity and been promoted along with fast-charging facilities. The two modes of power
replenishment (i.e., charging and battery swap) are expected to develop together in the future.

However, power replenishment systems for EVs still face several challenges. First, the total
number of available facilities is still lower than the demand, despite the fact of increasing initiatives
to build more charging/battery-swap facilities. In addition, existing facilities often suffer from low
utilization rates and poor customer perception because of spatial and temporal randomness and
uncertainty in the need for power replenishment [3]. The conflicts between the increasing need for
EVs, power replenishment, and the limited investments in charging/battery-swapping facilities have
curbed the development of EVs. Therefore, an efficient method to optimize the location planning
of charging/battery-swap facilities, improve their utilization, and enhance customers’ perception is
required.

Research on methods for optimized location planning of charging/battery-swap stations has
advanced. Cheng et al. [4] proposed a cost minimization model that considered the investments of
charging networks, depreciation costs for EVs, and investments in power distribution networks. Yang
et al. [5] established a new multi-target model that aimed at minimizing the construction cost of
charging piles and maximizing the average capacity of charging stations. Song et al. [6] proposed a
location selection method for fast-charging stations that considered the operators, drivers, vehicles,
traffic flows, and power grids. Existing works on the location planning of charging/battery-swap
stations mainly focused on one or multiple of the following aspects: the income of the power grid
operator [7,8], investment in charging facilities [9,10], user costs [11,12], and new types of energy
storage devices [13,14]. Most reported studies have created a location optimization problem with the
following objectives: minimum cost, maximum fulfillment of needs, and maximum efficiency. Many
achievements have been reported from various investigations regarding location planning methods
of charging and battery-swap stations. However, no reports have explored the simultaneous location
planning of fast-charging and battery-swap stations to achieve effective coordination between these
two types of charging facilities. In the present work, we considered the location selection problem of
these two types of facilities and established a joint location planning model of charging/battery-swap
facilities to minimize the sum of construction, operation, charging, traveling, and penalty costs.

Location selection modeling is a complicated optimization problem that makes it almost imprac-
tical to use the traditional linear algorithm [15]. The global optimal solution is difficult to be obtained
by predominantly adopting heuristic algorithms such as the particle swarm optimization (PSO) [16],
genetic (GA) [17], firefly [18], simulated annealing [19], artificial neural network [20], and improved
algorithms [21]. Standard heuristic algorithms cannot provide an accurate and efficient solution to
the joint location-selection modeling problem of charging/battery-swap facilities. For example, in
the GA, the population diversity decreases after selection, and the population presents phenotype
consistency during convergence, resulting in premature convergence. Two optimization solutions have
been reported to address this problem. First, before the first round of inheritance, the operators
are modified or upgraded under the premise that the individual with the largest fitness value has a
high probability of being selected [22–24]. The second solution is to introduce a new notion after the
first round of inheritance or use the population maturity degree as an indicator to evaluate whether
the algorithm prematurely converges and hence improve the inheritance strategy [25,26]. However,
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the improved GAs proposed in previous studies are not suitable for the combined optimization
problem of complicated systems that consider the location selection of both charging and battery-
swap facilities. Although many studies have focused on the location planning of charging and battery-
swap stations, very few have combined these two in location selection. To fill this research gap, in this
work, we constructed a model for location planning including both charging and battery-swap facilities
to optimize the level and location planning of charging/battery-swap stations and to maximize the
investment profit.

2 Model Description and Construction

In addition to differences in the investment and operation costs, charging and battery-swap
facilities also differ in their selection of locations. As the investors vary, we considered only fast-
charging/battery-swap facilities. When planning the locations of the charging/battery-swap facilities,
the demand for power replenishment of EVs drivers must be met. Simultaneously, the social costs
should be minimized, including the station construction, operation, and driver’s energy replenishment
costs. Thus, the following three objectives should be considered in the construction of the location
planning model:

(1) Minimizing the gross cost of construction and operation of charging/battery-swap facilities;

(2) Minimizing the driver’s traveling costs, including the time and fees spent on driving, charging,
and waiting;

(3) Minimizing the penalty cost (i.e., minimizing the EV driver’s dissatisfaction), which involves
two scenarios. First, when all charging piles are occupied, some drivers would leave. This results
in a reduced customer perception. Second, the proportion of the overall battery-swap facilities
is low (for both types of charging facilities). Because of the large traveling distances between
battery-swap stations, drivers may opt for the fast-charging piles for power replenishment,
which also results in a lower customer perception.

