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ABSTRACT

To improve the estimation accuracy, a novel time delay estimation (TDE) method based on the closed-form offset
compensation is proposed. Firstly, we use the generalized cross-correlation with phase transform (GCC-PHAT)
method to obtain the initial TDE. Secondly, a signal model using normalized cross spectrum is established, and
the noise subspace is extracted by eigenvalue decomposition (EVD) of covariance matrix. Using the orthogonal
relation between the steering vector and the noise subspace, the first-order Taylor expansion is carried out on
the steering vector reconstructed by the initial TDE. Finally, the offsets are compensated via simple least squares
(LS). Compared to other state-of-the-art methods, the proposed method significantly reduces the computational
complexity and achieves better estimation performance. Experiments on both simulation and real-world data verify
the efficiency of the proposed approach.
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1 Introduction

The time delay estimation (TDE) is a key issue of the time difference of arrival (TDOA)
method [1–3], which plays a crucial role in passive localization positioning, navigation, wireless
communication, electronic countermeasures and wireless sensor networks, etc. [4–11]. In the field of
positioning, TDOA-based method locates the source by estimating the time difference among different
nodes arriving at the target, which avoids the requirement for node sensor clocks to be synchronized
with the target in the TOA method [12–14]. Obviously, the TDE directly affects the performance of
positioning. Hence, it is of great concern to study high accurate TDE methods.

Generalized cross correlation (GCC) [15–17] is a classical approach for TDE, it applies a weighting
function to the cross-power spectrum to improve the signal-to-noise ratio (SNR) and thus sharpen
the peak of the correlation function. In various GCC methods, the GCC with phase transform
(GCC-PHAT) method can make the TDE robust against noise and reverberation and thus has better
performance than others [18–20]. On the strength of the GCC, some new methods have been proposed
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for high-precision TDE. A closed-form maximum-likelihood cross-phase spectrum estimation method
for GCC is proposed in [21], which corrects the phase bias by noise coherence function to obtain
accurate TDE. The paper in [22] extracts GCCs based on the sliding-window method and uses sub-
band GCC to represent the corresponding cross-power spectrum phase, but the temporal resolution
is reduced. Based on GCC-PHAT, the ‘inversed’ diffuseness is binarized with a strict threshold, which
masks the time-frequency components of observed signals to obtain reliable TDE [23]. However, these
methods fail to address the problem of the limited resolution, and the fact that the calculated TDE is
always integer multiple of the sampling period. A self-delay-compensation (SDC) method is proposed
to solve this problem in [24]. By adding a tiny time delay unit, this method makes up the neglectful
time delay within a sampling interval. In addition, some super-resolution TDE methods are proposed
to overcome the limited sampling period. Utilizing sinusoidal signal frequency estimation model,
Ge et al. [25] constructs covariance matrix through signal correlation, and adopts multiple signal
classification (MUSIC) algorithm for TDE. But it needs to estimate the power spectrum density of the
unknown signal at first. A super-resolution method using normalized cross spectrum is proposed to
estimate time delay in [26], which makes the feature structure of signal normalized cross spectrum to
deduce a new TDE model. Compared with [25], it avoids estimating the power spectrum of unknown
signals and reduces the amount of computation. Nevertheless, the above methods belong to subspace-
based algorithms, and they inevitably suffer from high computational complexity due to eigenvalue
decomposition (EVD) and spectral peak search.

In this paper, we propose an efficient TDE method for TDOA-based passive localization, which
overcomes the problem of limited sampling intervals. The contributions of our work are summarized
as follows:

(1) Based on the first-order Taylor expansion on the vector containing initial TDEs, high accurate
time delays are estimated by adding closed-form offset compensation obtained via least
squares (LS).

(2) Theoretical analysis and simulation experiments are conducted, which demonstrate that the
proposed method has lower computational complexity and more accurate estimation com-
pared with SDC [24] and MUSIC [26] methods.

