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ABSTRACT

The Riemann wave system has a fundamental role in describing waves in various nonlinear natural phenomena,
for instance, tsunamis in the oceans. This paper focuses on executing the generalized exponential rational function
approach and some numerical methods to obtain a distinct range of traveling wave structures and numerical
results of the two-dimensional Riemann problems. The stability of obtained traveling wave solutions is analyzed
by satisfying the constraint conditions of the Hamiltonian system. Numerical simulations are investigated via the
finite difference method to verify the accuracy of the obtained results. To extract the approximation solutions to the
underlying problem, some ODE solvers in FORTRAN software are applied, and outcomes are shown graphically.
The stability and accuracy of the numerical schemes using Fourier’s stability method and error analysis, respectively,
to increase the reassurance are investigated. A comparison between the analytical and numerical results is obtained
and graphically provided. The proposed methods are effective and practical to be applied for solving more partial
differential equations (PDEs).
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1 Introduction

Diverse phenomena in nature and technology are described using nonlinear evolution equations
(NLEEs). In physics, for instance, the heat transfer and the traveling wave phenomena are successfully
modeled by PDEs. In chemistry, the dispersion of a chemically reactive substance is controlled by
PDEs. Also, PDEs are invoked to characterize population growth problems. Moreover, most physical
incidents of shallow-water waves, quantum mechanics, plasma physics, electricity, fluid dynamics, and
more others are investigated using PDEs. In order to better comprehend the qualitative characteristics
of such equations, one can study their analytical solutions. A distinct range of traveling wave
structures allows us to explain the mechanisms of immense complicated phenomena. As a result, some
researchers have revealed numerous effective methods. Some of the powerful approaches are the Sine-
Gordon expansion approach [1], the modified simple equation technique [2], the tanh-sech process
[3,4], the trial equation method [5], the exp(−f (ζ ))-expansion principal [6,7] and the generalized
exponential rational function approach [8]. More methods can be easily seen in references [9–15].
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The Riemann wave system [16,17] is given by

Vt + α�xyy + β�Vy + γ UVx = 0,
Vy = Ux,
Vx = �y,

(1)

where α, β and γ are constants. System (1) describes a (2 + 1)-dimensional interaction for the
propagation of Riemann waves in the x-axis and y-axis. The Riemann wave equations have been
investigated by some scientists using various methods. For example, Shao [18] examined the stability
of the solution of the quasi-linear hyperbolic systems under the influence of some BV perturbations.
Shao [19] presented several solutions with satisfying some conditions. Chen et al. [20] used the
generalized expansion approach of the Riccati equation to extract some soliton-like solutions for
Eq. (1) when m = n = 4b, where b is a constant. The modified mapping principle was applied in
[21] to establish a class of periodic wave solutions in terms of the Jacobi elliptic functions. Moreover,
Abdelrahman et al. [22] utilized the singular manifold technique to construct two general solutions
for system (1). Every obtained solution contains two arbitrary functions. Then, some periodic wave
solutions were derived from the obtained general solutions. In [16], the tanh method was implemented
to generate some traveling wave solutions for Eq. (1). The generalized Kudryashov approach was
applied in [17] to systematically and graphically show the traveling wave solutions of Eq. (1). While, in
this paper, we present analytical and numerical solutions to Eq. (1) using the generalized exponential
rational function approach [8] and finite difference methods, respectively.

Since our knowledge of constructing exact solutions for the Riemann wave equations is basically
based on few techniques, we utilize the generalized exponential rational function approach [8]
to construct the exact solutions of the considered equations. This technique depends on Jacobi
elliptic functions. As a result, various solitary traveling wave solutions can be simply generated in
terms of trigonometric and hyperbolic functions. Regarding the numerical solution, some numerical
simulations are presented using the finite difference method to emphasize that the obtained results are
accurate. The numerical solutions of the considered system are obtained by approaching the equations
on a mesh using the finite-difference notations. The domain is divided into a limited set of grids to
achieve meshes for both independent variables x and y. It is well known that the wave of the solutions
has areas with rapid spatial changes, for instance, steep fronts structures. In order to resolve these types
of areas, fine numbers of grids, for x and y, are required. The step size, �x = xi − xi−1, �y = yi − yi−1

should be extremely small to catch these regions. Computationally, it is intensive and expensive. Hence,
I strive to achieve an alternative discretizing for the meshes to have a non-uniform mesh that manually
sets more grids in where the solution varies rapidly and fewer grids outside these regions. And then,
I used the stiff ODE solver DASPK [23] to solve the obtained ODEs of the semi-discretization of the
system. This ODEs solver is an implicit iterative method, based on the Krylov subspace method. They
are applied to solve the system of linearized equations. They also allow converting the Jacobian matrix
to be LU factorized to make the calculations faster. I additionally studied, here, the stability and the
error analysis for the numerical schemes.