2.1 Model Hypotheses
(1) In the network, there are two types of fast-charging facilities: fast-charging stations (40–60 min

for a full charge) and battery-swap stations (3–5 min for a full charge);

(2) There are two types of EVs in the road network: the charging and battery-swap types. The
charging type can only be recharged by fast-charging piles, whereas battery-swap EVs can be
recharged by either fast-charging piles or battery-swap stations;

(3) Regardless of the traffic conditions and driver habits, power consumption has a simple linear
correlation with the driving distance;

(4) Given the limited capacity of a charging station, when the number of vehicles exceeds the
number of charging piles in the station, there are considerable waiting times. However, the
swap process is quick and no waiting time is incurred.

2.2 Cost Analysis
2.2.1 Construction and Operation Cost

(1) Level of charging/battery-swap stations

According to the “Technical Specifications of Electricity Supply and Assurance for Electric Vehicle:
Electric Vehicle Charging Station” [27] released by the government of Beijing, charging stations for EVs
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can be classified into four levels with different battery storage, single-way power distribution, and daily
service capacities. Table 1 shows the division of these levels.

Table 1: Levels of charging/battery-swap facilities

Level Battery storage
capacity/kWh

Single-way power distribution
capacity/KVA

Number of served
vehicles per day

L1 6,800 5,000 500
L2 3,400–6,800 3,000–5,000 200–500
L3 1,700–3,400 1,000–3,000 100–200
L4 1,700 1,000 100

(2) Construction cost

In the construction of charging/battery-swap stations, costs include land and facility costs, where
the facility cost involves spending on the power distribution system and the charging/battery-swap
system. For battery-swap stations, additional large-scale batteries must be installed. Based on the
notions of discount rate and depreciable life, the costs for the construction of fast-charging and battery-
swap stations are expressed as Cf

k and Cf
h , respectively:

Cf
k = r0(1 + r0)

n0

(1 + r0)
n0 − 1

(
pLsk + pkNc

k + fsk

)
(1)

Cf
h = r0(1 + r0)

n0

(1 + r0)
n0 − 1

(
pLsh + phNc

h + pbNb
h + fsk

)
(2)

where sk is the building area of the fast-charging station, pL is the unit price of land, pk is the
construction cost of a single unit of a fast-charging facility, Nc

k is the number of fast-charging facilities,
fsk is the construction cost of the power distribution system, sh is the building area of the battery swap
station, ph is the construction cost of a single battery-swap facility unit, Nc

h is the number of battery
swap facilities, pb is the unit price of the batteries, Nb

h is the number of batteries reserved in the swap
station, r0 is the discount rate, and n0 is the depreciable life. The construction costs for fast-charging
facilities (Fm

k ) and battery-swap stations (Fm
h ) of different levels can be obtained, where m represents

the level of the facilities. Table 2 lists the specific costs.

Table 2: Construction cost of charging and battery-swap facilities

Level Charging station construction cost
(million CNY)

Battery-swap station construction cost
(million CNY)

L1 6.9 16
L2 5.2 12
L3 3.1 8
L4 2.1 5
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(3) Operation cost

The operation cost consists of the labor, material, and maintenance costs, which are calculated
based on the construction costs. We assume that the conversion coefficient between the operation cost
and the construction cost is γ , and the annual operation costs for the fast-charging and battery-swap
stations are expressed as Cy

k and Cy
h , respectively:

Cy
k = γ Cf

k (3)

Cy
h = γ Cf

h (4)

2.2.2 User Cost

The time cost of users for charging-type EVs consists of three parts: the driving, charging, and
waiting times. In battery-swap vehicles, the time cost of users mainly refers to the driving time, whereas
the time for battery swapping and waiting is largely negligible, and the time required for battery
swapping is irrelevant to the remaining power of the EV.

(1) Vehicle types

Based on the service purposes, the EVs are divided into two categories: passengers’ EVs (private
cars and operating vehicles) and commercial EVs (logistics vehicles and buses). They differ in terms
of the frequency and method of power replenishment.

