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ABSTRACT

Based on Kirchhoff plate theory and the Rayleigh-Ritz method, the model for free vibration of rectangular plate
with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier
series in combination with the independent coordinate coupling method (ICCM). The effect of the cutout is
taken into account by subtracting the energies of the cutouts from the total energies of the whole plate. The
vibration displacement function of the hole domain is based on the coordinate system of the hole domain in
this method. From the continuity condition of the vibration displacement function at the cutout, the transition
matrix between the two coordinate systems is constructed, and the mass and stiffness matrices are completely
obtained. As a result, the calculation is simplified and the computational efficiency of the solution is improved. In
this paper, numerical examples and modal experiments are presented to validate the effectiveness of the modeling
methods, and parameters related to influencing factors of the rectangular plate are analyzed to study the vibration
characteristics.

KEYWORDS
Rectangular plate with cutouts; the independent coordinate coupling method; elastic boundary conditions; free
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1 Introduction

Rectangular plate structures are widely applied in a variety of engineering fields such as aerospace,
marine, and automobile manufacturing. When taking into consideration the necessity of including
equipment channels, the reduction of weight, and actual installation, it is often necessary to cut holes
on the plate structure. The presence of the holes changes the quality and stiffness of the plate and
influences the vibration characteristics and the stability of the plate structure [1]. Generally, these plate
structures are subjected to all kinds of complex environmental forces; from the continuous action of
various loads inside or outside of the plate to the potential for resonance, environmental influence
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will generate noise and could even lead to serious structural damage. Therefore, some researchers have
focused on the vibration characteristics of the rectangular plate with holes for anti-noise applications,
vibration reduction and the engineering of key structural designs [2]. Various methods were developed
and can be organized into two categories: discrete methods and semi-analytical methods.

In the analysis of rectangular plate with cutouts, discrete methods, such as the finite difference
technique [3,4], the boundary element method [5,6], the differential quadrature method (DQ) [7], the
mesh-free radial point interpolation method [8], the finite element method [9–11] and the discrete
singular convolution method (DSC) [12], have commonly been applied. These methods generally
scatter the analyzed structure. As the frequency of this analysis increases, refinement of the process is
required; the absence of which can lead to a rapid increase in the amount of calculation. In addition,
valuable opportunities for understanding the nature of the problem are often lost during the solution
process. This type of analysis lacks the flexibility for further research on sensitivity analysis, parameter
optimization and active control mechanism of structural vibration.

In contrast with discrete methods, the semi-analytical methods for rectangular plate with cutouts
pay attention to the relationship of rectangular plates with cutouts. Currently, research has mainly
focused on three aspects: the region segmentation, the equivalent substitution, and the separation of
cutouts and plate domains. Then, to examine the vibration characteristics of the rectangular plate with
cutouts, semi-analytical methods generally used are the Rayleigh-Ritz methods (RRM) [2,13,14], the
multi-term extended Kantorovich method (MEKM) [15], the extension of Hencky bar-net method
[16], Chebyshev-Lagrangian method [17], the Green function method [18], the superposition method,
the assumed mode method [19,20], the improved Fourier series method [21,22], the Dynamic Stiffness
Method (DSM) [23], and the Spectro-Geometric Method (SGM) [24].

In the analysis of plates using semi-analytic methods, the cutouts are realized by proper repre-
sentation of the plate as composed of several subdomains. Lee and Lim carried out the free vibration
frequencies of square plates with square cutouts subjected to in-plane forces by sub-dividing the plate
into sub-domains [14]. Liew et al. [25,26] applied this concept to the analysis of a rectangular plate
with central cutouts using the domains decomposition method. Shufrin et al. [27] used the multi-
term extended Kantorovich method to the in-plane vibrations of rectangular plates with rectangular
cutouts by considering several proper sub-domains of plate. Shufrin et al. [15] then applied this method
to the free vibration analysis of rectangular plates with rectangular cutouts and variable thickness.
Wang et al. [28] analyzed the free vibration characteristics of a rectangular plate with a rectangular
opening based on Fourier series method. Yuan et al. [29] applied the modified vibrational method
to study the vibration characteristics of structures of plates with a hole and reinforcement plates in
ships; the displacement and rotation components of each plate segment are expanded by Chebyshev
orthogonal polynomials of the first kind.

On the vibration analysis of rectangular plates with cutouts, some researchers examined the
problem from an alternative perspective by using the equivalent substitution method. The rectangular
plate with cutouts is considered the equivalent rectangular plate with non-uniform thickness.

Based on this idea, Huang et al. [18] investigated the free vibration of rectangular plates with
variously-shaped holes by applying the discrete Green function method. Wang et al. [24] applied
the Spectro-Geometric method to study an elastically restrained plate with arbitrary holes. The
hole is considered to be a virtual plate in which the mass density and the Young’s modulus zero.
Chen et al. [17] discussed rectangular plate with cutout under general boundary constraints by the
Chebyshev-Lagrangian method. They used a method of setting the structure and material parameters
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associated with the cutouts domain to zero. Jafari et al. [30] mapped onto the finite area with a
rectangular hole to finite area with unit circle and then calculated the vibration characteristics.

Additional research focused on the separation of cutouts and plate domains by removing the
effect of the hole domain from the total energies of the whole plate. Cho et al. [19,20] applied the
assumed mode method to analyze vibration characteristics of rectangular plate structures with holes
and attachments. In these investigations, holes, plates, stiffeners and structures were considered as
independent energy elements upon which the Lagrange’s equation and modal superposition method
were applied to obtain the vibration response of rectangular plate structures. Huang [31] developed
the receptance approach for in-plane vibration of a rectangular plate with a hole. This method
considered the hole and plate as sub-structures and performed sub-structural addition and deduction
simultaneously. Wagner et al. [32] applied the energy modification method to study the vibration
characteristics of rectangular plate with a rectangular or circular hole. They also successfully used this
method in the structural optimization of a plate with multiple holes. Ali et al. [33] first proposed the
Rayleigh method to analyze the vibration problem of a plate with a hole, and solved for the vibration
frequency of the same plate with rectangular holes under simply-supported boundary conditions.
Avalos et al. [34–36] used RRM obtained the frequency parameters of the anisotropic plate under
free boundary conditions and explore the effect of structural factors, such as aspect ratio, open rate
(ratio of aperture to plate length), and hole position, on vibration frequency.

However, in the process of solving the vibration of a rectangular plate with a complex hole shape
and a plurality of rectangular holes, complicated numerical calculations are derived when integrating
the vibration displacement function of holes domain in the integral operation, thereby greatly reducing
the computational efficiency of the solution and the applicable range.