2 Methodology

The generalized exponential rational function approach is comprehensively summarized in this
section, as presented in [8]. Assume that

P(V , Vx, Vt, Vxx, Vxy, Vxxy, U , Ux, Uy, �, �x, �y, . . .) = 0, (2)
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is a given nonlinear PDE in the unknown functions V = V(x, y, t), U = U(x, y, t) and � = �(x, y, t).
P is a polynomial in V , U and � and their partial derivatives. Suppose that ζ = μx + δy − wt, where
μ, δ and w are unknown parameters that will be computed later. Thus,

V(x, y, t) = v(ζ ),
U(x, y, t) = u(ζ ),
�(x, y, t) = ψ(ζ ).

(3)

Then, Eq. (2) is converted into

Q(v, v′, v′′, v′′′, u, u′, ψ , ψ ′, . . .) = 0, (4)

where ′ = d
dζ

. According to the proposed method, the formal solution of Eq. (4) is written as

ϒ(ζ ) = p1 exp(q1ζ ) + p2 exp(q2ζ )

p5 exp(q3ζ ) + p6 exp(q4ζ )
, (5)

where p1p2, p5, p6, q1, q2, q3, and q4 are complex (or real) constants so that Eq. (2) is expressed as

v(ζ ) = A0 +
N∑

k=1

Akϒ(ζ )
k +

N∑
k=1

Bkϒ(ζ )
−k, (6)

The balance principle is used to determine the value of N appearing in Eq. (6). Moreover, the
coefficients A0, Ak and Bk (k = 1, 2, . . . , N) is evaluated such that Eq. (6) satisfies Eq. (4). Inserting
Eq. (6) into Eq. (4) gives a polynomial from which one can obtain an algebraic system solved using
Mathematica or Maple. The values of the above-mentioned constants are included in the solutions of
this system. Substituting these values into Eq. (6) yields the exact solutions of Eq. (2).

3 Traveling Wave Solution

In this section, we study the exact solutions of system (1) using the generalized exponential rational
function approach. Substitute Eq. (3) into system (1) to have

−wvζ + μδ2αψζζζ + βδψvζ + γμuvζ = 0,

uζ = δ

μ
vζ ,

ψζ = μ

δ
vζ .

(7)

We now integrate each equation in system (7) with respect to ζ to obtain

−wv + b0vζ ζ + B1 v2 = 0,

u = δ

μ
v,

ψ = μ

δ
v,

(8)

where b0 = αμ2δ and B1 = 0.5δ (β + γ ). Balancing the highest order of vζ ζ with the nonlinear term v2

in system (8) evaluates the value of N given by N = 2. As a result, the exact solutions are shown as
follows:
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v(ζ ) = A0 + A1ϒ(ζ ) + A2ϒ(ζ )
2 + B1ϒ(ζ )

−1 + B2ϒ(ζ )
−2,

u(ζ ) = δ

μ
v(ζ ),

ψ(ζ ) = μ

δ
v(ζ ),

(9)

where ϒ(ζ ) is presented in Eq. (5). We insert systems (9) into (8) to obtain the traveling wave solutions
of (1) which are written as follows.

Family 1: For p = [1, −1, 1, 1] and q = [−1, 1, −1, 1], Eq. (5) becomes

ϒ(ζ ) = − tanh(ζ ). (10)

Substituting Eq. (10) into the first equation of system (9) and then we insert the result into the
first equation of system (8) give an algebraic system whose solutions are given as follows:

Case 1:

A0 = −A2, A1 = B1 = B2 = 0, μ = ±
√−A2β − A2γ

2
√

3
√

α
,

δ = −μ, w = −1
3

A2δ(β + γ ).
(11)

Substituting Eq. (11) into system (9) and Eq. (10) gives the exact solutions of system (1) which are
illustrated as follows:

V1(x, y, t) = −A2 + A2tanh2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

)
,

U1(x, y, t) = ± 2δ
√

3
√

α√−A2β − A2γ
V(x, y, t),

�1(x, y, t) = ±
√−A2β − A2γ

2δ
√

3
√

α
V(x, y, t).