(3) Experiments on real-world scenarios demonstrate that the proposed method significantly
improves the performance of source localization.

Notation: Vectors are represented by lowercase bold characters and matrices by uppercase bold
characters. (·)T and (·)H represent transpose and conjugate-transpose, respectively. ∂ (a)/∂ (b) means
the derivative of a with respect to b. E (·) denotes expectation. |·| represents the modulus of a complex
number. �·� and �·� stand for the floor and ceiling function, respectively. arg max (·) represents
arguments of the maxima. diag (·) denotes the diagonal matrix. x̂ represents the estimated version
of x. (·)+ denotes the pseudo inverse of a matrix.

2 Signal Model

To better explain the TDOA localization principle, Fig. 1 presents a passive positioning system
with multi-nodes. There are M(M ≥ 3) nodes randomly distributed in qi = [xi, yi]

T, i = 1, . . . , M.
The radiation source emits signal, which is then picked up by the sensors on nodes. And clock
synchronization of multiple nodes is implemented as to collect TDOA measurements. The target
source location is u = [x, y]T.
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Figure 1: TDOA positioning system based on multi-nodes

Suppose that s(t) is the signal emitted by the target source in line-of-sight case. Then the signal
received by the m-th node can be expressed as

xm(t) = αms(t − τm) + nm(t), m = 1, 2, . . . , M (1)

where αm is amplitude fading coefficient, τm is time delay between the target source and the m-th node,
and nm(t) denotes the zero-mean additive Gaussian noise of the m-th received signal. By estimating
the time differences among the source signal reaching the reference node and other nodes, the distance
differences of them can be calculated. Next, a set of hyperbolic equations is established to depict these
hyperboloids whose intersection is the desired target position as shown in Fig. 1.

3 Proposed Scheme

Just like the system model introduced above, a passive positioning system is composed of
M(M ≥ 3) nodes. The signals received by nodes are as follows:⎧⎪⎪⎨
⎪⎪⎩

x1(t) = α1s(t − τ1) + n1(t)
x2(t) = α2s(t − τ2) + n2(t)
...
xM(t) = αMs(t − τM) + nM(t)

(2)

3.1 The Initial TDE Based on GCC
Generally, the received signal at first node x1(t) is selected as the reference signal. Due to only the

time difference of arrival is needed in the passive positioning system based on TDOA, we can assume
α1 = 1 and τ1 = 0 for simplified analysis. From Eq. (2) we can get{

x1(t) = s(t) + n1(t)
xm(t) = αms(t − τ1,m) + nm(t) m = 2, 3, . . . , M (3)

where τ1,m = τm −τ1 represents the time difference among the source signal reaching the reference node
and other nodes. The cross-correlation function of the two signals from Eq. (3) is

Rx1xm(τ ) =E [x1(t)xm(t − τ)]

=αmE [s(t)s(t − τ1,m − τ)] + E [s(t)nm(t − τ)] + αmE [s(t − τ1,m − τ)n1(t)] + E [n1(t)nm(t − τ)]
(4)

Assuming that s(t) and nm(t)(m = 1, 2, . . . , M) are independent, Eq. (4) can be simplified as

Rx1xm(τ ) = αmE [s(t)s(t − τ1,m − τ)] = αmRss(τ − τ1,m) (5)
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According to Wiener-Khinchin theorem, the discrete Fourier transform (DFT) of the correlation
function is the corresponding power spectrum. In the GCC method, the received signal is weighted in
frequency domain to enhance the frequency component with high SNR and suppress the noise power.
Here the PHAT is chosen due to its robustness, whose weighting function is ϕ1m(ω) = 1/

∣∣Gx1xm(ω)
∣∣.

The GCC function is expressed as the inverse Fourier transform of the weighted power spectral
function ϕ1m(ω)Gx1xm(ω).

