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ABSTRACT

This paper presents an electrical impedance tomography (EIT) method using a partial-differential-equation-
constrained optimization approach. The forward problem in the inversion framework is described by a complete
electrode model (CEM), which seeks the electric potential within the domain and at surface electrodes considering
the contact impedance between them. The finite element solution of the electric potential has been validated using
a commercial code. The inverse medium problem for reconstructing the unknown electrical conductivity profile
is formulated as an optimization problem constrained by the CEM. The method seeks the optimal solution of
the domain’s electrical conductivity to minimize a Lagrangian functional consisting of a least-squares objective
functional and a regularization term. Enforcing the stationarity of the Lagrangian leads to state, adjoint, and control
problems, which constitute the Karush-Kuhn-Tucker (KKT) first-order optimality conditions. Subsequently, the
electrical conductivity profile of the domain is iteratively updated by solving the KKT conditions in the reduced
space of the control variable. Numerical results show that the relative error of the measured and calculated
electric potentials after the inversion is less than 1%, demonstrating the successful reconstruction of heterogeneous
electrical conductivity profiles using the proposed EIT method. This method thus represents an application
framework for nondestructive evaluation of structures and geotechnical site characterization.

KEYWORDS
Electrical impedance tomography; complete electrode model; inverse medium problem; Karush-Kuhn-Tucker
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1 Introduction

Electrical impedance tomography (EIT) is a nondestructive evaluation method that infers the
electrical conductivity, permittivity, or impedance of structures using the surficial measurement of
electrical responses due to currents. The method seeks to construct a tomographic image of an
object by estimating the spatial distribution of its impedance or electrical conductivity. EIT has been
recognized as a highly applicable technique in medical imaging, industrial process monitoring, and
near-surface site characterization due to its ease of field experimentation, economic feasibility, and
superior ability to penetrate structures. When a structure experiences electric potential difference,
current flows from the point of high potential to the point of low potential. In other words, when
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the electric current is input to a structure, electric potential distribution is formed within the structure
and on its boundary. If a structure is heterogeneous, the path of electric current is different from the
homogeneous case. Therefore, the electric potential distribution of a structure depends on its material
heterogeneity [1,2].

The problem of reconstructing the material properties of a structure using the measured electrical
response from the surface can be defined as an inverse medium problem. Many mathematical
algorithms and numerical strategies have been proposed to improve the solution to this problem.
For example, mathematical and statistical regularization methods have been proposed to relieve the
ill-posedness of the inverse problem and improve the solution convergence [3–6]. Representative
methods for solving the nonlinear EIT problem include the back-projection method [7], one-step
Newton method [8], D-bar method [9], and block method [10]. Recent studies have also investigated
combining the EIT technique with neural networks to improve the accuracy of the tomographic
image reconstruction of structures [11]. Such developments have been primarily applied to medical
imaging for cancer detection and brain activity imaging. In civil engineering, research on the feasibility
of applying the EIT to structural condition assessment or site characterization has been increasing
recently. Recent applications of the EIT to civil structures include crack detection in pipes buried
in the ground [12], ground saturation monitoring, and damage detection in carbon fiber-reinforced
polymer (CFRP) materials [13]. To successfully implement the EIT, it is essential to have an efficient
and accurate forward solver. In civil engineering applications, however, ensuring the accuracy of the
forward solution remains a challenge because of the wide range of material properties, scales, and
contact impedance between electrodes and structures.

For improving the previous development of the EIT for civil structures, this study proposes a
nonlinear inversion method using a complete electrode model (CEM), targeting the reconstruction
of the electrical conductivity profile of heterogeneous domains. The CEM comprises the Laplace
equation for electric potential and the boundary conditions that express the current input to
the structure via surface electrodes [14–16]. Because the CEM enables the realistic modeling of
the interface between the structure and electrodes, accurate solutions of the electric potential in
the structural medium and the electrodes are expected. The forward solution generated by the
CEM is used within the nonlinear inversion framework for reconstructing the electrical conductivity
profile of structures. Specifically, the inverse problem is resolved using a partial differential equation
(PDE)-constrained optimization approach. This approach seeks the optimal solution of the medium’s
electrical conductivity to minimize a Lagrangian, which comprises a least-squares objective functional
augmented by the weak imposition of the governing PDE and boundary conditions from the CEM.
Enforcing the stationarity of the Lagrangian leads to state, adjoint, and control problems, which
constitute the Karush-Kuhn-Tucker (KKT) optimality conditions. They are the first-order optimality
conditions resulting from the first variation of the Lagrangian with respect to state, adjoint, and
control variables. The electrical conductivity profile of the domain is then iteratively updated by
solving the KKT conditions in the reduced space of the control variable. A conjugate gradient method
with an inexact line search is used for the iterative solution of the electrical conductivity. To the best
of the authors’ knowledge, the EIT method based on the PDE-constrained optimization using the
CEM and KKT conditions has been presented for the first time. The proposed inverse EIT problem
deals with the Laplace equation, Robin, and Neumann boundary conditions in the PDE-constrained
optimization. There are similar EIT approaches developed so far, but they mostly deal with Neumann
or Dirichlet boundary conditions to solve the forward problem [17–19]. Some recent studies have
included the Robin boundary condition to reflect the contact impedance between the domain and
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electrode boundaries, but their inverse formulation and optimization schemes are different from the
present study [20,21].

The remainder of this paper is organized as follows: In Section 2, the forward problem described
by the CEM is presented. In Section 3, the formulation of the electrostatic inverse medium problem is
presented using the Lagrangian functional and the first-order optimality conditions. In Section 4, the
inversion process used to iteratively update the electrical conductivity profile in the reduced space
is described. Section 5 discusses numerical examples for a series of cases in which homogeneous
and heterogeneous electrical conductivity profiles are reconstructed. Finally, Section 6 presents the
conclusions of the study. Finite differences for a non-unifrom grid are well shown in Figs. A1–A3.