(12)

Case 2:

A0 = −1
3

A2, A1 = B1 = B2 = 0, μ = ±
√−A2β − A2γ

2
√

3
√

α
,

δ = −μ, w = 1
3

A2δ(β + γ ).
(13)

Inserting Eq. (13) into system (9) and Eq. (10) yields the exact solutions of system (1) which are
expressed as

V2(x, y, t) = −1
3

A2 + A2tanh2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy − 1

3
A2δ(β + γ )t

)
,
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U2(x, y, t) = ± 2δ
√

3
√

α√−A2β − A2γ
V(x, y, t), (14)

�2(x, y, t) = ±
√−A2β − A2γ

2δ
√

3
√

α
V(x, y, t).

Case 3:

A0 = −2A2, A1 = B1 = 0, B2 = A2, μ = ±
√−A2β − A2γ

2
√

3
√

α
,

δ = −μ, w = −4
3

A2δ(β + γ ).
(15)

Plugging Eq. (15) into system (9) and Eq. (10) gives the traveling wave solutions of system (1)
which are given by

V3(x, y, t) = −2A2 + A2tanh2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 4

3
A2δ(β + γ )t

)

+A2coth2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy − 4

3
A2δ(β + γ )t

)
,

U3(x, y, t) = ± 2δ
√

3
√

α√−A2β − A2γ
V(x, y, t),

�3(x, y, t) = ±
√−A2β − A2γ

2δ
√

3
√

α
V(x, y, t).

(16)

Case 4:

A0 = −2
3

A2, A1 = B1 = 0, B2 = A2, μ = ±
√−A2β − A2γ

2
√

3
√

α
,

δ = −μ, w = 4
3

A2δ(β + γ ).
(17)

Putting Eq. (11) into system (9) and Eq. (10) leads to the exact solutions of system (1) which are
shown as

V4(x, y, t) = −2
3

A2 + A2tanh2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy − 4

3
A2δ(β + γ )t

)

+A2coth2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy − 4

3
A2δ(β + γ )t

)
,

U4(x, y, t) = ± 2δ
√

3
√

α√−A2β − A2γ
V(x, y, t),

�4(x, y, t) = ±
√−A2β − A2γ

2δ
√

3
√

α
V(x, y, t).

(18)
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Family 2: For p = [i, −i, 1, 1] and q = [i, −i, i, −i], Eq. (5) becomes

ϒ(ζ ) = − sin ζ

cos ζ
, (19)

Case 1:

A0 = 1
3

A2, A1 = B1 = B2 = 0, μ = ±
√−A2β − A2γ

2
√

3
√

α
,

δ = −μ, w = −1
3

A2δ(β + γ ).
(20)

Substituting Eq. (20) into system (9) and Eq. (19) gives the exact solutions of system (1) which are
shows as follows:

V5(x, y, t) = 1
3

A2 + A2

sin2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

)

cos2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

) ,

U5(x, y, t) = ± 2δ
√

3
√

α√−A2β − A2γ
V(x, y, t),

�5(x, y, t) = ±
√−A2β − A2γ

2δ
√

3
√

α
V(x, y, t).

(21)

Case 2:

A0 = A2, A1 = B1 = B2 = 0, μ = ±
√−A2β − A2γ

2
√

3
√

α
,

δ = −μ, w = 1
3

A2δ(β + γ ).
(22)

Inserting Eq. (22) into system (9) and Eq. (19) yields the traveling wave solutions of system (1)
which are

V6(x, y, t) = A2 + A2

sin2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

)

cos2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

) ,

U6(x, y, t) = ± 2δ
√

3
√

α√−A2β − A2γ
V(x, y, t),

�6(x, y, t) = ±
√−A2β − A2γ

2δ
√

3
√

α
V(x, y, t).