To solve this problem, Kwak et al. [37] proposed an independent coordinate coupling method
based on RRM to the relationship holes domain and plate domain. In this method, the vibration
displacement function and the energy equation of the plate and the hole are respectively established
on the basis of their own independent coordinate systems. The connection between the hole and the
plate is established through the coupling relationship of the respective vibration displacement function
in the holes domain and the conversion matrix is constructed, thereby seeking the overall quality and
stiffness matrix. This method exhibits good convergence while satisfying the exact requirements of
the solution, and greatly simplifies the calculation, especially in the vibration solution of plate with
multiple holes. This method for computational efficiency has been developed by many researchers.
Huang et al. [38] adopted the Rayleigh–Ritz method and the Lagrange’s equation to the free vibration
of an especially orthotropic laminate with central rectangular cutout. Mochida et al. [23] used the
Dynamic Stiffness method and Rayleigh-Ritz method for the theoretical basis for combining positive
and negative structures. Merneedi et al. [39] analyzed the free vibration of a rectangular plate with
different sizes of multiple circular and rectangular under simply-supported boundary condition.
Guo et al. [40] investigated the free vibration of a functionally graded carbon nanotube-reinforced
plate with a central hole by the independent coordinates-based Rayleigh–Ritz method.

The influence of various factors on the vibration characteristics of a rectangular plate with cutouts
has been under investigation in the literature. Many researchers discussed the position of cutouts
[4,15,17,21] as a central hole, corner hole and edge hole, and analyzed the applicability and accuracy
of their methods. The opening ratio and number are directly related to the mass and stiffness of
plate structure, which in turn naturally affects the vibration characteristics and stability of structure.
Therefore, research on analytical methods has been conducted with a particular focus on these factors
[26,36,41].
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On boundary conditions, early researchers mainly discussed the classical boundary conditions,
such as free edges, simply-supported and clamped [42]. Recently, research has focused on extending
from the original classical boundary conditions to general boundary conditions. In doing so, the plate
mechanics are influenced instead by setting groups of boundary springs and assigning corresponding
stiffness constants to springs. Chen et al. [17] handled rectangular plates with inner cutouts or corner
cutouts using the Chebyshev–Lagrangian method. Cho et al. [19,20] and Nie et al. [43] analyzed
rectangular plates with multiple openings by the assumed mode method. Wang et al. [28], Liu et al. [22]
and Shi et al. [21] discussed rectangular plate with inner cutouts or edge cutouts by the improved
Fourier series method. Wang et al. [24] adopted the Spector-Geometric method to rectangular plate
with triangular and rectangular holes.

From the above literature review on vibration of coupled plates, we can see two important points.
Some of the literature only consider the vibration characteristics of rectangular plate with holes under
classical boundary conditions. Others consider arbitrary boundary conditions, but they were still based
on traditional coordinate system methods when dealing with the relationship between plates and holes.
Our research aims to further generalize and improve the analysis of plates with holes.

In this paper, we study the vibrations of rectangular plate with cutouts using classical Kirchhoff
plate theory. We develop the governing equations, and apply the Fourier series method and finite
element software to solve for the vibration displacements. But due to the nature of the rectangular
plate problem, discontinuities can occur when the Fourier series method is applied directly. To resolve
this issue, the Fourier series method must be amended to suit this problem by constructing a solution
as a linear combination of a standard two-dimensional Fourier cosine series and auxiliary series
functions. It has been shown that this solution method works very well for a variety of edge supports.
Additionally, for the relationship between plate and aperture, Rayleigh Ritz method and independent
coordinate coupling method (ICCM) are used to analyze the vibration of rectangular plates with
cutouts under arbitrary boundary conditions. The accuracy and convergence characteristics of this
method are demonstrated through numerical examples and experiments. In Section 2, the preliminary
background concepts and the analysis of the plate structure using the improved Fourier series method
are provided. In Section 3, numerical simulations and results are presented. In Section 4, modal
experiments of rectangular plate with cutouts are conducted, and concluding remarks are provided
in Section 5.

2 Modeling of Rectangular Plate with Cutout

In this paper, the free vibration of a rectangular plate with a rectangular cutout under arbitrary
elastic boundary conditions is studied. The model of a rectangular plate with a cutout is shown
in Fig. 1. Around the outer boundary are a uniformly distributed displacement-constrained spring
and the torsion-constrained spring, which simulate any elastic boundary condition by setting an
appropriate stiffness value. The rectangular cutout has no spring constraint and is a free boundary
condition. Using Lagrange-Kirchhoff theory, the governing equations of the free vibration of the
plate is:

D∇2∇2w (x, y, t) − ρhω2w (x, y, t) = 0 (1)

where D is the bending stiffness, D = Eh3/12
(
1 − μ2

)
, ρ is the mass density of the plate, E is Young’s

modulus, μ is Poisson’s ratio, and h is the thickness of plate.
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Figure 1: The model of rectangular plate with cutout

The vibration displacement function of a rectangular plate is represented by two variables
separated along the x-axis and the y-axis. The plate displacement w is expressed the improved Fourier
series as shown:

w (ξ , η, t) =
M∑

m=−4

N∑
n=−4

AmnΨm (ξ) Φn (η) q (t) (2)

where ξ and η are the non-dimensional variables, ξ = x/a, η = y/b, Amn is the unknown Fourier
coefficient of the bending vibration of the plate structure, Ψm (ξ)Φn (η) is a 1 × (M + 4) (N + 4)

matrix composed of vibration displacement functions. The generalized coordinate q (t) is expressed
as[q1,1, q1,2, . . . , qm+4,n+4]

T , which is a (M + 4) (N + 4) × 1 matrix. The vibration displacement functions
of the rectangular plate along the x-axis and y-axis directions are, respectively, expressed as:

Ψm (ξ) =
{

cos λmξ m ≥ 0
sin λmξ m < 0 (3a)

Φn (η) =
{

cos λnη n ≥ 0
sin λnη n < 0 (3b)

where λm = |m|π/a, λn = |n|π/b. Eqs. (3a) and (3b) give specific expressions of the vibration
displacement function. As a result, this shifts the potential discontinuity problem at the boundary
of the rectangular plate to the added sine auxiliary term, which meets the requirement of establishing
a uniform model of a rectangular plate under arbitrary boundary conditions. In addition to providing
a solution to the governing equation, the displacement function also solves the displacement and force
boundary conditions by introducing an auxiliary term to the series and improves the convergence of
displacement function.

The boundary conditions for the flexible rectangular plate are given in the global coordinate
system as follows:

on x = 0,

kx0 (y) w = Qx = −D
[
∂3w (x, y, t)

∂x3
+ ∂3w (x, y, t)

∂x∂y2

]
(4a)
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Kx0 (y)
∂w
∂y

= −Mx = D
[
∂2w (x, y, t)

∂x2
+ μ

∂2w (x, y, t)
∂y2

]
(4b)

on x = a,

kxa (y) w = −Qx = −
[
∂3w (x, y, t)

∂x3
+ ∂3w (x, y, t)

∂x∂y2

]
(4c)

Kx0 (y)
∂w
∂x

= Mx = D
[
∂2w (x, y, t)

∂x2
+ μ

∂2w (x, y, t)
∂y2

]
(4d)

on y = 0 ,

ky0 (x) w = Qy = D
[
∂3w (x, y, t)

∂y3
+ ∂3w (x, y, t)

∂y∂x2

]
(4e)

Ky0 (x)
∂w
∂y

= −My = −D
[
∂2w (x, y, t)

∂y2
+ μ

∂2w (x, y, t)
∂x2

]
(4f)

on y = b,

kyb (x) w = −Qy = D
[
∂3w (x, y, t)

∂y3
+ ∂3w (x, y, t)

∂y∂x2

]
(4g)

Kyb (x)
∂w
∂y

= My = −D
[
∂2w (x, y, t)

∂y2
+ μ

∂2w (x, y, t)
∂x2

]
(4h)

where kx0, kxa, ky0, kyb denote the edge stiffness of translational restraint springs, and Kx0, Kxa, Ky0, Kyb

denote the edge stiffness of rotational restraint springs.