2 Forward Problem
2.1 Problem Statement Using the Complete Electrode Model

To solve the inverse medium problem using measured electric potential values, it is first necessary
to resolve the electrostatic forward problem for calculating the electric potential due to the current
input. This study uses the CEM as a mathematical model for the forward problem. The CEM accounts
for the current loss that occurs when the current flows to a low impedance material through an
electrode and the voltage drops due to the contact impedance between the structural surface and
electrode [14,22]. The current loss and voltage drop influence the measured electric potential values
detected by the electrodes. As the CEM considers both the contact impedance and current loss at the
electrodes, the error between the calculated electric potential and the experimentally derived electric
potential is generally smaller than that computed using other models. Fig. 1 schematically shows a
circular structure with electrodes on its surface. Solving the forward problem using the CEM reveals
the electric potential inside the structure and that at the electrodes due to the current input through
the electrodes.

Figure 1: Schematic of a circular structure and surface electrodes

The forward problem described by the CEM can be formulated as the following boundary value
problem:

∇ · (σ∇u) = 0, x ∈ �, (1)

u + zlσ
∂u
∂n

= Ul, l = 1, 2, . . . , L, x ∈ �El
, (2a)
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∫
�El

σ
∂u
∂n

d� = Il, l = 1, 2, . . . , L, x ∈ �El
, (2b)

σ
∂u
∂n

= 0, x ∈ ∂�\ ∪L
l=1 �El

, (2c)

where Ω denotes the structural domain, u is the scalar electric potential, σ is the electrical conductivity,
n is the outward unit normal on the boundary ∂Ω, El denotes the lth electrode, ΓEl

is the lth electrode
boundary, zl is the contact impedance of El, Il is the injected current at El, Ul is the electric potential
at El, and L is the number of electrodes. To ensure the existence and uniqueness of solutions, we add

L∑
l=1

Il = 0, (3)

to the model. To determine the reference point for the electric potential,
L∑

l=1

Ul = 0 (4)

must be satisfied. We multiply Eq. (1) by a test function v(x) and integrate it over the domain Ω, which
results in∫

∂Ω

vσ
∂u
∂n

d∂Ω −
∫

Ω

∇v · (σ∇u) dΩ = 0. (5)

Using the boundary conditions (2a) and (2c), Eq. (5) can be rewritten as
L∑

l=1

1
zl

∫
ΓEl

v(Ul − u)dΓ −
∫

Ω

∇v · (σ∇u) dΩ = 0. (6)

Next, we integrate Eq. (2a) over ΓEl
, which results in∫

ΓEl

u dΓ =
∫

ΓEl

(
Ul − zlσ

∂u
∂n

)
dΓ = Ul |el| − zlIl. (7)

Eq. (7) is multiplied by a test value Vl, divided by zl, and summed for all electrodes, which yields
L∑

l=1

1
zl

Vl

(∫
ΓEl

u dΓ − Ul |el| + zlIl

)
= 0. (8)

Adding Eqs. (6) and (8) results in

L∑
l=1

1
zl

[∫
�El

v(Ul − u)d� + Vl

(∫
�El

(u − Ul) d� + zlIl

)]
−

∫
�

σ∇v · ∇u d� = 0,

→
L∑

l=1

1
zl

[∫
�El

v(Ul − u)d� + Vl

(∫
�El

(u − Ul) d�

)]
+

L∑
l=1

IlVl −
∫

�

σ∇v · ∇u d� = 0,

→
∫

�

σ∇u · ∇vd� +
L∑

l=1

1
zl

∫
�El

(u − Ul) (v − Vl) d� =
L∑

l=1

IlVl. (9)
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Eq. (9) is the weak form of the forward problem. The electric potential u in the domain and the
potential U at the electrodes are approximated using Legendre basis functions φi(x) and basis vectors
nj, respectively:

u(x) ∼= uh (x) =
N∑

j=1

αjφj (x) , (10)

U ∼= Uh =
L−1∑
j=1

βjnj, (11)

where N is the number of nodes in the finite element mesh. The coefficient αj is the nodal value of
u(x), βj is the unknown parameter for linearly combining vectors nj, and Uh is a vector consisting of
the electric potential at each electrode. The basis vectors nj ∈ RL×1 are defined as

n1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
−1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, n2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0

−1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, n3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0

−1
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, . . . , nL−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
...

−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12)

The choice of nj ensures that Eq. (4) is satisfied. The test function v and the value of Vl at the
electrode can be similarly approximated as

vh (x) =
N∑

i=1

viφi (x) , (13)

Vh =
L−1∑
i=1

Vini, (14)

where Vh is a vector consisting of the value of V at each electrode. By substituting Eqs. (10), (11), (13),
and (14) into the weak form represented by Eq. (9), a linear system of equations for unknown vector
u = [

αTβ
T
]T

can be obtained

Ku = F;
[

B C
CT D

] [
α

β

]
=

[
0
I

]
, (15)

where the matrices and vectors are written as

Bij =
∫

�

σ∇φi · ∇φjd� +
L∑

l=1

1
zl

∫
�El

φiφjd� (1 ≤ i ≤ N) (1 ≤ j ≤ N) , (16a)

Cij = −
(

1
z1

∫
�E1

φid� − 1
zj+1

∫
�Ej+1

φid�

)
(1 ≤ i ≤ N) (1 ≤ j ≤ L − 1) , (16b)

CT
ij = Cji = −

(
1
z1

∫
�E1

φjd� − 1
zi+1

∫
�Ei+1

φjd�

)
(1 ≤ i ≤ L − 1) (1 ≤ j ≤ N) , (16c)
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Dij =