A. Private cars distributed in residential and office areas mainly rely on public power replenish-
ment stations to recharge slowly. Charging-type vehicles rely on fast-charging piles to recharge,
and the charging time varies with the remaining electricity, power rate of the charging piles,
and user’s expectation of fully charging the vehicle or not. Battery-swap vehicles mainly rely
on battery-swap facilities. However, if the time required by the battery-swap vehicle at site i
to reach the nearest swap station exceeds the time it takes to reach the closest charging station
plus the waiting time, there is a probability (εi) that the swap-type vehicle will opt for the closest
charging station instead of the battery-swap station:

D
′
ik = Dik + Dihεi (5)

D
′
ih = Dih − Dih (6)

where

εi =
⎧⎨
⎩

1, δi ≤ 1
δi − 1, 1 < δi ≤ 2

1, δi > 2
(7)

δi =
dijh

v
dijk

v
+ Wqj + Tc

, (8)

where the average waiting time at charging station j is Wqj, and the charging time is Tc.

B. Operating vehicles, including taxis and online-hailing cars, rely primarily on public charging
stations. In scheduled rotations, the operating vehicles often do not have considerable time to
stay at the station for charging; thus, when they are short of electricity, they will need quick
charging, depending on fast charging or battery swaps for power replenishment.

C. Commercial vehicles generally rely on charging stations specifically built by the vehicle
operators; hence, this type of vehicle is not considered in the present work.
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(2) Waiting cost

In the fast-charging service, the EVs conform to the hybrid multi-server queuing model
(M/M/s/K), that is, the arrival time of the drivers conforms to the negative exponential distribution
of the parameter λ. The number of servers is s, and the service time of each server is independent of
each other, conforming to the negative exponential distribution of the parameter μ; the system space
is K. According to the calculation equations for each indicator in the M/M/s/K queuing model, the
expected queuing time for a vehicle at a charging station can be obtained, and the average length of
the queue of waiting vehicles at the charging station is:

Lq =
K∑

n=sj

(
n − sj

)
Pn =

⎧⎨
⎩

p0ρ
sρs

s! (1 − ρs)
2

[
1 − ρK−s+1

s −
(1 − ρs) (K − s + 1) ρK−s

s

]
, ρs �= 1

p0ρs(K−s)(K−s+1)

2s!
, ρs = 1

, (9)

where ρs is the service strength of the queuing system of the charging station and Pn is the probability
distribution of n customers in the system.

Owing to limited system space, the effective arrival rate of customers (λe) should be considered.
The customer loss rate is PK , and for a multiserver system, the following equation holds:

λe = λ (1 − PK) (10)

Then, using the formula for Little’s law, we obtain the expected queuing and waiting times. The
average waiting time of a vehicle at charging station j is Wqj = L1/λe, and the charging time conforms
to Tc ∼ N

(
μ, σ 2

)
.

(3) Traveling cost power replenishment costs

A. The traveling costs of EVs requiring fast charging and battery swaps are denoted as Tk
r and Th

r ,
respectively:

Tk
r = D

′
ikXijNi

k

dij

v
γ (11)

Th
r = D

′
ihXijNi

h

dij

v
γ , (12)

where Dik and Dih are the number of vehicles that require fast charging and battery swaps
at site of i, respectively, i is the demand site, and dij is the distance from the demand site i
to the site j. Xij ∈ {0, 1} is a decision variable: when equal to 1, it means that the EV at the
demand site i moves to site j for charging; when it is 0, it means that the EV does not move to
site j for charging. Ni

k represents the average number of fast-charging vehicles per year, and Ni
h

represents the average number of battery swaps of a vehicle per year.

B. The electricity cost for traveling and power replenishment was also considered in the overall
cost. In the case of EVs that rely on fast charging, the electricity cost for traveling is Dikdijquλk,
and that for power replenishment is DikXijqNi

kλ
k. In the case of vehicles that rely on battery

swaps, the electricity cost for traveling is Dihdijquλh, and that for power replenishment is
DihXijqNi

hλ
h, where qu is the power consumption of the EV per kilometer, λk is the electricity rate

for fast charging, λh is the electricity rate for battery swap, q is the one-time amount of charged
electricity per vehicle (the charging volume is related to the remaining electricity of the vehicle,
but irrelevant to battery swaps; the charging volume is linearly correlated to the charging time),
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Ni
h is the number of battery swaps per vehicle per year, Ni

k is the average number of charging
times per vehicle per year.

