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ABSTRACT

To provide stable and accurate position information of control points in a complex coastal environment, an adaptive
iterated extended Kalman filter (AIEKF) for fixed-point positioning integrating global navigation satellite system,
inertial navigation system, and ultra wide band (UWB) is proposed. In this method, the switched global navigation
satellite system (GNSS) and UWB measurement are used as the measurement of the proposed filter. For the data
fusion filter, the expectation-maximization (EM) based IEKF is used as the forward filter, then, the Rauch-Tung-
Striebel smoother for IEKF filter’s result smoothing. Tests illustrate that the proposed AIEKF is able to provide an
accurate estimation.
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1 Introduction

During the construction phase of the construction project, various measurements must be carried
out, such as the measurement of known length, the measurement of known angle, the measurement of
the plane position of building detail points, etc. The premise of these measurements is that the control
points of the construction site must be accurately measured [1–3]. Therefore, the accurate measurement
of control points becomes the basis for completing the project construction with high quality.

To further improve position information accuracy, many works have been done, which mainly
include two aspects: data fusion model and data fusion filtering algorithm [4]. In the data fusion
model, in order to overcome the shortcoming of the global navigation satellite system (GNSS), the
inertial navigation system (INS) has been used to be fused with the solution of the GNSS. And the
most widely used example is the loosely-integrated localization model. For example, the GNSS/INS
loosely processing strategy has been proposed in [5]. In [6], the loosely-integrated model is investigated,
and then used to the indoor pedestrian tracking. In this model, the most obvious advantage of this
model is that it is easy to achieve [7,8]. It should be pointed out that the loosely integrated localization
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scheme is hard to avoid introducing the positioning error of the combined subsystem [9,10]. In order to
overcome this problem, the tightly integrated localization scheme has been proposed [10]. For example,
in [11], the scheme for coupling foot-mounted inertial measurement unit (IMU) and radio frequency
identification (RFID) measurements. To the data fusion filter, the Kalman filter (KF) has been widely
used in this field [12–15]. It should be emphasized that the KF is suitable for the linear model. To deal
with the nonlinear problem, some attempts based on the extended KF (EKF) have been proposed
[16]. However, although the EKF is able to face nonlinear system, the truncation error caused by the
first-order Taylor expansion will still affect the final filtering accuracy.

To continuously improve the localization accuracy, an adaptive iterated EKF (AIEKF) for fixed-
point positioning integrating GNSS, INS and ultra wide band (UWB) is proposed. In our method, the
switched GNSS and UWB measurement is used as the measurement of the proposed filter. For data
fusion, the expectation-maximization (EM) based IEKF is used as the forward filter; Then, the Rauch-
Tung-Striebel smoother is used for the IEKF filter’s results smoothing. Tests illustrate the effectiveness
of the proposed AIEKF.

The contribution of this paper mainly includes the following two parts:

• An improved localization model is proposed to fuse the INS-based and the switched GNSS-
based and UWB-based distance tightly. In this model, when the GNSS data is available, the INS-
based and GNSS-based distances are used by the data fusion filter, which is able to provide the
fixed-point position. When the GNSS is unavailable, the INS-based and UWB-based distances
are employed to fuse the fixed-point position, which is used to compensate for the outage of
the GNSS.

• An AIEKF algorithm is designed with a forward filter of expectation-maximization (EM) based
IEKF and a backward smoother of R-T-S. To this method, the IEKF method is used to reduce
the truncation error caused by nonlinear systems. Meanwhile, the EM method is employed
by the IEKF to estimate the noise statistics. Moreover, the threshold is used to improve the
adaptability of the algorithm. Finally, the R-T-S smoothing method is used to smooth the
output of the IEKF filter, which can improve the localization accuracy.

2 The Integrated Positioning Scheme

This section introduces the positioning scheme integrating GNSS/INS/UWB (G-I-U) firstly.
Secondly, the state equation and measurement equation based on the integrated scheme will be
designed.