⎧⎪⎪⎨
⎪⎪⎩

|e1|
z1

, i �= j

|e1|
z1

−
∣∣ej+1

∣∣
zj+1

, i = j
(1 ≤ i ≤ L − 1) (1 ≤ j ≤ L − 1) , (16d)

0 ∈ RN×1, I =

⎡
⎢⎢⎢⎢⎣

I1 − I2

I1 − I3

I1 − I4

...
I1 − IL

⎤
⎥⎥⎥⎥⎦ ∈ R(L−1)×1, (17)

α =

⎡
⎢⎢⎢⎢⎣

α1

α2

α3

...
αN

⎤
⎥⎥⎥⎥⎦ ∈ RN×1, β =

⎡
⎢⎢⎢⎢⎣

β1

β2

β3

...
βL−1

⎤
⎥⎥⎥⎥⎦ ∈ R(L−1)×1. (18)

In Eq. (16d), |el| is the length of the lth electrode. Solving Eq. (15) yields nodal values of the electric
potential in the domain as well as the values of β. The potentials Uh

l at the electrodes can be obtained
as follows:

Uh
l =

⎡
⎢⎢⎢⎢⎢⎢⎣

Uh
1

Uh
2

Uh
3

...

Uh
L

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∑L−1

l=1 βl

−β1

−β2

...

−βL−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

2.2 Validation of Forward Solutions
For validation, the forward solutions are compared to the solutions obtained using Technology

Computer-Aided Design (TCAD) software. TCAD is used for modeling electronic design processes
and the behavior of electrical devices based on fundamental physics [23]. Fig. 2 shows the config-
uration of a circular domain with a radius of 10 cm. The electrical conductivity of the domain is
1.56 × 10−1 S/cm. A total of 16 electrodes is arranged to cover 50% of the boundary; a current of 0.78
A is input into the fifth electrode, and it flows out through the 13th electrode. The contact impedance
of the electrodes is 9.8 × 10−7 Ω · cm2. In this case, the potential of the fifth electrode is 10 V. Fig. 3
shows the distribution of the calculated electric potential within the domain due to the current input.
The numerical solution calculated using the CEM is very close to the result obtained using the TCAD
software.



CMES, 2023, vol.134, no.3 1713

Figure 2: Homogeneous circular domain and finite element mesh for validating the forward solution

Figure 3: Calculated electric potential, u(x), in the homogeneous circular domain

The error of the forward solution relative to the TCAD result can be calculated using the following
equation:

Error (%) = |VCEM − VTCAD|
VTCAD

× 100. (20)

Table 1 shows the electric potential values at each electrode and the corresponding relative errors.
The maximum error is 3.37%, which demonstrates the accuracy of the forward solution. Fig. 4 depicts
the electric potential, Ul, calculated at each electrode.
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Table 1: Electric potential values at each electrode (calculated using the CEM and TCAD) and the
corresponding relative errors

Position CEM (V) TCAD (V) Error (%)

1 10.00 10.00 0.00
2 6.93 7.03 1.42
3 6.05 6.07 0.33
4 5.48 5.48 0.00
5 5.00 5.00 0.00
6 4.52 4.52 0.00
7 3.95 3.93 0.51
8 3.07 2.97 3.37
9 0.00 0.00 0.00
10 3.07 2.97 3.37
11 3.95 3.93 0.51
12 4.52 4.52 0.00
13 5.00 5.00 0.00
14 5.48 5.48 0.00
15 6.05 6.07 0.33
16 6.93 7.03 1.42

Figure 4: Graphical representation of the electrical potential at each electrode

2.3 Mesh-Type Dependency of the Forward Solution
For investigating the dependency of the forward solutions on the finite element mesh, two mesh

types are explored: a radial mesh composed of eight-node quadrilateral elements and a mixed mesh
with a square section inside. Fig. 5 illustrates these two types of meshes.
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Figure 5: Two finite element mesh types for forward and inverse analyses

Fig. 6 shows a circular domain with a radius of 15 cm and electrodes attached to its boundary.
The domain is assumed to be homogeneous, with an electrical conductivity of 1 × 10−2 S/cm, which
is typical of concrete materials. A total of 32 electrodes is arranged on the boundary and are spaced
evenly to cover 50% of the boundary (as for the domain described in Section 2.2). A current with a
cosine pattern along the perimeter is input to each electrode. The magnitude of the current at each
electrode is Il = cos(2π l/L), where L is the total number of electrodes, and l is the index for the
electrode number. The contact impedance of the electrodes is 0.22 Ω · cm2. Fig. 7 presents the forward
solutions calculated using the two meshes displayed in Fig. 5. Fig. 7c shows the calculated electric
potential values at the electrodes on the boundary. The two results show that the forward solution
changes minimally with the mesh type.

Figure 6: Homogeneous circular domain with 32 electrodes on the boundary
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Figure 7: Forward solutions calculated using the two meshes

3 Inverse Problem
3.1 PDE-Constrained Optimization

The problem of reconstructing the electrical conductivity profile of a structure using the electric
potential measured at surface electrodes can be formulated as the following PDE-constrained opti-
mization problem:

min
σ(x)

J: = 1
2

L∑
l=1

∫
ΓEl

(
Ul − Um

l

)2
dΓ + γ (σ ) . (21)

The objective functional J consists of a misfit functional in a least-squares sense and a regular-
ization term γ (σ ). The misfit functional is expressed as the sum of the squared differences between
the calculated electric potential Ul and the measured electric potential Um

l at electrode El. This
optimization problem is constrained by the governing Eq. (1) and boundary conditions (2)–(4) of the
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forward problem. To relieve the ill-posedness of the inverse problem, the regularization term γ (σ ) is
included in the objective functional J. In this study, the Tikhonov (TN) regularization scheme is used;
thus, the regularization term can be written as

γ(σ ) = 1
2

Rσ

∫
Ω

∇σ · ∇σdΩ, (22)

where Rσ is a regularization factor that controls the penalty to the gradient of the electrical conductivity
σ (x). Although TN regularization cannot accurately capture sharply varying material profiles, it still
assists the inversion process in narrowing the feasibility space of solutions and improving the solution
convergence.