(23)
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Case 3:

A0 = 2A2, A1 = B1 = 0, B2 = A2, μ = ±
√−A2β − A2γ

2
√

3
√

α
,

δ = −μ, w = 4
3

A2δ(β + γ ).
(24)

Putting Eq. (24) into system (9) and Eq. (19) gives the exact solutions of system (1) which are

V7(x, y, t) = 2A2 + A2

sin2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

)

cos2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

) ,

+A2

cos2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

)

sin2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

) ,

U7(x, y, t) = ± 2δ
√

3
√

α√−A2β − A2γ
V(x, y, t),

�7(x, y, t) = ±
√−A2β − A2γ

2δ
√

3
√

α
V(x, y, t).

(25)

Case 4:

A0 = −2
3

A2, A1 = B1 = 0, B2 = A2, μ = ±
√−A2β − A2γ

2
√

3
√

α
,

δ = −μ, w = −4
3

A2δ(β + γ ).
(26)

Substituting Eq. (26) into system (9) and Eq. (19) leads to the exact solutions of system (1) which
are expressed as

V8(x, y, t) = −2
3

A2 + A2

sin2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

)

cos2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

) ,

+ A2

cos2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

)

sin2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy + 1

3
A2δ(β + γ )t

) , (27)
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U8(x, y, t) = ± 2δ
√

3
√

α√−A2β − A2γ
V(x, y, t),

�8(x, y, t) = ±
√−A2β − A2γ

2δ
√

3
√

α
V(x, y, t).

4 Stability of the Analytical Solution

We introduce the Hamiltonian system in this section. Hamiltonian system is applied on analytical
solutions to test their stability on a specific interval. The Hamiltonian system [24,25] is expressed by

�(w) =
∞∫

−∞

1
2

v2(ζ )dζ , (28)

where � indicates the momentum function. Furthermore, w presents the wave speed and v(ζ ) is the
considered analytical solution. The sufficient condition for the stability is

∂�

∂w
> 0. (29)

When we apply Eqs. (28) and (29) on Eq. (18) over the rectangular domain [−20, 40] × [0, 1], we
obtain
∂�

∂w
= 18.24 > 0, (30)

where the parameters A2 = 1.2, β = −0.5, α = 2.70, and γ = −2.20. As a result, the analytical
solutions are unconditionally stable.

5 Finite Difference Semi-Discretization Scheme on a Fixed Mesh

This section is devoted to study the numerical solutions of system (1) over the physical domain
[a, b] × [c, d], where a and b indicate the boundary of the domain in x direction. Moreover, c and d
indicate the boundary of the domain in y direction and Te denotes a specific time. The central finite
differences are utilized to establish the numerical schemes of this system. We firstly split the domain
[a, b] × [c, d] into (N + 1) × (M + 1) discrete points as follows:

xn = a + n�x, n = 0, 1, 2, . . . , N,
ym = c + m�y, m = 0, 1, 2, . . . , M.

Here, �x and �y denote the width of the sub-intervals in x and y directions, respectively. System
(1) is now converted into some equations of ODEs by implementing finite differences on spatial
derivatives. We keep the temporal derivative continuous. Completing this gives

Vt|k
n,m = −α

1
2�x�2y

δ2
y

(
�k+1

n+1,m − �k+1
n−1,m

) − β

2�y
�k+1

n,m

(
V k+1

n,m+1 − V k+1
n,m−1

)
− γ

2�x
Uk+1

n,m

(
V k+1

n+1,m − V k+1
n−1,m

)
,

1
2�x

(Uk+1
n+1,m − Uk+1

n−1,m) = 1
2�y

(V k+1
n,m+1 − V k+1

n,m−1),

1
2�y

(�k+1
n,m+1 − �k+1

n,m−1) = 1
2�x

(V k+1
n+1,m − V k+1

n−1,m),

(31)
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where

δ2
y|k+1

n,m = (
�k+1

n,m+1 − 2�k+1
n,m + �k+1

n,m−1

)
.

We compute the boundary conditions as follows:

Vx(a, y, t) = Vx(b, y, t) = 0, ∀y ∈ [c, d] and ∀t ∈ [0, Te],
Vy(x, c, t) = Vy(x, d, t) = 0, ∀x ∈ [a, b] and ∀t ∈ [0, Te].