The boundary conditions for the cutout are given as follows:

on x = rx,

kxrx (y) w = Qx = −D
[
∂3w (x, y, t)

∂x3
+ ∂3w (x, y, t)

∂x∂y2

]
(5a)

Kxrx (y)
∂w
∂y

= −Mx = D
[
∂2w (x, y, t)

∂x2
+ μ

∂2w (x, y, t)
∂y2

]
(5b)

on x = rx + ac,

kxrx+ac (y) w = −Qx = −D
[
∂3w (x, y, t)

∂x3
+ ∂3w (x, y, t)

∂x∂y2

]
(5c)

Kxrx+ac (y)
∂w
∂x

= Mx = D
[
∂2w (x, y, t)

∂x2
+ μ

∂2w (x, y, t)
∂y2

]
(5d)

on y = ry,

kyry (x) w = Qy = D
[
∂3w (x, y, t)

∂y3
+ ∂3w (x, y, t)

∂y∂x2

]
(5e)

Kyry (x)
∂w
∂y

= −My = −D
[
∂2w (x, y, t)

∂y2
+ μ

∂2w (x, y, t)
∂x2

]
(5f)
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on y = ry + bc,

kyry+bc
(x) w = −Qy = −D

[
∂3w (x, y, t)

∂y3
+ ∂3w (x, y, t)

∂y∂x2

]
(5g)

Kyry+bc
(x)

∂w
∂y

= My = D
[
∂2w (x, y, t)

∂y2
+ μ

∂2w (x, y, t)
∂x2

]
(5h)

where, kxrx , kxrx+ac , kyry , kyry+bc
denote the edge stiffness of translational restraint spring, and Kxrx , Kxrx+ac ,

Kyry , Kyry+bc
denote the edge stiffness of rotational restraint spring.

The Rayleigh-Ritz energy method is an overall good and simple solution to the rectangular plate.
In this paper, the improved Fourier series method and the Rayleigh-Ritz energy method is combined to
determine the free vibration solution of rectangular plate with a cutout. The energy of the rectangular
plate with a cutout is equal to the energy of rectangular plate domain minus the energy of the
rectangular hole domain. Taking the model shown in Fig. 1 as an example, the Lagrangian function
of the rectangular plate with a cutout can be expressed as:

Π = Utotal + Vtotal − Ttotal (6)

where Utotal is the bending strain energy, Vtotal is the total potential energy of springs in the four edges,
and Ttotal denotes the total kinetic energy.

The strain energy, potential energy and kinetic energy for the plate can be expressed as:

Up = 1
2

D
∫ a

0

∫ b

0

[(
∂2w
∂x2

)2

+
(

∂2w
∂y2

)2

+ 2μ

(
∂2w
∂x2

)(
∂2w
∂y2

)
+ 2 (1 − μ)

(
∂2w

∂x∂y2

)2
]

dxdy (7a)

Vp = 1
2

∫ a

0

{[
ky0w2 + Ky0

(
∂w
∂y

)2
]

y=0

+
[

kybw2 + Kyb

(
∂w
∂y

)2
]

y=b

}
dx

+ 1
2

∫ b

0

{[
kx0w2 + Kx0

(
∂w
∂y

)2
]

x=0

+
[

kxaw2 + Kxa

(
∂w
∂y

)2
]

x=a

}
dy (7b)

Tp = 1
2
ρh

∫ a

0

∫ b

0

ω2w2dxdy (7c)

The strain energy, potential and kinetic energy for the cutout can be expressed as:

Uh = 1
2

D
∫ rx+ac

rx

∫ ry+bc

ry

[(
∂2w
∂x2

)2

+
(

∂2w
∂y2

)2

+ 2μ

(
∂2w
∂x2

) (
∂2w
∂y2

)
+ 2 (1 − μ)

(
∂2w

∂x∂y2

)2
]

dxdy (8a)

Vh = 1
2

∫ rx+ac

rx

{[
kyryw2 + Kyry

(
∂w
∂y

)2
]

y=ry

+
[

kyry+bc
w2 + Kyry+bc

(
∂w
∂y

)2
]

y=ry+bc

}
dx

+ 1
2

∫ ry+bc

ry

{[
kxrxw2 + Kxrx

(
∂w
∂y

)2
]

x=rx

+
[

kxrx+acw
2 + Kxrx+ac

(
∂w
∂y

)2
]

x=rx+ac

}
dy (8b)

Th = 1
2
ρh

∫ rx+ac

rx

∫ ry+bc

ty

ω2w2dxdy (8c)
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Thus, in terms of the plate and cutout energy terms, Eq. (6) can be also expressed as:

Π = (
Up − Uh

) + (
Vp − Vh

) − (
Tp − Th

)
(9)

In order to satisfy the simplification of the integral orthogonality for the vibration displacement
function of the rectangular hole domain under the ICCM, the vibration displacement function of the
rectangular hole under the free boundary condition adopts the uniform beam function consistent with
[37]. We nondimensionalize the coordinates of the rectangular cutout variables xh, yh as ξh = xh/ac,
ηh = yh/bc, and the vibration displacement function of the rectangular cutout can be expressed as:

w (ξh, ηh, t) =
O∑

o=1

P∑
p=1

BopΨo (ξh) Φp (ηh) q (t) (10)

where, ΨO (ξh)ΦP (ηh) is a 1 × OP matrix composed of uniform beam functions. qh (t) is expressed as
[qh1,1, qh1,2, . . . , qhO,P]T , which is a OP × 1 column vector composed of the generalized coordinates of a
rectangular cutout. The non-dimensional vibration displacement functions of a rectangular cutout,
represented by the x direction as:

Ψ1 (ξh) = 1 (11a)

Ψ2 (ξh) = √
12 (ξh − 1/2) (11b)

Ψi+2 (ξh) = cosh (λiξh) + cos (λiξh) − σi [sinh (λiξh) + sin (λiξh)] for i = 1, 2, . . . , n − 2 (11c)

where the parameters λi = 4.370, 7.853, 10.996, 14.137, . . . , σi are obtained from reference [37], and
the expression of σi is as follows:

σi = (cosh λi − cos λi)/(sinh λi − sin λi) (12)

The form for Φn (ηh) is the same as that of Ψn (εh) in Eq. (11), but in terms of ηh instead of εh. At
the same time, to ensure the continuity of vibration displacement in the entire integration region, the
vibration displacement of plate domain and hole domain need to satisfy the following displacement
matching conditions:

w (x, y, t) = w (xh, yh, t) (13)

As shown in Fig. 1, dimensionless hole domain coordinate and plate domain coordinate variables
satisfy the following relationship:

ξ = rx/a + ac/a (14a)

η = ry/b + bc/b (14b)