2.2.3 Penalty Cost

A. In the case of vehicles that rely on fast charging, we must consider the customer’s loss caused by
the limited system capacity and the corresponding penalty cost. The penalty cost is calculated
based on the traveling time and power replenishment costs:

Cl
k = ξ(D

′
ikdijquλk + D

′
ikXijNi

k

dij

v
γ , (13)

where ξ is the penalty coefficient of customer losses of EVs.

B. As the vehicles that rely on battery swaps account for a small proportion of the total number
of EVs, a scenario in which a penalty cost is incurred when the driver opts for the fast-
charging station instead of the battery-swap station, when the latter is farther away, should
be considered. This penalty cost is calculated based on the waiting and charging times:

Cl
h = ϑ

∑
i

XijNi
h

(
Wqj + Tc

)
γ Dihεi, (14)

where ϑ is the penalty coefficient of customer loss of battery-swap-type EVs.

2.2.4 Data Sorting

The objective function for location planning of charging/battery-swap stations is established
considering the construction and operation costs, waiting and traveling cost of the user, and penalty
cost.

Fkd = Cf
k + Cz

k + Cu
k + Cl

k (15)

Fhd = Cf
h + Cz

h + Cu
h + Cl

h (16)

Cu
k =

∑
i

[
D

′
ikXijNi

k

(
dij

v
+ Wqj + Tc

)
γ + D

′
ikdijquλk + D

′
ikXijqNi

k

]
(17)

Cu
h =

∑
i

[
D

′
ihXijNi

h

dij

v
γ + D

′
ihdijquλh + D

′
ihXijqNi

h

]
(18)

2.3 Objective Function
A total cost model was built based on the objective function of location planning of charging/

battery-swap stations.

minF =
∑

j

FhdXjh +
∑

j

FkdXjk (19)

The constraints are as follows:

Xjk + Xjh ≤ 1 (20)

Xij ≤ Xjh (21)

Xij ≤ Xjk (22)



1184 CMES, 2023, vol.134, no.2

∑
j

XjkFm
k +

∑
j

XjhFm
h ≤ Cmax (23)

Xjk ∈ {0, 1} (24)

Xjh ∈ {0, −1} (25)

Xij ∈ {0, 1} , (26)

where the objective function in Eq. (19) represents the minimum sum of costs of charging and battery
swap stations, including the construction, operation, driver access, and penalty costs. Constraint (20)
means that only one candidate site can be used to construct one type of facility, either a charging station
or a battery-swap station. Constraints (21) and (22) indicate that only when there are charging facilities
(charging piles or battery-swap stations), vehicles will come to this site for charging. Constraint (23)
considers the limits of governmental and corporate investments, and the maximum investment budget
is set as Cmax; constraint (24) is equal to 1 when a fast-charging station is built at candidate site j;
otherwise, it is equal to 0; constraint (25) is equal to −1 when a battery-swap station is built at candidate
site j; otherwise, it is equal to 0. Constraint (26) is equal to 1 when the EV at demand site i moves to
site j for charging; otherwise, it is equal to 0.

3 Improved Genetic Algorithm

Charging/battery-swap facility location selection modeling is a complex optimization problem.
GA, which searches from the solution set and minimizes the probability of the local optimum, is an
efficient, parallel, and global search method. However, it suffers from intrinsic shortcomings. First,
it is likely to converge before the optimal or satisfying solution is reached, that is, the premature
convergence problem. Second, during gene transmission, the excellent individual gene is susceptible
to damage, which results in the loss of useful information.

The crossover operator, which is a key factor in the GA, can be optimized for specific tasks to
improve its performance. This can be achieved in two manners: the first one is to improve the crossover
operator. A dynamic adjustment factor of the crossover probability can be designed to dynamically
adjust the operator in the evolution process, according to the fitness function. The second method is
to search and memorize an excellent gene cluster to increase its likelihood of being passed on to the
offspring.