Rx1xm
g
(τ ) = 1

2π

∞∫
−∞

1∣∣Gx1xm(ω)
∣∣Gx1xm(ω)ejωτ dω (6)

where Gx1xm(ω) is the cross-power spectrum of the received signals. By looking for the abscissa
parameter corresponding to the maximum of GCC-PHAT, the TDEs can be calculated via

τ̂ ini
1,m = arg max

τ

Rx1xm
g
(τ ), m = 2, 3, . . . , M (7)

Therefore, the initial TDEs are obtained by Eq. (7). However, the resolution of this method is
limited by sampling period. In fact, we can estimate time delay by the subspace method which can
break through the restriction of sampling period. The super-resolution method using normalized
cross spectrum in [26] derives the orthogonal formula containing initial delay, and no relevant
transcendental knowledge is needed.

3.2 Normalized Cross Spectrum
Using the signal model shown in Eq. (3) above, on the assumption that the signal is not correlated

with the noise, the autocorrelation function of the reference signal x1(t) is

Rx1x1
(τ ) = E [x1(t)x1(t − τ)] = Rss(τ ) + Vn1n1

(τ ) (8)

where Rss(τ ) and Vn1n1
(τ ) are the autocorrelation functions of s(t) and n1(t), respectively. According to

Wiener-Khinchin theorem, the power spectrum of x1(t) can be obtained by

Gx1x1
(ω) = Gss(ω) + Nn1n1

(ω) (9)

where Gss(ω) and Nn1n1
(ω) are the Fourier transform of Rss(τ ) and Vn1n1

(τ ), respectively. The cross-
power spectrum of x1(t) and xm(t) can be formulated from Eq. (5).

Gx1xm(ω) = αmGss(ω)e−jωτ1,m (10)

The cross-power spectrum of the two observed signals has the following relationship with the
power spectrum of x1(t) as

Gx1xm(ω) = αm(Gx1x1
(ω) − Nn1n1

(ω))e−jωτ1,m (11)

Using Gx1x1
(ω) to normalize cross-power spectrum Gx1xm(ω) as follows:

h(ω) = αme−jωτ1,m + u(ω) (12)

where h(ω) = Gx1xm(ω)/Gx1x1
(ω) is normalized cross power spectrum, u(ω) = −(Nn1n1

(ω)/Gx1x1
(ω))

αme−jωτ1,m . The noise u(ω) obeys the Gaussian distribution. In order to suppress the effect of noise u(ω)

in the model, we select the effective part of the uniform extraction of h(ω) in the frequency domain to
define the observation vector
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hd = αm · ad(τ1,m) + ud (13)

where

hd = [h(ωb + d − 1), h(ωb + d − 1 + D), · · · , h(ωb + d − 1 + (P − 1)D)]T, d = 1, 2, · · · , D,

ad(τ1,m) = [e−j(ωb+d−1)τ1,m , e−j(ωb+d−1+D)τ1,m , . . . , e−j(ωb+d−1+(P−1)D)τ1,m ]T,

ud = [u(ωb + d − 1), u(ωb + d − 1 + D), . . . , u(ωb + d − 1 + (P − 1)D)]T.

where ωb is the lower bound angle frequency of the cross-power spectrum bandwidth of the two
signals, which can be obtained by calculating the Gx1xm(ω) and setting the threshold for detection.
D is the uniform extraction interval that constitutes the observation vector, and P is the length of the
observation vector, which needs to be met P > D and ωb + PD − 1 < 2L − 1. Then the normalized
cross-power spectrum vector model can be written as

H = αm · A + V (14)

where

H = [h1, h2, · · · , hD]

A = [a1(τ1,m), a2(τ1,m) · · · , aD(τ1,m)]

V = [u1, u2, · · · , uD] .