(32)

These boundary conditions allow us to employ the fictitious points in computing the spatial
derivatives at the boundaries of the domain. It is worth noting that the initial conditions are established
by evaluating the exact solution at t = 0, as follows:

V1(x, y, 0) = −A2 + A2tanh2

(
±

√−A2β − A2γ

2
√

3
√

α
x + δy

)
,

U1(x, y, 0) = ± 2δ
√

3
√

α√−A2β − A2γ
V(x, y, 0),

�1(x, y, 0) = ±
√−A2β − A2γ

2δ
√

3
√

α
V(x, y, 0),

(33)

where δ = ∓
√

−A2β−A2γ

2
√

3
√

α
, A2, β, γ , α are constants.

In order to extract the numerical solutions of the considered equation, we implement the finite
difference approach which depends on a standard ODE solver in FORTRAN software, DASPK solver
[25]. The standard backward differentiation operators are invoked to approximate the time derivatives
in this solver. In addition, the Jacobian matrix of the linearised system is approximated by applying
LU factorization. To have less bandwidth for this matrix, we use a unique system numbering for the
unknowns V1,1, V2,1, V3,1, . . . , VN+1,M+1.

6 Stability of the Numerical Solution

This section investigates the stability of the numerical solution using a Fourier’s stability technique.
From the second and third equations of system (8), we have

� = μ

δ
V and U = δ

μ
V .

Substituting these equations into the first equation of system (1) yields

Vt + α0Vxxy + β0 VVy + γ0 VVx = 0, (34)

where α0 = μ

δ
α, β0 = μ

δ
β and γ0 = δ

μ
γ . Since the Fourier stability approach is applied on linear

equations, we linearise Eq. (34) as follows:

Vt + α0Vxxy + L0Vy + L1 Vx = 0, (35)

where L0 and L1 are constants quantity defined by

L0 = max
1≤m≤M
1≤n≤N

(
β0V k

n,m

)
, L1 = max

1≤m≤M
1≤n≤N

(
γ0V k

n,m

)
.
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The boundary conditions are ignored. Consider the point (xn, ym, tk), where xn = n�x, ym = m�y
and tk = k�t. Let

V k
n,m = λkei ξ π n�xei r π m�y and then V k+1

n,m = λV k
n,m,

n = 1, 2, . . . , N, and m = 1, 2, . . . , M. (36)

plugging Eq. (36) into scheme (35) yields

λV k
n,m − i sin(rπ�y)λ

�y

(
2α

�x2
sin2

(0.5ξπ�x) − L0

)
+ iL1λ

�x
sin(ξπ�x)λV k

n,m = V k
n,m. (37)

Dividing both sides of the result by V k
n,m gives

λ

[
1 − i sin(rπ�y)λ

�y

(
2α

�x2
sin2

(0.5ξπ�x) − L0

)
+ iL1λ

�x
sin(ξπ�x)

]
= 1. (38)

Assume that

a =
[

sin(rπ�y)�t
�y

(
2α

�x2
sin2

(0.5 mπ�x) − L0

)
− L1�t

�x
sin(mπ�x)

]
.

Then, Eq. (38) becomes

λ = 1
1 − ai

. (39)

Hence,

|λ| = 1
1 + a2

≤ 1. (40)

According to the Fourier stability, the stability of the considered scheme occurs if the absolute
value of λ does not exceed one. This constrained condition is perfectly satisfied in our analysis. It is
clear from Eq. (39) that the absolute value of λ is less than one. Consequently, the numerical scheme
is unconditionally stable.

7 Error Analysis

Taylor series is used in this section to examine the order of the accuracy of scheme (31). We evaluate
the truncation error to obtain the order. Suppose that

ek+1
n,m = V k+1

n,m − V(xn, ym, tk+1), (41)

where ek+1
n,m denotes the error, V k+1

n,m and V(xn, ym, tk+1) represent the approximation solution and the
analytical solution at (xn, ym, tk+1), respectively. We now insert Eq. (41) into scheme (35) to obtain

ek+1
n,m − ek

n,m

�t
= −α0

1
2�x2�y

δ2
x

(
ek+1

n,m+1 − ek+1
n,m−1

) − L0

2�y

(
ek+1

n,m+1 − ek+1
n,m−1

)
− L1

2�x

(
ek+1

n+1,m − ek+1
n−1,m

) − Tk
n,m,
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where Tk
n,m is the truncation error which is expressed as