3.2 First-Order Optimality Conditions
The PDE-constrained optimization problem can be converted to an unconstrained optimization

problem using a Lagrange multiplier method. Specifically, the objective functional J can be augmented
by Eqs. (1) and (2b) to construct the Lagrangian functional L,

L (u, Ul, w, Wl, σ) = 1
2

L∑
l=1

∫
ΓEl

(
Ul − Um

l

)2
dΓ+γ (σ)+

∫
Ω

w∇ ·(σ∇u) dΩ+
L∑

l=1

∫
ΓEl

Wl

(
σ

∂u
∂n

− Il

)
dΓ,

(23)

where w and Wl are Lagrange multipliers applied to the left-hand terms of the governing equation and
boundary conditions, respectively. The electrical conductivity σ(x) that minimizes the Lagrangian is
the solution to the inverse problem. For the optimal solutions, first-order optimality conditions are
introduced, which enforce the first variation of the Lagrangian with respect to state variables u and
Ul, adjoint variables w and Wl, and the control variable σ to vanish.

3.2.1 First Optimality Condition: State Problem

At the optimum of the Lagrangian, its first variation with respect to the adjoint variables w and
Wl should vanish. Introducing the stationarity conditions δwL = 0, δWl

L = 0, and l = 1, 2, . . . L results
in the state problem, which is identical to the forward problem presented in Eqs. (1) and (2).

3.2.2 Second Optimality Condition: Adjoint Problem

At the optimum of the Lagrangian, its first variation with respect to the state variables u and Ul

should vanish as well. Applying the stationarity requirements, δuL = 0, δUl
L = 0, and l = 1, 2, . . . L,

to the Lagrangian yields

δuL +
L∑

l=1

δUl
L =

L∑
l=1

∫
Γl

δUl

(
Ul − Um

l − σ
∂w
∂n

)
dΓ +

∫
Ω

δu∇ · (σ∇w) dΩ −
∫

Γf

δuσ
∂w
∂n

dΓf

+
L∑

l=1

∫
Γl

∂δu
∂n

σ

(
w + zlσ

∂w
∂n

+ Wl

)
dΓ = 0. (24)

Because δu and δUl (l = 1, 2, . . . L) are arbitrary, Eq. (24) results in the following adjoint problem:

∇ · (σ∇w) = 0, x ∈ �, (25)
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w + zlσ
∂w
∂n

= −Wl, l = 1, 2, . . . , L, x ∈ �El
, (26a)

σ
∂w
∂n

= Ul − Um
l , l = 1, 2, . . . , L, x ∈ �El

, (26b)

σ
∂w
∂n

= 0. x ∈ ∂�\ ∪L
l=1 �El

, (26c)

Eq. (25) is the governing equation for adjoint variable w(x), and Eqs. (26a)–(26c) are boundary
conditions for w(x) and Wl. Eq. (26b) indicates the source of the adjoint problem, which depends on
the potential misfit at the electrodes. The adjoint problem has the same differential operators as the
state problem does.

3.2.3 Third Optimality Condition: Control Problem

Finally, the first variation of the Lagrangian with respect to the control variable σ should vanish
at the optimum. Introducing the stationarity condition (δσL = 0) to the Lagrangian results in

δσL = Rσ

∫
Ω

δσ (−RσΔσ − ∇w · ∇u) dΩ +
L∑

l=1

∫
Γl

δσ

(
Rσ

∂σ

∂n
+ w

∂u
∂n

+ Wl

∂u
∂n

)
dΓ

+
∫

Γf

δσ

(
Rσ

∂σ

∂n
+ w

∂u
∂n

)
dΓ = 0. (27)

Because δσ is arbitary, Eq. (27) yields the following control problem:

− Rσ�σ − ∇w · ∇u = 0, x ∈ �, (28)

Rσ

∂σ

∂n
+ w

∂u
∂n

+ Wl

∂u
∂n

= 0, l = 1, 2, . . . , L, x ∈ �El
, (29a)

Rσ

∂σ

∂n
+ w

∂u
∂n

= 0. x ∈ ∂�\ ∪L
l=1 �El

(29b)

The control problem is a boundary value problem for the electrical conductivity σ(x), with
Eq. (28) being the governing equation and Eqs. (29a) and (29b) being the boundary conditions. The
solution σ(x) can be calculated once the state and adjoint solutions u, w, and Wl are obtained.
The state, adjoint, and control problems constitute the KKT conditions for the PDE-constrained
optimization problem.

4 Inversion Setup and the Simulation Process
4.1 Finite Element Formulation of the Adjoint Problem

The adjoint problem described in Section 3.2.2 can be solved using the Galerkin finite element
method. Specifically, Eq. (25) is multiplied by a test function v(x) and integrated over the entire domain
Ω. Upon integrating the resulting equation by parts and using a procedure similar to that represented
by Eqs. (5) to (9), the weak form of the adjoint problem can be derived as∫

Ω

σ∇w · ∇vdΩ +
L∑

l=1

1
zl

∫
ΓEl

(w − Wl) (v − Vl) dΓ =
L∑

l=1

(
Ul − Um

l

)
Vl |el| , (30)
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where Vl is a test value used to derive the weak form of Eq. (26a). The adjoint solutions w and Wl can
be approximated using Legendre basis functions φi (x) and basis vectors nj, respectively, as follows:

w(x) ∼= wh (x) =
N∑

j=1

αadj
j φj (x) , (31)

W ∼= Wh =
L−1∑
j=1

βadj
j nj, (32)

where α
adj
j is the nodal value of w(x), β

adj
j is the unknown parameter for linearly combining vectors nj,

and Wh is a vector consisting of Wl at each electrode. The test functions v and Vl are approximated
using Eqs. (13) and (14).