Substitution of Eqs. (2) and (10) into Eq. (13) produces the following:
M∑

m=−4

N∑
n=−4

Ψm (ξ) Φn (η) q (t) =
O∑

o=1

P∑
p=1

Ψo (ξh) Φp (ηh) qh (t) (15)

Multiplying Ψo′ (ξh)Φp′ (ηh) by both sides of Eq. (15) and integrating on the domain of the hole
produces the following:



CMES, 2023, vol.134, no.3 2101

M∑
m=−4

N∑
n=−4

∫ 1

0

∫ 1

0

Ψm (ξ) Φn (η) Ψo′ (ξh) Φp′ (ηh) dξhdηhq (t)

=
O∑

o=1

P∑
p=1

∫ 1

0

∫ 1

0

Ψo (ξ) Φp (η)Ψo′ (ξh) Φp′ (ηh) dξhdηhq (t)

(16)

Due to the integral orthogonality of the vibration displacement function of the rectangular hole,
Eq. (16) can be stated as follows:

qh(r,s) (t) =
M∑

m=−4

N∑
n=−4

∫ 1

0

Ψm (ξ) Ψr′ (ξh) dξh

∫ 1

0

Φn (η)Φs′ (ηh) dηhq (t) =
M∑

m=−4

N∑
n=−4

(Th) q (t) (17)

or more simply in matrix form as:

qh = Thq (18)

where, Th is a OP × (M + 5) (N + 5) transition matrix between two independent coordinate systems.
Substitution of Eq. (18) into Eq. (9) produces the following:

Ttotal = 1
2

q̇TMpq̇ − 1
2

q̇TTT
h MhThq̇ = 1

2
q̇TMrq̇ (19a)

Utotal = 1
2

q̇TKpq̇ − 1
2

q̇TTT
h KhThq̇ (19b)

Vtotal = 1
2

q̇TKsq̇ (19c)

Utotal + Vtotal = 1
2

q̇TKpq̇ + 1
2

q̇TKsq̇ − 1
2

q̇TTT
h KhThq̇ = 1

2
q̇TKrq̇ (19d)

where:

Mr = Mp − TT
h MHTh (20a)

Kr = Kp + Ks − TT
h KHTh (20b)

Eq. (20) can be expressed non-dimensionally as:

Mr = ρhabM̄p − ρhacbcT
T
h M̄HTh (21a)

Kr = Db
a3

K̄p + Ks − Dbc

ac
3

TT
h K̄HTh (21b)

where

M̄p =
∫ 1

0

∫ 1

0

ω̄Tω̄dξdη (22a)

K̄p =
∫ 1

0

∫ 1

0

[
∂2wT

∂ξ 2

∂2w
∂ξ 2

+ α4 ∂
2wT

∂η2

∂2w
∂η2

+ α2μ

(
∂2wT

∂ξ 2

∂2w
∂η2

+ ∂2wT

∂η2

∂2w
∂ξ 2

)
+2 (1 − μ)

∂2wT

∂ξ∂η

∂2w
∂ξ∂η

]
dξdη

(22b)
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Ks = a
∫ 1

0

[
ky0wTw + Ky0

1
b2

∂wT

∂η

∂w
∂η

]
η=0

+
[

kybwTw + Kyb

1
b2

∂wT

∂η

∂w
∂η

]
η=1

dξ

+ b
∫ 1

0

[
kx0wTw + Kx0

1
a2

∂wT

∂ξ

∂w
∂ξ

]
ξ=0

+
[

kxawTw + Kxa

1
a2

∂wT

∂ξ

∂w
∂ξ

]
ξ=1

dη (22c)

M̄H =
∫ r̄x+āc

r̄x

∫ r̄y+b̄c

r̄y

ω̄Tω̄dξdη (22d)

K̄H =
∫ r̄x+āc

r̄x

∫ r̄y+b̄c

r̄y

⎡
⎢⎢⎣

∂2wT

∂ξ 2

∂2w
∂ξ 2

+ α4
∂2wT

∂η2

∂2w
∂η2

+

α2μ

(
∂2wT

∂ξ 2

∂2w
∂η2

+ ∂2wT

∂η2

∂2w
∂ξ 2

)
+ 2 (1 − μ)

∂2wT

∂ξ∂η

∂2w
∂ξ∂η

⎤
⎥⎥⎦ dξdη (22e)

where ω̄ = ω
√

ρha4/D is the non-dimensional frequency, w is the vibration displacement functions,
α = a/b is the ratio of length and width of rectangular plate, and r̄x = rx/a, r̄y = ry/b, āc = ac/a,
b̄c = bc/b, are respectively the non-dimensional parameters of rectangular cutouts, rx, ry, ac, bc. We
then substitute Eq. (19) into the Lagrangian energy function in Eq. (9) and minimize the function Π

with respect to the unknown Fourier coefficients of the admissible displacement functions. From this,
the solution can be easily obtained by:
∂Π

∂A
= 0 (23)

and the expression for a rectangular plate with a hole is as follows:[
Kr − ω2Mr

]
A = 0 (24)

where A is the unknown coefficients vector of vibration displacement functions, as follows:

A = {
A−4,−4, A−4,−3, · · · , Am′,−4, · · · , Am′,n′, · · · , AM,−4, · · · , AM,N

}
(25)

where M, N is the truncation number of displacement that determines the computational precision of
natural frequency.

As Fig. 1 shows a single rectangular hole, the total energy can be computed by subtracting the
energy belonging to the hole from the energy of the entire rectangular plate. While it is a more
complicated solution process, the improved Fourier series and Rayleigh-Ritz method under the globe
coordinate system (IFRM) is more accurate than traditional Rayleigh-Ritz method. However, as for
the rectangular plate with multiple holes, the IFRM is not easy due to the complex integral limit, the
longer calculating time, and the lower solution efficiency. Thus, the independent coordinate coupling
method can be combined with IFRM to solve to the free vibration problem for the rectangular plate
with multiple holes, as shown on Fig. 2, where ack, bck, represent the size of k-th rectangular hole, and
rxk, ryk is the position of the k-th holes. The mass and stiffness matrices of the whole rectangular plate
are as follows:

Mdr = ρhabM̄p − ρh
n∑

k=1

ackbckT
T
hkM̄hkThk (26a)

Kdr = Db
a3

K̄p + Ks − D
n∑

k=1

bck

a3
ck

TT
hkK̄hkThk (26b)
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where, Mdr, Kdr are the mass and stiffness matrix of rectangular plate with two holes, Thk is the
transformation matrix of the k-th hole, expressed as follows:

(Thk)rs =
∫ 1

0

Ψm (ξ) Ψr′ (ξhk) dξhk

∫ 1

0

Φn (η) Φs′ (ηhk) dηhk (27)