Tk
n,m = −α0

1
2�x2�y

δ2
x (V(xn, ym+1, tk+1) − V(xn, ym−1, tk+1)) − L0

2�y
(V(xn, ym+1, tk+1)

−V(xn, ym−1, tk+1)) − L1

2�x
(V(xn+1, ym, tk+1) − V(xn−1, ym, tk+1)) ,

Hence,

Tk
n,m ≤ �t

2
Vtt(xn, ym, ζk+1) − �x�y

4
Vxxxyy(ξn, ηm, tk+1) − �x2

6
Vxxx(ξn, ym, tk+1)

−�y2

6
Vyyy(xn, ηm, tk+1).

(42)

The leading terms mentioned above are known as the fundamental part of the local truncation
error, and we have accepted the truth that u(x, y, t) is the solution of the underlying system. Therefore,

Tk
n,m = O(�t) + O(�x�y) + O(�x2) + O(�y2).

The truncation error, which is generated in every step, is given by O(�t, �x2, �y2).

8 Convergence of the Numerical Schemes

Now consider that a sequence of computations is carried out using given initial data, with the
refinement of three meshes, so that �x → 0, �y → 0 and �t → 0. Then, the numerical scheme is said
to be convergent if, for each fixed point (x∗, y∗, t∗) in a chosen domain [a, b] × [c, d] and [0, Te],

xn → x∗, ym → y∗, tk → t∗ implies V k
n,m = V(x∗, y∗, t∗). (43)

We have established above that the implicit schema is unconditional stability. So, we will show that
the implicit schemes are unconditional convergence. Suppose that the error e is given by

ek
n,m = V k

n,m − V(xn, ym, tk). (44)

Now, V k
n,m satisfies the scheme (Eq. (31)) exactly, while V(xn, ym, tk) omits the error indicated by

the truncation error �tTk
n,m.

Hence by using the fact that Vy = Ux, and Vx = �y and subtraction, we have

ek+1
n,m = ek

n,m − a0δ
2
x

(
ek

n,m+1 − ek
n,m−1

) − a1

(
ek

n,m+1 − ek
n,m−1

) − a2

(
ek

n+1,m − ek
n−1,m

) + �tTk
n,m, (45)

where a0 = α�t
2�x2�y

, a1 = β�t
2�y

, and a2 = γ�t

2�x
and Tk

n,m is truncation error (see Eq. (42)). If we suppose that
the maximum error for time step is given by

Ek := max{∣∣ek
n,m

∣∣ , n = 1, . . . , N − 1, m = 1, . . . , M − 1, and k ≥ 0}. (46)

Substituting Eq. (46) into Eq. (45) yields

ek+1
n,m ≤ Ek + �tTk

n,m. (47)

Since the above inequality holds for each n = 1, . . . , N − 1 and m = 1, . . . , M − 1, we have

Ek+1 ≤ Ek + �tTk
n,m. (48)
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Since the given initial data is used we can identify E0 = 0. Hence the inequality is given by

Ek ≤ k × �tTk
n,m. (49)

But Tk
n,m → 0 as �x, �y, �t → 0, then

Ek ≤ k × �tTk
n,m → 0 as �t → 0. (50)

Hence, the scheme (Eq. (31)) is convergent as �x, �y, �t → 0.

9 Results and Discussion

In this section, we discuss the results shown in this work. We extract a distinct range of traveling
wave structures of the two-dimensional Riemann problems via the generalized exponential rational
function method. The obtained solutions are presented in terms of trigonometric and hyperbolic
functions. We examine the stability of Eq. (18) over the rectangular domain [−20, 40] × [0, 1] by
applying Eqs. (28) and (29) on this equation. Since Eq. (30) is positive, the exact solutions are stable
with the used parameters which are A2 = 1.2, β = −0.5, α = 2.70, and γ = −2.20.