Substituting Eqs. (13), (14), (31) and (32) into (30) results in the following linear system of
equations:

Kadjuadj = Fadj;
[

Badj Cadj(−Cadj)T
Dadj

] [
αadj

βadj

]
=

[
0

Iadj

]
, (33)

where Kadj, uadj, and Fadj are the stiffness matrix, solution vector, and right-hand side vector of the
adjoint problem, respectively. The superscript “adj” denotes the adjoint problem. The matrices and
vectors in Eq. (33) can be written as

Badj
ij =

∫
�

σ∇φi · ∇φjd� +
L∑

l=1

1
zl

∫
�El

φiφjd�, (1 ≤ i ≤ N) (1 ≤ j ≤ N) (34a)

Cadj
ij = 1

z1

∫
�E1

φid� − 1
zj+1

∫
�Ej+1

φid�, (1 ≤ i ≤ N) (1 ≤ j ≤ L − 1) (34b)

(−Cadj
ij

)T = −Cadj
ji = −

(
1
z1

∫
�E1

φjd� − 1
zi+1

∫
�Ei+1

φjd�

)
, (1 ≤ i ≤ L − 1) (1 ≤ j ≤ N) (34c)

Dadj
ij =

⎧⎪⎪⎨
⎪⎪⎩

−|e1|
z1

, i �= j

−|e1|
z1

−
∣∣ej+1

∣∣
zj+1

, i = j
(1 ≤ i ≤ L − 1) (1 ≤ j ≤ L − 1) , (34d)

0 ∈ RN×1, Iadj =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
U1 − Um

1

) |e1| − (
U2 − Um

2

) |e2|(
U1 − Um

1

) |e1| − (
U3 − Um

3

) |e3|(
U1 − Um

1

) |e1| − (
U4 − Um

4

) |e4|
...(

U1 − Um
1

) |e1| − (
UL − Um

L

) |eL|

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R(L−1)×1, (35)

αadj =

⎡
⎢⎢⎢⎢⎢⎣

α
adj
1

α
adj
2

α
adj
3

...
α

adj
N

⎤
⎥⎥⎥⎥⎥⎦ ∈ RN×1, βadj =

⎡
⎢⎢⎢⎢⎢⎣

β
adj
1

β
adj
2

β
adj
3

...
β

adj
L−1

⎤
⎥⎥⎥⎥⎥⎦ ∈ R(L−1)×1. (36)
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Solving Eq. (33) yields nodal values of adjoint variable w in the domain as well as the values of
βadj. The adjoint variable W h

l at the electrodes can be derived as

Wh
l =

⎡
⎢⎢⎢⎢⎢⎣

W h
1

W h
2

W h
3

...
W h

L

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∑L−1

l=1 β
adj
l

−β
adj
1

−β
adj
2

...
−β

adj
L−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (37)

The submatrices in Eq. (33) are related to those of the state problem through

Badj = B, (38a)

Cadj = −C, (38b)(−Cadj)T = CT, (38c)

Dadj = −D. (38d)

Eq. (38) contributes to reducing the computational cost of constructing the system matrices of the
adjoint problem in the inversion process.

4.2 Material Property Update
By solving the state and adjoint problems, the first and second optimality conditions are satisfied.

Only the true profile of σ(x) exactly satisfies the control problem represented by Eqs. (28) and
(29). Therefore, the material profile σ(x) must be updated to satisfy the third optimality condition.
Updating σ(x) to minimize the Lagrangian L requires a reduced gradient for L. The process of
updating the control variable σ(x) using the state and adjoint solutions can be summarized as follows:

1) Assuming the initial profile of σ(x), solve the forward problem (1) and (2) for state variables
u(x) and Ul.

2) Using the state solution Ul, solve the adjoint problem (25) and (26) for adjoint solutions w(x)

and Wl.

3) Using the state and adjoint solutions, calculate the reduced gradient for L with respect to the
control variable σ(x) as

gσ ≡ ∇σL = −RσΔσ − ∇w · ∇u = −Rσ

(
∂2σ

∂x2
+ ∂2σ

∂y2

)
+

(
−∂w

∂x
∂u
∂x

− ∂w
∂y

∂u
∂y

)
, (39)

where the derivatives are calculated using second-order accurate finite difference methods. When using
a radial mesh, such as that shown in Fig. 5a, the reduced gradient (40) expressed in a cylindrical
coordinate system can be used

gσ = −Rσ

(
∂2σ

∂r2
+ 1

r
∂σ

∂r
+ 1

r2

∂2σ

∂θ 2

)
+

(
−∂w

∂r
∂u
∂r

− 1
r2

∂w
∂θ

∂u
∂θ

)
. (40)

4) Determine the search direction using a line search method and update the electrical conductivity
profile σ (x).
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4.2.1 Conjugate Gradient Method with Inexact Line Search

In this study, the search direction for the optimal solution of the control variable σ is determined
using the Flétcher-Reeves conjugate gradient method with an inexact line search. The continuous form
of the reduced gradient, Eqs. (39) or (40), can be discretized by being evaluated at each nodal point.
Let gk denote the discrete reduced gradient at the kth inversion iteration,

gk = (∇σL)k . (41)

Then, the electrical conductivity vector σ k comprising nodal values of σ is updated via

σ k+1 = σ k + αdk, (42)

where dk is a search direction vector at σk, and α is the step length in the direction of dk. By using the
Flétcher-Reeves method, the search direction vector is calculated as

dk =

⎧⎪⎨
⎪⎩

−gk, k = 0,

−gk + gk · gk

gk−1 · gk−1

dk−1, k ≥ 1.
(43)

The misfit functional is evaluated using the updated electrical conductivity σ k+1 and is compared
to a preset tolerance. If it does not meet the tolerance criterion, the inversion process set k ← k+1 and
proceeded to the next iteration. As is known, the discrete search direction vector dk gradually deviates
from the direction to a local minimum because of the non-optimal step length α and the round-off
error arising from the accumulation of the gk · gk/gk−1 · gk−1 terms in Eq. (43). Therefore, it is necessary
to reset dm+1 to −gm+1 after every mth iteration.