3.1 Coding and Initial Population
(1) Decision variable of initial allocation

Population coding converts feasible solutions to problems into the search space of the GA. Thus, in
the present work, a given number of candidate sites (the location of the candidate site overlaps with the
location of the demand site) are selected according to the location planning principle of the charging
piles and battery-swap stations. The traffic conditions and the candidate sites are encoded based on
whether a charging facility will be built there or not. Specifically, the candidate site is expressed as j and
is encoded as 1, 2, . . . , j. The binary-encoded chromosomes are

[
X1, X2, . . . , Xj

]
, where Xj ∈ {−1, 0, 1},

corresponding to a fast-charging station, no charging station, or a battery-swap station constructed
at site j, respectively. There are Nk elements encoded as 1, Nh elements as −1, and the sites waiting
for the construction of a facility are {j1k, j2k, . . . , jNk} and {j1h, j2h, . . . , jNh}, respectively. Let i = 1, and
the distance between the demand site i and jNk(jNk ∈ {j1k, j2k, . . . , jNk}), that is,

{
dij1k, dij1k, . . . , dijN k

}
, can

be obtained, from which the minimum distance dij∗k corresponding to the candidate site j∗k can be
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identified; by assigning the demand site i to the candidate site j∗k, we will obtain Xij∗k
= 1. In addition,

the demand for fast charging assigned to candidate site j∗k, where a facility is yet to be constructed,
is Dik. Then, the distance between demand site i and jNh (jNh ∈ {j1h, j2h, . . . , jNh}) is calculated, that is{
dij1h, dij1h, . . . , dijN h

}
, from which the minimum distance dij∗h corresponding to candidate site j∗h is

obtained. By assigning demand site i to candidate site j∗h, we achieve Xij∗h
= 1, and the demand

for fast charging assigned to candidate site j∗h is Dih. Let i = i + 1, the abovementioned procedures
are repeated until all demand sites i (i ∈ I) are assigned. In this manner, we can obtain the assigned
demands for the construction of fast-charging piles and battery-swap stations.

(2) Identifying the level of the charging station and the battery-swap station (m)

Step 1: The service capacity of an m-level charging station is Cmk. For all jNk (jNk ∈ {j1k, j2k, . . . , jNk}),
if Cmk−1 ≤ WjNk

≤ Cmk holds, the identification process terminates. For ∀jNk ∈ {j1k, j2k, . . . , jNk}, if WjNk
>

Cmk, then we proceed to Step 2.

Step 2: When WjNk
> Cmk, all demand sites ijNk assigned to candidate site jNk, where a facility is to

be built, can be found, and the distances from all demand sites to the candidate site, dijN k, are calculated
and sequenced. The demand site with the largest distance to the candidate site is removed and assigned
to the second closest station one after another until WjNk

≤ Cmk is satisfied. The set of demand sites
and the level of candidate sites are updated, and we return to Step 1.

The two steps above describe the process of identifying the level of a candidate site for a charging
station. The process in the battery-swap station is the same. Here, the distances from the demand site
to the charging station and battery-swap station are considered together, and the demand for charging
stations that are excessively far is assigned to a closer battery-swap station.

3.2 Fitness Function
The fitness function is the basis for evaluating the quality of the set of solutions and the standard

for genetic selection, which is converted from an objective function. The objective of the location
planning of charging and battery-swap stations in the present study is to minimize the annual operation
cost while meeting the needs of drivers. Thus, the reciprocal of the objective function is considered as
the fitness function.

F [f (x)] = 1
f (x)

(27)

3.3 Genetic Operation
3.3.1 Selection Strategy

The common fitness-proportionate selection technique, which is the roulette-wheel selection
strategy, was employed in the present work. We assume that the population scale is np, and substitute
each individual in the population into the fitness function to obtain the fitness value fi and the sum
of the fitness of all individuals in population F . The probability of each individual being selected was

calculated as pi = fi/F , and the probabilities were summed into a roulette Pi =
i∑

j=1

pi to generate a

random number n between 0 and 1. When n < P1, the individuals encoded as 1 are selected; when
Pi−1 < n < Pi, the individuals encoded as i are selected until the parent population of a scale of np is
selected.
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3.3.2 Crossover and Mutation

The crossover and mutation operators are self-adaptively improved and the crossover operator
dynamically changes according to the different stages of the population evolution. In the initial stage
of population evolution, a strong crossover is adopted. When the population evolution decelerates and
reduces to a local optimum, a weak crossover is adopted, and the mutation rate changes dynamically.
We define the crossover probability as a sigmoid function, and map the fitness value to a range between
0 and 1:

PC = 1/ [1 + exp (K1
)] (28)

where 
 = favg − fmax; favg is the average fitness value, fmax is the maximum fitness value, and K1 is a
constant. PC is the adaptive parameter of the crossover rate, which can be adaptively changed according
to the fitness values of individuals during population evolution. 1-PC is an adaptive parameter for
mutation rate. Similarly, the mutation rate can be adaptively changed according to the fitness value of
individuals during the population evolution.