The numerical solutions are discussed by employing the finite difference method to convert the
underlying problems into the system of ODEs with keeping time derivatives continuous. Then, I solve
the resulted ODEs system using the DASPK solver. This method gives reliable and powerful results.
This can be clearly seen in the graphical comparisons presented in the above-mentioned figures. For
instance, Figs. 1 and 2 illustrate the behavior of the analytical and numerical solutions for t = 5 and
t = 10, respectively. It can be easily observed from these figures that the solutions nearly have the
same behavior. In Fig. 3, the exact and numerical solutions approximately have the same behavior
when t = 20. Fig. 4 presents the time evolution of V(x, y, t) to the traveling wave structures (a) the
analytical and (b) the numerical solutions with parameter values A2 = 1.2, β = −0.5, α = 2.70,
and γ = −2.20. Fig. 4b also illustrates the performance of the used approaches. Moreover, Fig. 5
shows acceptable performance for the used numerical technique when a massive number of meshes
is used. For example, when we use N = 120, the error is high. Nevertheless, the numerical solutions
approximately approach the exact solution (blue line) for N = 3000. The stability of the numerical
results is investigated using the Fourier technique. Since |λ| ≤ 1 in Eq. (40), the numerical scheme is
unconditionally stable. Furthermore, the accuracy of the numerical scheme is of O(�t, �x2, �y2).
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Figure 1: Surface plot of V (x, y, t) presenting the analytical (left) and the numerical (right) solutions’
evolution in time t = 5 using N = 3000 with �x = 0.02 and M = 100 with �y = 0.01. The parameter
values are A2 = 1.2, β = −0.5, α = 2.70, and γ = −2.20

Figure 2: Surface plot of V (x, y, t) presenting the analytical (left) and the numerical (right) solutions’
evolution in time t = 10 using N = 3000 with �x = 0.02 and M = 100 with �y = 0.01. The parameter
values are A2 = 1.2, β = −0.5, α = 2.70, and γ = −2.20
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Figure 3: Surface plot of V (x, y, t) presenting the analytical (left) and the numerical (right) solutions’
evolution in time t = 20 using N = 3000 with �x = 0.02 and M = 100 with �y = 0.01. The parameter
values are A2 = 1.2, β = −0.5, α = 2.70, and γ = −2.20

Figure 4: Time evolution of V (x, y, t) to the traveling wave structures (a) the analytical and (b) the
numerical solutions with parameter values A2 = 1.2, β = −0.5, α = 2.70, and γ = −2.20. (b) also
illustrates the performance of the used approaches

Table 1 illustrates L2 errors and the CPU times taken to reach t = 20. The error decreases for
large N but the method takes more time to give a small error. We begin with N = 120, �x = 0.50 and
�y = 0.01. The L2 error stands at 5.37×10−4 during 0.74 min. When we use N = 3000 with �x = 0.02
and �y = 0.01, the L2 error dramatically decays and stands at 1.073 × 10−6 during 20.63 min. Fig. 6
shows the decay in the L2 error as N increases.
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Figure 5: Presents a comparison of the numerical results of Eq. (31) at t = 20 for increasing N of the
spatial variable x. The solid blue line shows the exact solution Eq. (12). The parameter values are
A2 = 1.2, β = −0.5, α = 2.70, and γ = −2.20. The insets present zoomed-in wave characteristics

Table 1: L2 errors and CPU times taken to arrive at t = 20

N L2 error CPU

120(�x = 0.50, �y = 0.01) 5.37 × 10−4 0.74 m
600(�x = 0.10, �y = 0.01) 2.60 × 10−5 4.21 m
1200(�x = 0.05, �y = 0.01) 1.420 × 10−6 8.26 m
3000(�x = 0.02, �y = 0.01) 1.073 × 10−6 20.63 m

Figure 6: Illustrating L2 errors presenting in Table 1

10 Conclusion

We have favorably implemented an accurate finite difference method on a uniform mesh and
the generalized exponential rational function method for the two-dimensional Riemann problems.
The main advantage of the results is to show the traveling wave structures and prove their accuracy
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using numerical methods. By comparing the exact solutions using the generalized exponential rational
function method with those from the numerical scheme, it was said that the numerical results are
almost identical to the analytical results. It is well known that the numerical scheme is stable and allows
a meaningful reduction in memory requirements. Using a fine mesh in both spatial variables x and y
permits us to resolve the wave-like structures. We can conclude that the used methods can be efficiently
applied to more nonlinear evolution models to construct their exact and numerical solutions.
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