In this study, an inexact line search method is used to determine a step length α that would yield
an adequate reduction in the objective functional J. Specifically, the method requires the step length to
reduce the objective functional sufficiently, as indicated by the Armijo condition (or sufficient decrease
condition); this condition is expressed as

J(σ k + αdk) ≤ J(σ k) + μαgk · dk, (44)

where μ is selected to be a small value, which is μ = 10−10 in this study. To satisfy the Armijo condition,
the backtracking algorithm described in Table 2 can be used. In this procedure, an initial step length α

is set at the beginning. If Eq. (44) is violated during the inversion, the step length is iteratively reduced
by setting α ← ρα. In this study, ρ = 0.5 is used.

Table 2: Backtracking algorithm to determine the step length α

Choose α > 0, α, μ ∈ (0, 1); set α ← α;
repeat α ← ρα;
until J(σ k + αdk) ≤ J(σ k) + μαgk · dk

Terminate with αk = α

4.2.2 Regularization Factor Continuation Scheme

The choice of the regularization factor Rσ in Eqs. (39) or (40) considerably affects the reconstruc-
tion of the electrical conductivity profile. If Rσ is excessively large, it may be difficult to capture a
sharply varying interface in the profile because of the large penalty on the gradient of σ(x). Conversely,
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if Rσ is excessively small, the inversion may suffer from a solution multiplicity problem. To determine
the optimal regularization factor at each inversion iteration, a regularization factor continuation
scheme [24–26] is used in this study. The reduced gradient in Eqs. (39) or (40) can be formally
rewritten as

∇σL = Rσ (∇σ Jr) + ∇σ Jm, (45)

in which

∇σ Jr = −Δσ , (46a)

∇σ Jm = −∇w · ∇u. (46b)

In Eq. (45), Rσ (∇σ Jr) represents the gradient of the regularization functional, and ∇σ Jm denotes the
gradient of the misfit functional. The first term, Rσ (∇σ Jr), penalizes spatial oscillations in the inverted
profile such that an increasing Rσ results in a smoother inverted profile. A balance between these two
terms can be imposed using

Rσ |∇σ Jr| < |∇σ Jm| �⇒ Rσ <
|∇σ Jm|
|∇σ Jr| . (47)

Therefore, Rσ can be calculated at each iteration as

Rσ = ε
|∇σ Jm|
|∇σ Jr| , (0 ≤ ε ≤ 1) , (48)

where the value of the weight factor ε is between 0.5 and 1, as recommended for a reasonable
regularization effect.

5 Numerical Results
5.1 Homogeneous Domains

Consider a circular domain with a radius of 15 cm, as shown in Fig. 8. A total of 32 electrodes
is placed on the boundary and spaced evenly to cover 50% of the boundary. For finite element
implementation, the mixed mesh illustrated in Fig. 5b is used. The contact impedance of the electrodes
is 0.22 Ω · cm2. The initial value of the regularization factor Rσ is 1.0, and the weight factor ε for the
regularization factor continuation scheme is 0.5. As an excitation to the domain, a current with a
cosine pattern, as expressed in Eq. (49), is input to each electrode along the circular perimeter,

Il = cos(2π l/32), l = 1, 2, . . . , 32. (49)

Fig. 9 shows the target, initial guess, and reconstructed electrical conductivity profiles. The target
profile is homogeneous with σtg = 1.0 S/cm, which is typical of graphite materials. The inversion starts
with an initial guess of σini = 0.5 S/cm and reconstructs the target profile accurately at about 700
iterations. Fig. 9d shows the response misfit as a function of the iteration number during the inversion
process. The misfit decreases from 3 × 102 to 1.49 × 10−3, which represents a reduction on the order of
10−5. The response misfit, Fm, as part of the objective functional J in Eq. (21), can be written as

Fm = 1
2

L∑
l=1

∫
ΓEl

(
Ul − Um

l

)2
dΓ. (50)
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Figure 8: Schematic of a circular domain and 32 surface electrodes used for inversion

Figure 9: Numerical inversion for homogeneous target profile
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To investigate the accuracy of the inversion result, the errors in the inverted electrical conductivity
values are calculated at four sampling points, as shown in Fig. 10: A(0,0), B(4,0), C(8,0), and D(12,0).
Table 3 lists the errors at each sampling point. The maximum error is 0.116%, which demonstrates that
the inversion for the homogeneous electrical conductivity profile is highly accurate.

Figure 10: Sampling points for error calculation

Table 3: Errors in the inverted electrical conductivity values at the sampling points (inversion case with
σ tg = 1.0 S/cm and σ ini = 0.5 S/cm)

Point Target σ (S/cm) Reconstructed σ

(S/cm)
Error (%)

A 1.00000 1.00002 0.002
B 1.00000 0.99999 0.001
C 1.00000 1.00026 0.026
D 1.00000 1.00116 0.116

To investigate the effect of the initial guess on the reconstructed profile, four cases of the inversion
with different initial-to-target ratios are considered. Table 4 shows the four cases for the initial guess
σini and target σtg. For Cases 1 and 2, the initial guess is less than the target, whereas for Cases 3 and 4,
it is greater. The electrode arrangement, input current, and contact impedance are the same as those
in the previous example.