3.3.3 Transfer of Excellent Genes

Individuals with high fitness values often share the same or a similar range of gene combinations,
which can generate an excellent gene cluster. To reduce the search time and avoid damage to the
excellent gene cluster when searching for a solution, we can extract candidate sites and demand sites
with wide coverage to generate a set as a gene cluster to enhance the convergence speed.

(1) Division of the optimal solution search space. The set of fast-charging and battery-swap
stations and the demand sites they cover are identified, and there are n sets that form a gene
cluster. For all individuals, the optimal solution search space is divided using the same method.
All m individuals are sequenced in descending order of fitness value: B1, B2, . . . , Bm,

f (Bi) ≥ f (Bi+1) , i = 1, 2, . . . , m, (29)

and the sequenced individuals are placed in the set s.

(2) Optimal gene cluster selection. For the first nm individuals in the sequence, n is the preset
proportion of selection, and a weight b is assigned to all nm individuals (top ranked individuals
are assigned a larger weight). The same gene clusters among the individuals were marked. For
similar gene clusters among the individuals, the product of the fitness value and weight of the
gene cluster was obtained, and the cluster with a larger product was retained.

(3) Crossover of parent genes and generation of child gene clusters. Each gene cluster is regarded as
a gene, and in crossover, two individuals exchange part of their gene clusters and genes outside
the gene cluster crossover on a free basis. When child individuals are generated, the algorithm
searches for a new gene cluster.

4 Simulation Example
4.1 Simulation Data

A simulated case was used to confirm the effectiveness of the proposed model. As shown in Fig. 1,
the simulation example is based on the main urban area of a city in Central China, with a total area of
approximately 139.2 km2. Combined with statistical practice, 30 sub-areas of energy supply demand in
this area were studied and appropriate locations for the construction of charging stations were selected.
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Figure 1: Area of simulation

There are 3,490 EVs in this region, of which 2,804 are charging vehicles and 686 are battery swap
ones. The ratio of private cars to operating vehicles was 9.8:0.2. Private cars and operating vehicles need
to charge 0.2 and 2 times per day at public charging facilities, respectively. Table 3 lists the locations
and corresponding demand scales of the 30 demand sites, and Table 4 lists the specific parameters.

Table 3: Location and demand scale of demand sites

Demand site Abscissa Ordinate Demand for charging piles Demand for battery-swaps

1 13.58 14.32 84 8
2 16.5 21.36 172 7
3 3.2 8.08 40 35
4 6.97 19.3 176 10
5 15.2 17.36 128 21
6 11.25 10.69 160 5
7 14.6 4.25 108 9
8 4.63 23.68 148 8
9 3.98 15.6 40 36
10 7.5 14.6 24 37
11 1.61 12.38 140 7
12 1.9 9.53 24 41
13 4.91 6.5 36 35
14 18.62 11.4 128 4
15 23.22 20.46 172 9
16 15.26 25 180 13
17 12.02 15.91 92 9
18 2.63 2.26 24 43
19 12.37 7.32 140 34
20 16.68 6.98 168 11
21 11.1 18.6 52 39

(Continued)
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Table 3 (continued)

Demand site Abscissa Ordinate Demand for charging piles Demand for battery-swaps

22 5.4 16.1 12 36
23 18.98 16.73 16 35
24 9.29 17.14 132 10
25 22.21 24.56 108 6
26 21.3 15.4 72 44
27 21.35 8.98 20 38
28 7.89 10.36 24 43
29 20.36 12.26 152 7
30 18.58 15.1 32 46