It can be seen that the normalized cross-power spectrum model is equivalent to the parametric
model of line spectra. Therefore, the method of super-resolution spectrum estimation can be applied
to estimate the time delay, such as MUSIC algorithm. The covariance matrix of H is

R = E[HHH] (15)

It can be divided into signal subspace US and noise subspace UN by performing the EVD of
covariance matrix R like

R = US�SUH
S + UN�NUH

N (16)

where, �S and �N represent the diagonal matrix composed of corresponding eigenvalues. Similar to
the derivation of MUSIC algorithm, ad(τ1,m) is orthogonal to UN, i.e.,

ad
H(τ1,m)UN = 0 (17)

According to the orthogonal relation, the spectral function of time delay estimation is obtained

Pmusic(τ1,m) = 1
aH

d (τ1,m)UNUH
Nad(τ1,m)

(18)

Then τ̂1,m, m = 2, 3, . . . , M can be derived from the maxima of Pmusic(τ1,m) by one-dimensional
search on τ1,m.

As a matter of fact, the subspace-based TDE methods need a wide time frame search, while
direction of arrival (DOA) estimation only requires an angle search of −180° to 180°. Moreover, the
search interval of MUSIC method in [26] is less than 1/fs to get better estimates than GCC method,
where fs is the sampling frequency. Besides, the fact that the calculated TDE using GCC is always
integer multiple of the sampling period. It is not guaranteed that the actual time delay will fall exactly
at the sampling point. In short, the theoretical best estimation is either

⌊
τ1,m · fs

⌋
or

⌈
τ1,m · fs

⌉
, which
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always has estimated biases. The SDC algorithm in [24] searches for a tiny time delay compensation for
more accurate estimation. Whereas, these approaches require multiple searches within a time orderly to
get the optimal compensation, which greatly increases the calculated amount. Unlike them, the GCC-
PHAT method estimating time differences is considered that are close to the real ones. Hence, the first-
order Taylor expansion is performed on the initial TDEs to get the closed-form offset compensation.

3.3 Closed-Form Offset Compensation
Since the GCC method cannot overcome the limitation that the resolution is the sampling period,

the time delay τ̂ ini
1,m obtained in the Section 3.1 is off the exact value, so we need to compensate it.

The orthogonal relation between noise characteristic vector UN and delay vector ad(τ1,m) obtained in
Section 3.2 can be obtained as follows:

UH
Nad(τ1,m) = 0 (19)

Next, we apply the first order Taylor expansion to ad(τ1,m) so we can get

ad(τ1,m) ≈ atd(τ̂
ini
1,m) + ∂ad(τ̂

ini
1,m)

∂τ̂ ini
1,m

· ξm (20)

where τ̂ ini
1,m is initial TDE from Eq. (7), and ξm = τ1,m − τ̂ ini

1,m, then Eq. (19) is rewritten as

UH
N

(
ad(τ̂

ini
1,m) + ∂ad(τ̂

ini
1,m)

∂τ̂ ini
1,m

· ξm

)
= 0 (21)

The offset ξm that is the difference between true time delay and initial estimated time delay can be
calculated via LS.

ξ̂m = −
(

UH
N

∂ad(τ̂
ini
1,m)

∂τ̂ ini
1,m

)+

UH
Nad(τ̂

ini
1,m) (22)

By compensating offset ξ̂m, high precision delay estimation can be calculated as

τ̂1,m = τ̂ ini
1,m + ξ̂m, m = 2, 3, · · · , M (23)

In most cases, iterations are necessary during Taylor expansion method implementation. Fig. 2
depicts the iterative process of the proposed method in detail. The number of iterations is indicated
by i, whose value is determined by the residual. For example, if the compensation value approaches
zero, the iteration should be stopped at this time. After iteration, high-precision TDE can be obtained.
Furthermore, the complexity of this method after iteration is also low, as will be discussed in detail
below.