2.1 The Improved Positioning Scheme for Fusing the INS, UWB, and GNSS Measurement Tightly
The structure of the G-I-U-integrated positioning scheme is shown in Fig. 1. In this scheme,

the GNSS, INS, and UWB work in parallel. The GNSS estimates the distances dG
1,2,...,g between the

control point and the satellite. Here, the g means the number of the satellite. Meanwhile, the UWB
estimates the distances dU

1,2,...,q between the control point and the UWB reference node (RN). The INS
is used to provide the INS-derived position PoI . All the measurement mentioned above are input to
the proposed improved AIEKF, which will be investigated in following section. Finally, the improved
AIEKF outputs the position Po.
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Figure 1: The improved positioning scheme for fusing the INS, UWB, and GNSS measurement tightly

2.2 The State Equation and Measurement Equation for the Proposed Improved Filter
In this subsection, the state equation and measurement equation for the proposed improved filter

will be designed. The stated equation of the proposed improved filter which will be introduced in the
next section is listed as Eq. (1).⎡
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where (δPxt, δPyt) means the INS’s position error in directions east (E) and north (N) at time t;
(δVxt, δVyt) means the INS’s velcity error in E and N directions at time t; �T means the sample
time; and wt ∼ (0, Q) means noise in system.
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where vG
t ∼ (0, R) means the measurement noise; similar to Eq. (2), when the UWB data is available,

we can get the following equation:
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when the UWB data is available can be written as:⎡
⎢⎢⎢⎢⎣

(
dI

2

)2 − (
dU

1

)2

(
dI

2

)2 − (
dU

2

)2

...(
dI

g

)2 − (
dU

g

)2

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
yU

t

=

⎡
⎢⎢⎢⎣

hU
1

(
X−

t

)
hU

2

(
X−

t

)
...
hU

q

(
X−

t

)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
hU(X−

t )

+ vU
t , (5)

where vU
t ∼ (0, R) means the measurement noise.

3 The Improved AIEKF with Switch Measurement

Based on the models (1)(3)(5), the improved AIEKF with switch measurement will be designed
in this section. The iterated extended Kalman filter (IEKF) with switch measurement is listed in the
Algorithm 1. In this method, we employ the switch measurement. When the GNSS data is available, we
employ the GNSS data as the measurement. When the GNSS data is unavailable, we employ the UWB
data as the measurement. Moreover, it should be noted that the IEKF performance in the Algorithm
1 depends on the accuracy of the noise statistics. Thus, we should improve the noise statistics accuracy.
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For more accurate noise statistics, we improve the Algorithm 1, and the improved IEKF is listed in
the Algorithm 1 based on the models (1)(3)(5) is in the 2nd Algorithm. The 2nd Algorithm shows that
the improved algorithm employs the adaptive updating of noise statistics (lines 18–19), which is used
to provide the noise statistics adaptively. Moreover, in order to achieve adaptive iteration, we employ
the Mahalanobis distance [17] (line 17), which is listed in Eq. (7). Finally, the localization accuracy is
improved by employing the R-T-S method (lines 27–32). The structure of the improved IEKF based
on the models (1)(3)(5) is shown in Fig. 2.
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Algorithm 1: The IEKF based on the models (1)(3)(5)
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Figure 2: The structure of the improved IEKF based on the models (1)(3)(5)

4 Test

This section verifies the proposed improved AIEKF performance. First, the experimental config-
uration is introduced. Second, the localization error is compared.

4.1 Setting of the Test
In this work, one test has been done in the University of Jinan, China. In the test, we employ the

GPS to provide the GNSS’s solution, meanwhile, the UWB is used to provide the UWB’s solution.
The structure of experimental platform is shown in Fig. 3. In this work, we employ one GPS receiver,
one UWB localization system (includes blind node (BN) and reference node (RN)), and one inertial
measurement unit (IMU). We fix the GPS receiver and the UWB BN on the known coordinate. To the
filter, we set the threshold = 0.005 and N = 5 in Algorithm 2, we set the parameter of the proposed
improved AIEKF as follows:
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Algorithm 2: The improved IEKF based on the models (1)(3)(5)
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Figure 3: The structure of experimental platform