Table 4: Related parameters of the simulation example

Parameter Definition Value Parameter Definition Value

γ Conversion coefficient
of operation and
construction costs

0.12 Ni
k Average times of fast

charging (times/year)
100

r0 Discount rate 8% Ni
h Average times of battery

swaps (times/year)
100

n0 Depreciable life (Year) 20 qu Average power
consumption of EVs
(kWh)

0.15

v Average driving speed
(km/h)

30 λk Fast-charging price
(CNY/kWh)

1.6

γ Conversion coefficient
of the time cost
(CNY/h)

80 λh Battery-swap price
(CNY/kWh)

1.6

The improved GA and MATLAB were used to find the solutions. The algorithm was set as follows:
the population was 50, the iteration was 200 times, and in the termination rules, the maximum iteration
was 50 times for the current optimal solution to remain unchanged. The simulation was run 20 times,
and the results are listed in Table 5.
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Table 5: Location planning results of charging/battery-swap facilities by the improved GA

Expenditure The operation cost of the charging station is 9.27 million CNY, and the
user cost is 17.56 CNY (including the penalty cost)

Type Site No. (Level) Service demand sites

Allocation of demand
sites

Fast-charging station

9(2) 13, 14, 22, 24, 2, 26, 28, 29
13(1) 1, 4, 5, 6, 15, 16, 18, 19, 20,

23, 30
17(2) 3, 7, 8, 9, 10, 11, 21, 27
26(3) 2, 12, 17

Battery-swap station 1(1) 2, 3, 5, 7, 8, 9, 10, 11, 12,
16, 17, 18, 20, 21, 23, 27

10(2) 1, 4, 6, 14, 15, 19, 22, 24,
25, 26, 28, 29, 30

4.2 Simulation Results
4.2.1 Modeling Results

For convenient calculation, we assumed that the land prices of all sites remained the same. Table 5
shows the location planning results of the fast-charging stations and battery-swap stations. Sites 9, 13,
17, and 26 are planned for charging piles, whereas sites 1 and 10 are arranged for battery-swap stations.

Fig. 2 shows the construction locations and allocation of demand points. For different locations
of the charging facilities, different demand sites are assigned, and the level of the sites of charging
facilities vary. In practice, it is unnecessary to build all facilities into high-level facilities; building
charging/battery-swap facilities of different levels helps avoid waste of investment, improve efficiency,
and maximize customer perception.

Figure 2: Construction locations and allocation of demand points (basic model)
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4.2.2 Planning Results under Varied Construction Costs

For convenient calculation, we assumed that the land prices for all facilities remained the same,
but this is not true in reality. With other conditions held the same as in Section 4.2.1, we discuss the
location selection of charging/battery-swap facilities under varied land prices, as shown in Table 6.

Table 6: Land price of demand sites

Demand site (1–10) 1 2 3 4 5 6 7 8 9 10

Land price 0.82 1.1 0.8 1.09 1 0.9 1.17 1.1 1.1 0.82
Demand site (11–20) 11 12 13 14 15 16 17 18 19 20
Land price 0.8 1 0.99 1.1 0.9 1.11 0.9 1 0.92 1.2
Demand site (21–30) 21 22 23 24 25 26 27 28 29 30
Land price 0.8 0.94 1 0.8 1.02 1.2 1.1 0.96 1 0.8

As shown in Fig. 3, the result differs from that in Section 4.2.1. Sites 9, 13, and 17 are still planned
for charging piles; however, site 26 is no longer reserved for a charging station, and site 12 is arranged
for a new charging station. Charging stations were planned for regions with lower construction costs
to reduce the overall value of the objective function.

Figure 3: Construction locations and allocation of demand points (under varied construction costs)

4.2.3 Planning Results under Varied Demand Structures

Vehicles that rely on battery swaps for charging comprise a small proportion of all vehicles in the
road network. As shown in Table 7, the ratio of fast-charging vehicles to battery-swap vehicles was 4:1.
To simulate the increased proportion of battery-swap vehicles, we reduced the number of fast-charging
vehicles by 1/4, 3/8, and 1/2 for each demand site, and the reduced demand for fast-charging vehicles
was due to the increased number of battery-swap vehicles. As the ratio of fast-charging vehicles to
battery-swap vehicles varies, the location and level of fast-charging stations and battery-swap stations
also differ. When the scale of the fast-charging stations was reduced by 1/4, the location of the fast-
charging stations remained constant, but the level of the stations decreased, thus reducing demand. As
the demand continued to decrease, the location and scale of fast-charging stations varied. In this case,
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the level of the fast-charging station and the location of the stations changed to minimize the overall
cost. Moreover, the location and scale of the battery-swap stations varied to meet changing demands.