Here, Eqs. (26a) and (26b) can be substituted into Eq. (24) for the free vibration equation of
rectangular plate with multiple cutouts, and then the corresponding free vibration frequency can be
obtained.
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ryk
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ry1
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y
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(a) The horizontal distribution cutouts
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b
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bck

ryk

rxk

x

y

xck

yck

(b) The diagonally distribution cutouts

Figure 2: The model of rectangular plate with multiple cutouts

3 Computational Analysis

To verify the applicability and accuracy of the models developed in Section 2, several examples
involving various boundary conditions were discussed for solving the free vibration of the rectangular
plate with cutouts. In the following numerical analysis, the structural and material parameters of the
rectangular plate with cutouts are: the thickness of plate h = 0.005 m, mass density ρ = 7800 kg/m3,
Young’s modulus E = 210 GPa, and Poisson’s ratio μ = 0.3. In this section, results are produced
using both the improved Fourier series method and Rayleigh-Ritz method based in the independent
coordinate coupling system and the finite element method using Ansys Workbench 16.0. First, we
perform a convergence analysis of the present method to determine the convergence behavior of the
method applied to this model. Then, we examine the vibration characteristics of rectangular plate
with cutout under variety of boundary conditions. The letters F, S and C have been used indicate
the free, simply-supported and clamped boundary conditions along an edge, respectively, which will
be obtained by setting different spring stiffness. Additionally, we use the letter E to denote instances
where the spring stiffness is not assumed to be zero or infinite. The stiffness values of the springs are
given out as Table 1. After the convergence analysis, we discuss the influence factors for vibration
characteristics of rectangular plate, such as opening ratio, position and number. Additionally, we
compare the calculation of RRM in the global coordinate system and ICCM in the independent
coordinate coupling system.
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Table 1: The stiffness values of the springs taken by different boundary conditions

Boundary condition
Values of spring stiffness

k K

F 0 0
S 5 × 109 0
C 5 × 109 5 × 109

E Arbitrary Arbitrary

3.1 The Convergence for Verification of the Model
In the present theoretical model, the vibration displacement function is expressed as an improved

Fourier series expansion, which is a key factor of the solution precision. In theory, the accuracy of
solution increases with the increase of truncated number M, N and converges to the exact solution.
However, considering the limited capacity, numerical accuracy and speed of computers, the series
expansion must be truncated to M and N to obtain the results [34] with acceptable accuracy. Therefore,
we need to examine the convergence and accuracy of the proposed method to establish the number of
series expansion terms needed to obtain accurate results.

Table 2 shows the non-dimensional frequencies Ω2 = ρhω2a4/D of square plate with central square
cutout with simply-supported (S) boundaries. The simply-supported boundary condition is simulated
by setting the displacement spring stiffness of each edge to be 5 × 109 and the rotation constraint
spring stiffness to 0. The setting of the spring stiffness is determined by the convergence analysis
of the stiffness values in Table 3, which is to be discussed in more detail in the following section.
From the data presented in Table 2, under varying aperture ratios ac/a, we can see that the first-order
dimensionless frequency tends to converge as the truncation number increases. Also, we can determine
from the data that accurate results can be obtained even when the truncation number is small. When
the truncation number is 8, compared with [34] and the finite element method, the maximum error
does not exceed 4%.

Table 2: The non-dimensional frequencies of SSSS square plate with central square cutout

ac/a Truncated number (M = N = O = P) FEM Reference [34]

4 5 6 7 8 Ω1 Error (%) Ω1 Error (%)

0 19.737 19.737 19.737 19.736 19.739 19.739 0 – –
0.1 19.927 19.906 19.894 19.862 19.844 19.463 1.96 19.517 1.68
0.2 20.292 20.027 19.926 19.653 19.904 19.147 3.95 19.205 3.64
0.3 20.667 20.034 19.964 19.710 20.096 19.722 1.90 19.512 2.99
0.4 21.535 20.985 20.863 20.788 21.279 20.733 2.63 20.815 2.58
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Table 3: The frequencies of rectangular plates with eccentric cutout under different boundary
conditions

Boundary conditions Method Modes (Hz)

1 2 3 4 5 6

FFFF
Present 13.879 18.271 27.887 34.013 38.838 53.669
FEM 13.863 18.270 27.091 33.880 38.608 53.436
Error (%) 0.115 0.005 2.938 0.393 0.596 0.436

SSSS
Present 21.145 47.082 57.902 83.326 89.855 119.890
FEM 20.707 46.557 58.378 84.047 91.251 123.360
Error (%) 2.115 1.128 0.815 0.858 1.530 2.813

CFCF
Present 27.930 31.577 46.756 76.474 77.187 81.187
FEM 27.599 31.481 46.025 75.733 75.806 81.123
Error (%) 1.199 0.305 1.588 0.978 1.822 0.079

CCCS Present 36.281 61.877 85.012 107.643 109.122 151.867
FEM 35.149 60.854 83.662 105.560 107.74 150.380
Error (%) 3.221 1.681 1.614 1.973 1.283 0.989

CCCC Present 39.294 70.852 86.590 114.943 120.085 160.417
FEM 38.484 69.704 85.522 113.270 120.100 157.950
Error (%) 2.105 1.647 1.249 1.477 0.012 1.562

To further verify the effectiveness of the method, the natural frequencies and mode shapes of a
rectangular plate with a general eccentric cutout under CCCC boundary condition are calculated; the
results are shown in Table 4. The size and position parameters of the rectangular plate with cutout are:
a = 1.2 m, b = 1 m, ac = 0.2 m, bc = 0.1 m, rx = 0.8 m, and ry = 0.5 m.

Table 4: The natural frequencies of CCCC rectangular plate with eccentric hole

Truncated number
(M = N = O = P)

Modes (Hz)

1 2 3 4 5 6

4 39.494 71.218 86.946 115.673 120.214 161.191
5 39.405 70.957 86.672 115.062 120.202 160.840
6 39.386 70.941 86.642 115.039 120.132 160.723
7 39.311 70.874 86.606 114.961 120.125 160.464
8 39.294 70.854 85.590 114.945 120.088 160.417
FEM 38.483 69.705 85.520 113.273 120.118 157.950
Error (%) 2.107 1.648 0.080 1.476 0.025 1.562

The resulting natural frequencies calculated by this present method and the finite element method
are shown in Table 4, Figs. 3 and 4, from which can be seen that the maximum error of natural
frequencies does not exceed 2.107 % by the two methods. As Figs. 3 and 4 show, when we compare the
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mode shapes computed by each method, the distribution patterns of the mode shapes and pitch circles
of the rectangular plate with eccentric cutout obtained by the two methods are consistent. Overall, the
data shows that the present method is more accurate for rectangular plates with an eccentric cutout.

Figure 3: The mode shapes of rectangular plate with eccentric cutouts under CCCC boundary
condition by FEM

Figure 4: The mode shapes of rectangular plate with eccentric cutouts under CCCC boundary
condition by the present method

3.2 Analysis under Variable Boundary Conditions
In order to verify the accuracy of the present method under classical boundary conditions, Table 3

provides the results of rectangular plate with an eccentric cutout. Different boundary conditions can be
obtained directly by changing the stiffness magnitudes of the springs, and all classical homogeneous
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boundary conditions–clamped and free boundaries–can be easily derived by setting each of spring
constants to be infinite or zero, respectively. The simply-supported boundary can be obtained by
setting the displacement spring stiffness of each edge to be 5 × 109 and the rotation constraint spring
stiffness to 0. The truncated number is M = N = O = P = 8. The comparison of the first six natural
frequencies with the finite element method shows that the maximum deviation is 3.221%. It shows that
the present method exhibits a high degree of precision when dealing with the vibration of rectangular
plate with cutout under any classical boundary.