4.2 Localization Error
In this subsection, the localization error of the proposed method will be compared with the EKF

and the traditional IEKF to verify the performance. Figs. 4 and 5 show the position estimated by the
GNSS + UWB, EKF, the traditional IEKF, and the proposed improved AIEKF (E and N directions).
It should be pointed out that we employ the fixed-point testing in this paper, thus the reference position
used in this work are (0, 0). Moreover, in the test, we employ the GNSS + UWB to represent the
original data of the sensor. From the figures, one can infer that all the methods mentioned above can
provide the positioning accuracy, the EKF and the traditional IEKF perform similarly in directions
E and N. Since in this test, the zero is the reference value in E and N directions, and we can see that
the estimations of the proposed improved AIEKF are close to zero in E and N directions. Thus, we
can conclude that the localization accuracy of the proposed AIEKF has a lower error than the EKF
and the traditional IEKF.
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Figure 4: The east position given by the GNSS + UWB vs. EKF vs. the traditional IEKF, and the
proposed improved AIEKF

Moreover, to further prove the accuracy of our improved AIEKF, the absolute position errors
in E and N directions of the EKF, the traditional IEKF, and the proposed improved AIEKF are
shown in Figs. 6 and 7. Those results shows that our improved AIEKF has the smallest localization
error when compared with the EKF and the traditional IEKF. The cumulative distribution function
(CDF) of the position errors of the EKF, the traditional IEKF, and the proposed improved AIEKF are
shown in Fig. 8. Those results shows that the position error of the proposed improved AIEKF is about
0.05 m, and those value of the EKF and the traditional IEKF are 0.08 and the 0.06 m respectively. The
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root mean square errors (RMSEs) of the position produced by the EKF, the traditional IEKF, and
the proposed improved AIEKF are shown in Table 1. As it shows, the RMSEs of the position given
by the EKF in E and N directions are 0.0299 and 0.0392 m, respectively. And those values of the
proposed method are 0.0194 and 0.0240 m, respectively, which are improved by about 35.12% and
38.78%, respectively when compared with the EKF. And it is easy to see that there is a significant
error in the north direction for traditional IEKF. Therefore, it can be concluded that our new method
is effective.
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Figure 5: The north position given by the GNSS + UWB vs. EKF vs. the traditional IEKF, and the
proposed improved AIEKF
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Figure 6: The absolute direction E position error given by the EKF vs. traditional IEKF vs. the
proposed improved AIEKF



1770 CMES, 2023, vol.134, no.3

0 20 40 60 80 100 120 140 160 180 200

Time index

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N
o

rt
h

 p
o

si
ti

o
n

 e
rr

o
r 

[m
]

Improved IEKF
EKF
IEKF

Figure 7: The absolute direction N position error given by the EKF vs. the traditional IEKF vs. the
proposed improved AIEKF
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Figure 8: The CDF of the position errors of the EKF vs. the traditional IEKF vs. the proposed
improved AIEKF

Table 1: RMSEs produced by the EKF, the traditional IEKF, and the proposed improved AIEKF

Method RMSE (m)

East Improvement North Improvement

EKF 0.0299 - 0.0392 -
IEKF 0.0286 4.35% 0.0546 −39.29%
The proposed improved AIEKF 0.0194 35.12% 0.0240 38.78%
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4.3 The Number of Iterations of the Proposed Improved AIEKF Algorithm
In this subsection, we will investigate the number of iterations of the proposed algorithm. The

number of iterations of the proposed improved AIEKF is shown in Fig. 9. From the figure, we can see
that the number of iterations changes from 1 to 5, which shows that the proposed method can adjust
iteration number adaptively.
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Figure 9: The number of iterations of the proposed improved AIEKF

5 Conclusion

In this work, an improved localization scheme is proposed to fuse the INS-based and the switched
GNSS-based and UWB-based distance tightly. Moreover, an AIEKF algorithm is designed with a
forward filter of expectation-maximization (EM) based IEKF and a backward smoother of R-T-S.
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