Table 7: Location planning results of charging/battery-swap facilities under varied demands

Reduction ratio Location of the charging/battery-swap facilities (level)

Fast-charging station Battery-swap station

1/4 9(2)/13(1)/17(3)/26(3) 1(1)/10(1)
3/8 13(1)/17(2)/26(4) 5(1)/22(1)/29(2)
1/2 13(1)/17(3)/10(3) 5(1)/22(1)/29(1)

Because the average construction cost of the battery-swap station is higher than that of the fast-
charging station, with an increasing proportion of EVs, the overall construction cost of energy supply
stations increases linearly. As shown in Fig. 4, when the proportion of battery-swap vehicles is changed
to 1/4, 3/8, and 1/2, the construction costs of battery-swap stations are 32 million CNY, 44 million CNY,
and 48 million CNY, and the overall construction costs are 50.3 million CNY, 58.2 million CNY, and
61.1 million CNY, respectively. This represents an increase of 18.6%, 15.7% and 4.98%, respectively,
compared to the original cost.

Figure 4: Construction cost of the charging/battery-swap station under different reduction ratios

4.2.4 Comparison between Two Algorithms

In the present work, the conventional GA and improved GA were employed to solve the model,
and their performances were compared. The algorithms were run 200 times for 50 iterations, and the
changes in the fitness curve were used as the evaluation standard. Both algorithms can achieve the
optimal solution, but the effect varies (Table 8). Specifically, the improved GA had a stronger search
capacity and a higher search speed than the standard algorithm. The reason for this difference is that
after genetic operation, the population diversity in the conventional GA decreased sharply, and under
a small mutation probability, the algorithm has a high probability of reaching premature convergence
towards the local optimum. However, the improved algorithm is “directional” (evolves towards
child generations with a higher fitness value), but retains the selection operation. Consequently, the
improved GA outperformed its conventional counterpart.
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Table 8: Times to reach the optimal solution for the two algorithms

Algorithm Minimum Maximum Mean

Conventional GA 3 15 7.6
Improved GA 24 58 39.4

As shown in Fig. 5, when the initial parameters were held constant, the fitness function curve of
the improved algorithm increased rapidly, with a higher fitness value and a higher rising speed than
those of the conventional GA. Moreover, as the number of epochs increased, the fitness values of
both algorithms increased until convergence. The improved algorithm converged at the 130th epoch.
However, the conventional algorithm did not exhibit a steadily reduced fitness value as the number of
epochs increased. Within 200 epochs, the conventional GA converged at the 152nd epoch, but did not
converge to the global optimum. The improved GA has better stability and poorer convergence than
its conventional counterpart.

Figure 5: Fitness function curves of the improved GA and conventional GA

5 Conclusions

Meeting the demand for power supply of EVs does not necessarily mean increasing the number of
charging/battery-swap stations. Instead, optimizing the level and location planning of these stations
can maximize the investment profit. A case simulation revealed that our proposed model for the
location selection of multilevel charging/battery-swap stations could provide a basis for decision-
making. In the location selection of charging/battery-swap facilities, the construction, operation,
charging, traveling, and waiting costs, as well as customer satisfaction with the service of the
facilities, should be considered. Location selection is a multi-target and nonlinear combination
optimization problem subject to different influencing factors. Therefore, the difference between the
fast-charging and battery-swap stations was considered. We built a location selection optimization
model for charging/battery-swap facilities. To solve this model, we designed an improved GA that
can dynamically change the crossover and mutation rates according to the fitness values, memorize,
and transfer excellent genes with a large probability. This improved algorithm avoids the problem
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of premature convergence of conventional GAs, provides a new solution to complex optimization
problems, and increases the computing efficiency; hence, it has theoretical significance. A simulated
case study confirmed the effectiveness and utilization efficiency of the proposed model and algorithm.
The proposed problem and solution can provide a reference for the government and enterprises to
better plan the location of charging/battery-swap facilities, having both theoretical and practical value.
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