In addition to the solution of the vibration problem under classical boundary conditions, this
method can also solve the vibration problem of the rectangular plate with cutout under arbitrary
elastic boundary conditions, which can be achieved by changing the spring stiffness at the boundary
conditions. Table 5 gives an example of calculating the natural frequency of CCCE rectangular plate
with cutout at different spring stiffness values. The geometric parameters of the rectangular plate
with eccentric cutout are the same as above and the boundary conditions are CCCE. Along the edge
x = a, the rotation spring stiffness is set to elastic boundary condition, the rotation spring stiffness
is K = K × D. From the data in Table 5, with the rotation spring stiffness increasing, the natural
frequency is increasing. When the rotation spring stiffness increases to 107, the natural frequencies tend
to stable. As the rotation spring stiffness is increased from 107 to 109, the frequencies effectively remain
constant, and these results are equal to those of a plate under CCCC boundary conditions. Compared
with Table 3, it can be seen that the rotational spring stiffness in the x = a direction gradually increases
from 0 to 109, which corresponds to a change from the C-C-C-S boundary condition to the CCCC
boundary condition. The displacement spring stiffness is determined in the same way. It is reasonable
to assume that the infinite spring stiffness in this paper is approximated as 5 × 109.

Table 5: The natural frequencies of CCCE rectangular plate with eccentric hole with torsional
restraints

K
Modes (Hz)

1 2 3 4 5 6

0 36.281 61.877 85.012 107.643 109.122 151.867
10 36.283 61.880 85.013 107.973 109.124 151.889
103 36.431 62.197 85.066 107.973 109.293 152.120
105 38.822 69.041 86.245 113.501 116.979 158.885
107 39.288 70.832 86.590 114.943 120.085 160.417
108 39.293 70.852 86.590 114.943 120.085 160.417
109 39.294 70.854 86.590 114.945 120.088 160.417

3.3 Rectangular Plate with Two Cutouts
So far, we have conducted numerical simulations for a plate with one cutout, but the present

method has certain advantages in solving rectangular plates with multiple cutouts. In this section,
we compute the natural frequency and mode shapes for a rectangular plate with two cutouts under
different boundaries, and compare these results with those from the literature and finite element
simulations. The geometric model of rectangular plates with two cutouts is shown in Fig. 2, one plate
has two cutouts horizontally symmetrically distributed, and one plate has two cutouts distributed
diagonally, respectively. Tables 6 and 7 show the dimensionless frequencies for the two distributions
under four simply-supported boundaries, where the data marked with ∗ comes from [35]. The structure
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size of rectangular plate with two cutouts is a/b = 3/2, h/b = 0.01, and the dimensionless frequency
is Ω2 = ρhω2a4/D. Tables 8 and 9 show the dimensionless frequencies for the two distributions
under four edges clamped supported conditions, where the data marked with ∗ comes from the
finite element results. Figs. 4 and 5 are the mode shapes of rectangular plate with two cutouts. The
structure size in Fig. 4 is cutout ratio ac1/a = bc1/b = 0.2, ac2/a = bc2/b = 0.2, and cutout position
rx1/a = 0.25, ry1/b = 0.4, rx2/a = 0.55, ry2/b = 0.4. The structure size in the Fig. 5 is cutout
ratio ac1/a = bc1/b = 0.1, ac2/a = bc2/b = 0.1, and cutout position rx1/a = 0.15, ry1/b = 0.15,
rx2/a = 0.75, ry2/b = 0.75. From Table 6 through Table 9, we can see that the present method exhibits
a high degree of agreement with the results from finite element simulations under SSSS and CCCC
boundary conditions, while the deviation result is slightly larger compared with [35], this is mainly
because the displacement functions in [35] is sine function and the auxiliary term function is not
considered.

Table 6: The dimensionless frequencies of SSSS rectangular plates with two horizontal cutouts

ac1/a = bc1/b
ac2/a = bc2/b

Cutout position Ω

1 2 3 4 5 6

rx1/a = 0.35, ry1/b = 0.45
rx2/a = 0.55, ry2/b = 0.45

31.10∗ 61.17∗ 98.08∗ 110.33∗ – –
32.23 62.54 99.48 112.77 132.23 179.43

Error (%) 3.63 2.24 1.43 2.21 – –
0.1 rx1/a = 0.15, ry1/b = 0.45

rx2/a = 0.75, ry2/b = 0.45
31.69∗ 60.60∗ 98.10∗ 109.62∗ – –
32.25 62.37 99.74 111.74 131.51 179.80

Error (%) 1.77 2.92 1.67 1.93 – –
rx1/a = 0.25, ry1/b = 0.4
rx2/a = 0.55, ry2/b = 0.4

29.94∗ 60.22∗ 89.18∗ 105.83∗ – –
30.68 62.69 93.92 112.14 132.89 180.36

Error (%) 2.47 4.10 5.32 5.96 – –
0.2 rx1/a = 0.1, ry1/b = 0.4

rx2/a = 0.7, ry2/b = 0.4
30.96∗ 60.55∗ 93.12∗ 111.59∗ – –
31.26 61.37 96.74 111.76 131.50 179.79

Error (%) 0.97 1.35 3.89 0.15 – –

Table 7: The dimensionless frequencies of SSSS rectangular plates with two diagonal cutouts

ac1/a = bc1/b
ac2/a = bc2/b

Cutout position Ω

1 2 3 4 5 6

rx1/a = 0.35, ry1/b = 0.35
rx2/a = 0.55, ry2/b = 0.55

31.21∗ 61.15∗ 97.20∗ 110.24∗ – –
32.31 62.94 99.67 113.28 133.51 179.48

Error (%) 3.52 2.93 2.54 2.76
0.1 rx1/a = 0.15, ry1/b = 0.15

rx2/a = 0.75, ry2/b = 0.75
31.73∗ 61.17∗ 97.50∗ 110.31∗ – –
32.50 62.18 99.23 111.98 129.85 178.81

Error (%) 2.43 1.65 1.77 1.51
rx1/a = 0.25, ry1/b = 0.25
rx2/a = 0.55, ry2/b = 0.55

30.11∗ 60.04∗ 92.86∗ 105.49∗ – –
31.73 61.08 96.92 110.86 142.76 179.93

(Continued)
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Table 7 (continued)

ac1/a = bc1/b
ac2/a = bc2/b

Cutout position Ω

1 2 3 4 5 6

Error (%) 5.38 1.73 4.37 5.09
0.2 rx1/a = 0.1, ry1/b = 0.1

rx2/a = 0.7, ry2/b = 0.7
30.61∗ 59.85∗ 96.21∗ 108.87∗ – –
33.29 63.52 100.20 114.43 134.60 181.50