Then we list the corresponding hyperbolic equations after acquiring more accurate TDEs based
on Eq. (23) via

c · τ̂1,m =
√

(x − xm)
2 + (y − ym)

2 + (z − zm)
2 −

√
(x − x1)

2 + (y − y1)
2 + (z − z1)

2 (24)

where c is the wave propagation speed. It is well known that the Chan algorithm [27] tends to be affected
by the accuracy of TDEs, we can derive an optimal location estimation based on the improvement
of TDEs.
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Figure 2: Flow chart of the proposed method with iterations

3.4 Detailed Procedures
Generally, the method in this paper mainly includes the following steps:

1) Select the received signal x1(t) as reference signal, then use the GCC-PHAT method to calculate
initial TDE τ̂ ini

1,m by Eq. (7).

2) The TDE model is derived from the normalized cross-power spectrum of observed signals as
Eq. (14), and the corresponding noise subspace UN is obtained by eigenvalue decomposition
of covariance matrix from Eq. (16).

3) According to the orthogonal relation of UN and ad(τ1,m) which contains initial TDE, just like
Eq. (19), the first-order Taylor expansion is performed on ad(τ1,m) in Eq. (20), then figure up
the closed-form offset compensation ξ̂m by Eq. (22) on the basis of LS.

4) Calculate the fine time delay estimations τ̂1,m via Eq. (23), then establish corresponding hyper-
bolic equations, and finally derive the source position estimation through the Chan algorithm.

4 Performance Analysis
4.1 Complexity Comparison

This section is presented to discuss the computational complexity of different methods. The
computation cost of GCC-PHAT is about O((2M − 1)L logL

2 +(M − 1)L)), where L is the number
of sampling points. The computation of SDC is record as O(L logL

2 +J(M − 1)(2L logL
2 +3L)), where

J denotes the number of searches within a sampling interval. For the MUSIC, the complexity is
O((2M−1)(L logL

2 +L)+(M−1)(P3+D2P)+Q(M−1)P(2P−1)), where P denotes number of spectral
peak searches. The computational complexity of the proposed method is O((2M − 1)L logL

2 +ML +
(M−1)(P3+D2P)+i(M−1)(2P2+P)), where i is the number of iterations. Specifically, calculating the



2130 CMES, 2023, vol.134, no.3

initial TDE τ̂ ini
1,m requires O((2M−1)L logL

2 +(M−1)L)) using GCC-PHAT method and adding closed-
form offset compensation costs O(L + (M − 1)(P3 + D2P) + i(M − 1)(2P2 + P)). The computational
complexity of compensation depends on EVD in Eq. (16) and LS in Eq. (22).

Fig. 3 demonstrates computational complexities comparison among the GCC-PHAT, SDC,
MUSIC, and proposed method under the condition that L = 2048, J = 10, Q = 200, D = 50,
P = 50, i = 2. Here we select different values of M to compare. It is observed that the complexity of the
proposed method is greatly lower compared to the SDC and MUSIC methods. Even after iterations,
the proposed method still has a low complexity, which commendably verifies the superiority of this
method.
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Figure 3: The comparison of complexity among different methods

4.2 Simulation Results
This part mainly presents simulation experiments to test the methods. Assuming that the nodes

number is M = 3, their positions in the cartesian coordinate are q1 = (100, 200), q2 = (500, 1000),
q3 = (1500, 1500), separately. Position of the source is u = (35, 170). All of these coordinates are in
meter. Here the source transmits a LFM signal with time-width t = 5×10−6 s and signal bandwidth B =
30 MHz. Let root mean square error (RMSE) measure the estimated performance of each method,
the RMSE can be expressed as

RMSE =
√√√√ 1

K

K∑
i=1

(τ̂i − τ)
2 (25)

where K is Monte-Carlo simulation times, τ represents actual time delay and τ̂i represents estimated
time delay of the i-th Monte-Carlo experiment. For each simulation, 1000 Monte Carlo experiments
are achieved.