Table 4: Four cases of inversion with different initial-to-target ratios

Case Target electrical
conductivity σtg (S/cm)

Assumed electrical
conductivity σini (S/cm)

σini/σtg

1 1.5 0.7 0.47
2 15.0 1.5 0.10
3 1.5 2.3 1.53
4 1.0 10.0 10.00
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Figs. 11–14 display the inversion results for the four electrical conductivity profiles presented in
Table 4. In all four cases, the homogeneous target values are accurately reconstructed. In particular,
as shown in Figs. 12b and 14b, the target values are recovered well even when the target is 10 times
smaller or larger than the initial guess. Figs. 11c, 12c, 13c and 14c show the misfit Fm as a function of
the number of iterations. For each case, the misfit decreases by a factor of at least 10−5. Figs. 11d, 12d,
13d and 14d show the electric potential values at the 32 electrodes calculated using the reconstructed
electrical conductivity profile for each case. The calculated electric potential values nearly coincide
with the measured values, which demonstrates that the target profiles are successfully reconstructed.
The root-mean-square (RMS) error, eRMS, and the relative RMS error, er,RMS, of the electric potential
at the electrodes can be calculated using Eq. (51). In the equations, Ui and Um

i denote the calculated
and measured electric potential values at the ith electrode, respectively, and |Um|2

max is the absolute
maximum of the measured potentials. Table 5 shows the calculated RMS errors for each case of the
inversion process. Even in Case 4 with the largest relative error, the value is less than 0.18%. In all
cases, the inversion results are evaluated to be sufficiently accurate,

eRMS =
√√√√ 1

L

L∑
i=1

(
Ui − Um

i

)2
, er,RMS =

√√√√ 1
L

L∑
i=1

(
Ui − Um

i

)2

|Um|2
max

. (51)

Figure 11: Inversion results for Case 1; σ tg = 1.5 S/cm, σ ini = 0.7 S/cm
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Figure 12: Inversion results for Case 2; σ tg = 15.0 S/cm, σ ini = 1.5 S/cm

Figure 13: (Continued)
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Figure 13: Inversion results for Case 3; σ tg = 1.5 S/cm, σ ini = 2.3 S/cm

Figure 14: Inversion results for Case 4; σ tg = 1.0 S/cm, σ ini = 10.0 S/cm

Table 5: RMS errors of the reconstructed homogeneous profiles

RMS errors Case 1 Case 2 Case 3 Case 4

eRMS (V) 8.11 × 10−6 1.86 × 10−4 7.55 × 10−6 9.25 × 10−3

er,RMS 2.25 × 10−6 3.74 × 10−4 2.10 × 10−6 1.74 × 10−3
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5.2 Heterogeneous Domains
Next, the inversion is performed to reconstruct heterogeneous electrical conductivity profiles.

Fig. 15 shows three cases of the target profile. In Case 5, the target values of the electrical conductivity
are 0.04 S/cm for y ≥ 0 and 0.01 S/cm for y < 0. In Case 6, the target profile is divided into three
layers: 0.04 S/cm for y ≥ 5, 0.025 S/cm for −5 ≤ y < 5, and 0.01 S/cm for y < −5. The target profile
for Case 7 has four quadrants. In quadrants 1 and 3, the target value is 0.04 S/cm. In quadrants 2
and 4, the target value is 0.01 S/cm. The target conductivity values of Case 5 to Case 7 are typical
of air-dried concrete materials in various conditions [27]. Examples of the profile heterogeneity in
Fig. 15 include fiber-reinforced composite sandwich plates and concrete specimens under curing. The
electrode arrangement, current input, contact impedance, initial value of Rσ , and weight factor ε are
the same as in the homogeneous domain cases.

Figure 15: Heterogeneous target electrical conductivity profiles

Figs. 16–18 show the inversion results for the heterogeneous electrical conductivity profiles. The
target conductivity values are reconstructed reasonably well in the three heterogeneous cases. Figs. 16c,
17c, and 18c show the response misfit Fm as a function of the iteration number. Figs. 16d, 17d, and
18d show the electric potential values calculated at the electrodes using the reconstructed electrical
conductivity profile for each case. The calculated electric potential values nearly coincide with the
measured ones, which demonstrates that the reconstructed profiles converged to the targets. For each
case, the initial misfit decreases by a factor on the order of 10−3. Table 6 shows the RMS error and the
relative RMS error of the electrical potentials calculated at the electrodes for each case. The errors were



CMES, 2023, vol.134, no.3 1729

calculated using Eq. (51). They are relatively large compared with those in the homogeneous cases, due
to the difficulty in accurately recovering the sharply varying interfaces between layers. Nevertheless,
the relative RMS error of the heterogeneous cases is less than 0.80%, indicating that the inversion
results are sufficiently accurate.

Figure 16: Inversion results for Case 5

Figure 17: (Continued)
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Figure 17: Inversion results for Case 6

Figure 18: Inversion results for Case 7

Table 6: RMS errors of the reconstructed heterogeneous profiles

RMS errors Case 5 Case 6 Case 7

eRMS (V) 1.96 × 100 2.18 × 100 1.08 × 100

er,RMS 6.13 × 10−3 8.00 × 10−3 3.28 × 10−3
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6 Conclusions

This study was conducted to develop a nonlinear inversion method for electrical impedance
tomography of structures using measured electric potentials at the surface. The proposed method
minimizes the misfit between calculated and measured electric potential values at surface electrodes
within a PDE-constrained optimization framework. The CEM was used as a forward model to
calculate the electric potential due to current input. By solving the KKT conditions of the Lagrangian
iteratively, the inversion procedure could successfully recover heterogeneous electrical conductivity
profiles. The TN regularization scheme was used to mitigate the ill-posedness of the inverse problem
and improve the convergence of the solution. A series of numerical results showed that the homo-
geneous and heterogeneous electrical conductivity profiles were successfully reconstructed using the
inversion method developed in this study.