Error (%) 8.76 6.13 4.15 5.11

Table 8: The dimensionless frequencies of CCCC rectangular plates with two horizontal cutouts

ac1/a = bc1/b
ac2/a = bc2/b

Cutout position Ω

1 2 3 4 5 6

rx1/a = 0.35, ry1/b = 0.45
rx2/a = 0.55, ry2/b = 0.45

33.19∗ 51.45∗ 81.29∗ 81.21∗ 98.01∗ 124.69∗

33.93 51.04 80.37 81.41 97.04 123.24
Error (%) 2.23 0.80 1.13 0.25 0.99 1.16

0.1 rx1/a = 0.15, ry1/b = 0.45
rx2/a = 0.75, ry2/b = 0.45

33.66∗ 51.93∗ 81.90∗ 82.84∗ 98.17∗ 125.70∗

33.42 51.52 81.07 82.07 97.18 124.23
Error (%) 0.72 0.78 1.02 0.92 1.01 1.17
rx1/a = 0.25, ry1/b = 0.4
rx2/a = 0.55, ry2/b = 0.4

34.77∗ 53.31∗ 71.66∗ 77.83∗ 87.63∗ 119.37∗

34.52 52.91 70.66 76.97 86.52 118.12
Error (%) 0.71 0.75 1.39 1.11 1.27 1.05

0.2 rx1/a = 0.1, ry1/b = 0.4
rx2/a = 0.7, ry2/b = 0.4

33.64∗ 53.20∗ 77.53∗ 88.83∗ 88.97∗ 116.50∗

33.38 52.74 76.65 87.76 88.15 115.14
Error (%) 0.79 0.87 1.14 1.20 0.93 1.17

Table 9: The dimensionless frequencies of CCCC rectangular plates with two diagonal cutouts

ac1/a = bc1/b
ac2/a = bc2/b

Cutout position Ω

1 2 3 4 5 6

rx1/a = 0.35, ry1/b = 0.35
rx2/a = 0.55, ry2/b = 0.55

33.40∗ 51.48∗ 80.93∗ 82.13∗ 98.37∗ 124.90∗

33.14 51.07 80.07 81.33 97.43 123.45
Error (%) 0.78 0.80 1.06 0.98 0.96 1.16

0.1 rx1/a = 0.15, ry1/b = 0.15
rx2/a = 0.75, ry2/b = 0.75

33.46∗ 51.83∗ 82.41∗ 82.87∗ 99.35∗ 125.56∗

33.22 51.43 81.58 82.11 98.39 124.09
Error (%) 0.72 0.78 1.01 0.91 0.96 1.17
rx1/a = 0.25, ry1/b = 0.25
rx2/a = 0.55, ry2/b = 0.55

33.72∗ 51.76∗ 77.94∗ 82.99∗ 100.90∗ 122.35∗

33.43 51.32 77.09 82.19 99.96 120.89
Error (%) 0.86 0.84 1.09 0.96 0.93 1.20

0.2 rx1/a = 0.1, ry1/b = 0.1
rx2/a = 0.7, ry2/b = 0.7

32.53∗ 50.06∗ 80.99∗ 81.28∗ 97.56∗ 123.53∗

32.27 49.62 80.14 80.44 96.55 121.97
Error (%) 0.79 0.88 1.05 1.03 1.04 1.26
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From Figs. 5–8, we can see that the shape of the vibration mode is consistent between the two
methods; this further verifies the agreement between two methods. The accuracy of the results for
a two-cutout rectangular plate with various cutout ratios under the SSSS and CCCC boundary
conditions is apparent from the data. It can be shown that the calculation error increases as the cutout
ratio increases. The present method adapts to solve the natural frequency of rectangular plate with
two cutouts.

Figure 5: The mode shapes of rectangular plate with two horizontal cutouts under SSSS boundary
condition by FEM

Figure 6: The mode shapes of rectangular plate with two horizontal cutouts under SSSS boundary
condition by the present method
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Figure 7: The mode shapes of rectangular plate with two diagonal cutouts under CCCC boundary
condition by FEM

Figure 8: The mode shapes of rectangular plate with two diagonal cutouts under CCCC boundary
condition by the present method

3.4 Calculation Efficiency Comparison in Different Coordinate System
In this section, we compare the solutions of rectangular plate with a cutout in the global coordinate

system (RRM) and the independent coupling coordinate system (ICCM). For the case of a square
plate with square cutout and SSSS boundary conditions, Figs. 9 and 10 provide the computational
time trend by the two methods using Matlab for following cases: increasing truncated number, and
increasing cutout ratio. In these simulations, the structure size is a = b = 1 m, ac = bc = 0.2 m.
From Fig. 9, we can see that the solution time increases as the truncated number increases by RRM
method and ICCM method. This is because when the truncated number increases, the number of terms
of the vibration displacement function is increasing, and the time naturally increases as a result. But
when we compare the two, it can be seen that computation time of the ICCM method increases at
a rate much lower than that of the RRM method for the same truncated number, and thus, we can
conclude that the ICCM method is more computationally efficient than the RRM method, especially
for larger truncated numbers. This is because ICCM method is more efficient than RRM at solving
each vibration displacement function, and then the difference is more apparent for larger truncated
numbers.
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Figure 9: Computational time vs. truncated number by two methods for square plate with one cutout

Figure 10: Computational time vs. cutout ratio by two methods for square plate with one cutout

As can be seen from Fig. 10, the calculation time of RRM method increases significantly as the
cutout ratio increases, while the ICCM method remains fairly constant. This is due to that the integral
limit of the RRM is increasing when integrating for the rectangular cutout, while the integral limit of
the dimensionless ICCM for solving the rectangular cutout is constant. The solution speed does not
change substantially as the size of the rectangular cutout varies.



CMES, 2023, vol.134, no.3 2113

For solving the rectangular plate with two cutouts, the computation time curve for truncated
number for both methods is shown in Fig. 11. The structural parameters are: a = b = 1 m, rx1 = ry1 =
0.3 m, rx2 = ry2 = 0.5 m, ac1 = bc1 = ac2 = bc2 = 0.2 m. When the truncated number is increasing, the
curvature of the curve changes more rapidly by the RRM method while the curve increases at a lower
rate by the ICCM method.

Figure 11: Computational time vs. truncated number by two methods for square plate with two
diagonal cutouts under CCCC boundary conditions

Comparing Figs. 9 and 11, the calculation time increases as the number of cutout increases, with
the number of cutouts more greatly affecting the RRM method. By comparing the natural frequencies
of the rectangular plates with cutouts under different truncated number, different cutout ratios and
different cutout numbers, it can be concluded that the ICCM method has obvious computational
advantages over the RRM method.