Fig. 4 illustrates the RMSE performances of the TDE algorithms vs. SNR, including the GCC,
MUSIC, SDC, and the proposed method. Experiments are conducted with the setting sampling
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frequency fs = 125 MHz, and sampling points L = 2048. As can be seen from Fig. 4, the MUSIC
method changes greatly with the increase of SNR, which is sensitive to SNR and sampling points.
Although the SDC method is better than the GCC method, it still has the defect of unsearchable
interval. The proposed method not only improves the performance of estimation accuracy, but also
has the advantage of low complexity.
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M
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E
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GCC
MUSIC
SDC
proposed

Figure 4: TDE performance comparison versus SNR

Meanwhile, the time delay estimation comparison of different methods between signal source
arrival at q3, q2 and reference node q1 is shown in Fig. 5, where τq2q1

= 2.9326 × 10−6 s, τq3q1
=

6.3569 × 10−6 s. The horizontal axis in the figure represents the time delay. It shows the time delay
values estimated by each method, among which the proposed method successfully obtains the best
estimation results by using offset compensation.

5 Real-World Testing

In this paper, the measured data collected in real-world experiments is used to further prove the
validity of the proposed method. As shown in Fig. 6, there are three anchors in the campus namely
anchor 1, anchor 2, and anchor 3, and the source is placed at the playground. In the experiment,
the source transmits signals of various frequencies and modulation modes, which are received by the
anchors. The computer remotely connects the three anchors to convert the collected data into the
common Excel type for convenient data reading.

To process the collected measured data, we choose anchor 3 as the reference anchor, and then
estimate the time differences among the signal radiation reaching the anchor 3 and others. The
radiation source is a wideband signal modulated by QPSK, the center frequency is 700 MHz with
30 MHz bandwidth, and the sampling frequency is fs = 125 MHz with L = 32508 sampling points.
Fig. 7 is a comparison of the actual time delay and the estimated time delay obtained by different
methods. It is demonstrated in Fig. 7 that the time delay using the proposed approach is closer to the
real value, which illustrates that the proposed approach is superior to other approaches.
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Figure 5: Time delay estimation comparison of different methods (a) Time delay τ q2q1 (b) Time delay
τ q3q1

Figure 6: Actual test scenario of source and three anchors
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Figure 7: The TDEs based on measured data (a) Time delay τ 1,3 (b) Time delay τ 2,3

Fig. 8 is a coordinate chart of the positioning result. We choose anchor 3 as the reference origin to
establish a two-dimensional coordinate system. The Chan algorithm [27] is used to locate the estimated
signal source based on the time delay processed by the measured data. The red five-pointed star in
the figure represents the actual source location, and the blue triangle represents the estimated source
position based on the approach proposed in this paper. As is demonstrated from Fig. 8 that the two
signs are very close to each other, indicating that the proposed method is practical.
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Figure 8: Actual test scenario of source and three anchors

Table 1 shows the time delay estimation errors of the four methods among reference node and
other nodes. It can be seen that the TDE performance of the method proposed in this paper is closer
to the actual time delay compared with other methods.
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Table 1: Estimation error (Unit: ns)

Methods Time delay τ1,3 Time delay τ2,3

proposed 2.07592955890347 −1.08428903505303
MUSIC 8.66166432759801 −1.79276782595522
SDC 12.6616643275980 2.20723217404471
GCC 16.6616643275980 6.20723217404472

6 Conclusion

This paper presents a high precision TDE method based on closed-form offset compensation. The
initial TDEs are estimated by the GCC method. Then we make use of the orthogonality of the noise
subspace and the delay vector to obtain equation. To compensate the error caused by limited resolution
in GCC, the first-order Taylor expansion is considered. The improved estimations are achieved by
adding closed-form offsets, which can be computed by simple LS. Simulation experiments show that
our method offers more accurate TDE results as well as lower computational complexity. Finally, we
make experiments under the real field condition, which demonstrates that our method provides high-
precision TDE.
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