For all numerical example cases, the misfit was decreased from its original value by a factor on
the order of 10−4 or less. In addition, the electric potential values at the electrodes that were calculated
using the reconstructed conductivity profiles were nearly identical to the measured values. Specifically,
the relative RMS error of the calculated electric potential after inversion was less than 0.18% for the
homogeneous cases. The relative RMS error of the heterogeneous cases was less than 0.80%, indicating
that the inversion results are sufficiently accurate. This study is expected to provide an application
framework for nondestructive evaluation of structures, geotechnical site characterization, etc.
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Appendix A. Finite Differences for a Non-Unifrom Grid

In a uniform finite-element mesh, as shown in Fig. A1, the first-order and second-order derivatives
at node (i, j) can be calculated using the central difference method, as shown in Eqs. (A1)–(A4):
∂ui,j

∂x
= ui+1,j − ui−1,j

2Δx
, (A1)

∂ui,j

∂y
= ui,j+1 − ui,j−1

2Δy
, (A2)

∂2ui,j

∂x2
= ui+1,j − 2ui,j + ui−1,j

Δx2
, (A3)

∂2ui,j

∂y2
= ui,j+1 − 2ui,j + ui,j−1

Δy2
, (A4)

where Δx and Δy are the spacing between node (i, j) and the adjacent nodes in the x and y directions,
respectively. For nodes located at the boundary, derivatives cannot be calculated using the central
difference method, as adjacent nodes exist in only one direction.

Figure A1: Uniform finite element mesh

This study used the backward difference method shown in Eqs. (A5)–(A8) to calculate the
derivative at nodes located at the boundary:
∂ui,j

∂x
= 3ui,j − 4ui−1,j + ui−2,j

2Δx
, (A5)

∂ui,j

∂y
= 3ui,j − 4ui,j−1 + ui,j−2

2Δy
, (A6)

∂2ui,j

∂x2
= 2ui,j − 5ui−1,j + 4ui−2,j − ui−3,j

Δx2
, (A7)

∂2ui,j

∂y2
= 2ui,j − 5ui,j−1 + 4ui,j−2 − ui,j−3

Δy2
. (A8)

For a radial finite-element mesh such as that shown in Fig. A2, the polar coordinate system can
be used to calculate the derivative.
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Figure A2: Polar coordinate system finite element mesh

The central difference method for the polar coordinate system is shown in
∂ui,j

∂r
= ui+1,j − ui−1,j

2Δr
, (A9)

∂ui,j

∂θ
= ui,j+1 − ui,j−1

2Δθ
, (A10)

∂2ui,j

∂r2
= ui+1,j − 2ui,j + ui−1,j

Δr2
, (A11)

∂2ui,j

∂θ 2
= ui,j+1 − 2ui,j + ui,j−1

Δθ 2
, (A12)

where r and θ are the radial and angular coordinates, respectively. The backward difference method
for the polar coordinate system can be expressed as
∂ui,j

∂r
= 3ui,j − 4ui−1,j + ui−2,j

2Δr
, (A13)

∂ui,j

∂θ
= 3ui,j − 4ui,j−1 + ui,j−2

2Δθ
, (A14)

∂2ui,j

∂r2
= 2ui,j − 5ui−1,j + 4ui−2,j − ui−3,j

Δr2
, (A15)

∂2ui,j

∂θ 2
= 2ui,j − 5ui,j−1 + 4ui,j−2 − ui,j−3

Δθ 2
. (A16)

In a non-uniform finite-element mesh, as shown in Fig. A3, the spacing of the adjacent nodes on
the left and right or above and below may differ. For such a finite element mesh, the finite difference
method was used to calculate the derivatives, as shown in

∂ui,j

∂x
=

(
xi,j − xi+1,j

)
ui−1,j

Δxi−1 (Δxi + Δxi−1)
−

(
2xi,j − xi−1,j − xi+1,j

)
ui,j

Δxi−1Δxi

+
(
xi,j − xi−1,j

)
ui+1,j

Δxi (Δxi−1 + Δxi)
, (A17)

∂ui,j

∂y
=

(
yi,j − yi,j+1

)
ui,j−1

Δyi−1 (Δyi + Δyi−1)
−

(
2yi,j − yi,j−1 − yi,j+1

)
ui,j

Δyi−1Δyi

+
(
yi,j − yi,j−1

)
ui,j+1

Δyi

(
Δyi,j−1 + Δyi,j

) , (A18)
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∂2ui,j

∂x2
= 2ui−1,j

Δxi−1 (Δxi + Δxi−1)
− 2ui,j

Δxi−1Δxi

+ 2ui+1,j

Δxi (Δxi−1 + Δxi)
, (A19)

∂2ui,j

∂y2
= 2ui,j−1

Δyi−1 (Δyi + Δyi−1)
− 2ui,j

Δyi−1Δyi

+ 2ui,j+1

Δyi (Δyi−1 + Δyi)
, (A20)

where Δxi−1 is the spacing between nodes (i − 1, j) and (i, j), and Δxi is the spacing between nodes (i, j)
and (i + 1, j); Δyi−1 is the spacing between nodes (i, j − 1) and (i, j), and Δyi is the spacing between
nodes (i, j) and (i, j + 1).

Figure A3: Non-uniform finite element mesh
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