3.5 Calculation Accuracy Comparison in Different Coordinate System
In this section, the calculation accuracy results of different methods are given out. The comparison

diagram of the first 50 natural frequencies of the square plate with center cutout under FFFF, SSSS and
CCCC boundary conditions are demonstrate in Figs. 12–14. Three types of methods, FEM, ICCM and
RRM are used to calculate the results. The structural parameters are: a = b = 1 m, ac = bc = 0.2 m. It
can be observed that there is a good fit degree between the calculation results of the ICCM and RRM
and small deviation. Comparing to the FEM results, the calculation results of the two methods used
in this paper are completely coincident with the results of FEM results for the low-order frequencies,
while they are higher than the FEM results at the higher order frequencies, the curve of the RRM is
closer than the ICCM to the FEM results. This is mainly because of the displacement functions are
different at the cutout domain. It can be seen from the figures that the method proposed in this paper
can effectively solve the vibration characteristics of the rectangular plate with cutouts.
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Figure 12: Computational accuracy comparison of square plate with center cutout under FFFF
boundary conditions

Figure 13: Computational accuracy comparison of square plate with center cutout under SSSS
boundary conditions

4 Modal Experiments

The modal experiment analysis of the free vibration of a rectangular plate with a cutout under
free boundary conditions and clamped boundary conditions was conducted, and the single-point
vibration measurement method was selected. The experiment considers some influencing vibration
characteristics key factors of the rectangular plate with cutout, such as the cutout ratio and the plate
thickness. It further serves to validate the accuracy of the present method with experimental results.
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Figure 14: Computational accuracy comparison of square plate with center cutout under CCCC
boundary conditions

4.1 The Mode Experimental of Rectangular Plate with Eccentric Cutouts
In this section, the experimental model is shown in Fig. 15. The four-edge free and clamped

supported boundary conditions are considered. The free boundary conditions are simulated using
a soft-rope suspension method, and the clamped supported boundary condition is simulated by
uniformly fastening bolts along the four edges. The modal experimental system is shown in Fig. 16,
and the structural and material parameters of the experimental apparatus are listed in Table 10. The
first 6 natural frequencies are obtained by the single-point vibration pick-point under two types of
boundary conditions; the results are presented in Table 11.

(a) The free boundary condition (b) The clamped supported

Figure 15: The experimental model of rectangular plate with cutout
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Figure 16: The model experimental system

Table 10: The parameters of rectangular plate with cutout

Parameters Symbol FFFF CCCC Unit

Plate material Q235 – – –
Plate length a 239.5 240.5 mm
Plate width b 239.2 240.0 mm
Cutout length ac 40.5 40.3 mm
Cutout width bc 20.5 40.3 mm
Cutout’s x position xc 99.6 100.5 mm
Cutout y position yc 99.6 100.3 mm
Plate thickness h 2 2 mm
Young’s modulus E 2.06 × 1011 2.06 × 1011 N/m2

Poisson’s ratio μ 0.3 0.3 –

Table 11: The comparison of natural frequencies of rectangular plate with cutout

Boundary
condition

Modes Test (Hz) Present (Hz) FEM (Hz) Error Test (%) Error present (%)

1 113.01 118.10 115.02 1.74 2.68
2 173.36 170.33 165.89 4.50 2.68
3 193.61 205.66 203.64 4.92 1.00

FFFF 4 288.54 309.49 301.14 4.18 2.77
5 290.64 310.10 301.26 3.52 2.93
6 545.61 538.91 529.23 3.09 1.83
1 298.45 314.22 308.47 3.24 1.86
2 612.21 625.72 625.5 2.12 0.04

(Continued)
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Table 11 (continued)

Boundary
condition

Modes Test (Hz) Present (Hz) FEM (Hz) Error Test (%) Error present (%)

3 653.58 640.55 631.2 3.55 1.48
CCCC 4 967.12 927.91 924.04 4.66 0.42

5 1034.87 1128.67 1112.9 7.01 1.42
6 1066.47 1146.62 1138.8 6.35 0.69

The % errors in Table 11 represent the relative deviation of the test results from the theoretical
results. The data in Column 6 represents the error of the experimental results from the results generated
from the finite element simulations while the results in column 7 represent the error of the results
computed by the methods proposed in this paper (the truncated number is M = N = 8) with those
generated by the finite element simulations. As we can see from the results in Table 11, the experimental
results and the present method both agree very well with the finite element simulations, but it should
be noted that the results from the present methods are express a higher level of agreement with the
FEM simulations than the experimental results do. There are two aspects for the deviation. First,
the boundary constraint difference between experimental simulation and theoretical calculation will
cause a certain error. Second, when striking with a hammer, it is required that the striking direction is
completely perpendicular to the panel surface, the striking force should be constant, and the hammer
should be withdrawn quickly after the striking is finished to avoid secondary striking. Due to the
agreement of the results in Table 11, we can conclude that the proposed solution method under free
and clamped boundary conditions is validated by the experimental results.

4.2 Parameterized Analysis of Rectangular Plate with Cutouts
In this experiment, we conduct a parameterized analysis on a rectangular plate with a cutout under

free boundary conditions; in this analysis, we take into consideration the hole ratio and plate thickness.
The structural parameters of the rectangular plate with a cutout are: a = b = 240 mm, ac/a = 0.1, 0.3,
0.4, 0.5 and h = 4.5 mm, and the results for the first and second natural frequencies as the cutout ratio
increases are presented in Fig. 17. In the plate thickness parameterization analysis, a = b = 240 mm,
ac/a = 0.3, and h = 1.9 mm, 4.7 mm, 7.5 mm. The experimental and theoretical value curves of the
rectangular plate with cutout are shown in Figure.

From Figs. 17 and 18, we can see that the data curve of present method is in excellent agreement
with the experimental results; this provides further evidence in support of the accuracy of the present
method. Their trend very closely approximates the gradual decrease in frequency as cutout ratio
increases. This is due to the fact that the main factor affecting the fundamental frequency of the plate
with a cutout under free boundary conditions is its mass. As the cutout ratio increases, the whole
mass matrix decreases, and then the frequency increases. Additionally, the natural frequency of the
rectangular plate with cutout also increases with the increase of the plate thickness when the cutout
ratio remains constant. Therefore, in the analysis of the model parameters of the rectangular plate
with cutout, the size of cutout and the thickness of plate are important factors affecting the frequency
of the rectangular plate with cutout.
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Figure 17: The natural frequency of rectangular plate with different cutout ratios, h = 4.5 mm, FFFF

Figure 18: The natural frequency of rectangular plate with one cutout with different thickness,
ac/a = 0.3, FFFF

5 Conclusion

Based on the independent coordinate coupling system, this paper establishes the models of a
rectangular plate with cutouts under elastic boundary conditions. The model of rectangular plate
with cutouts is adapted to plates subjected to arbitrary elastic boundary conditions by the improved
Fourier series, and the Rayleigh-Ritz energy method is used to deal with the relationship between
the plate and the hole by means of energy subtraction. The frequency parameters are obtained by
solving the matrix of the plate with cutouts by the Lagrangian equation. This method can satisfy
the vibration solution of rectangular plate with holes under arbitrary elastic boundary conditions
and produce highly accurate solutions. ICCM improves the computational efficiency by optimizing
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the integration domain of rectangular cutouts, shortens the time required for computation, and has
obvious advantages when the cutout ratio increases or the number of holes increases.

The modal experiments of rectangular plate with a hole under free boundary conditions and
clamped supported boundary conditions were conducted and, when compared with the theoretical
results from the proposed method, provided evidence as to the accuracy of the method presented
herein. In addition to the validation of the accuracy, the influence of the cutout size and thickness of
rectangular plate under free boundary conditions was also examined. We observed that the natural
frequencies of rectangular plate with holes decrease with the increase in cutout ratio, and that the
frequencies also increase as thickness of the plate increases. The result of this work is beneficial to
the engineering community as it provides us with an understanding of the vibration characteristics of
rectangular plates with cutouts.
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