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ABSTRACT

In this work, a consistent and physically accurate implementation of the general framework of unified second-order
time accurate integrators via the well-known GSSSS framework in the Discrete Element Method is presented. The
improved tangential displacement evaluation in the present implementation of the discrete element method has
been derived and implemented to preserve the consistency of the correct time level evaluation during the time
integration process in calculating the algorithmic tangential displacement. Several numerical examples have been
used to validate the proposed tangential displacement evaluation; this is in contrast to past practices which only
seem to attain the first-order time accuracy due to inconsistent time level implementation with different algorithms
for normal and tangential directions. The comparisons with the existing implementation and the superiority of the
proposed implementation are given in terms of the convergence rate with improved numerical accuracy in time.
Moreover, several schemes via the unified second-order time integrators within the framework of the GSSSS family
have been carried out based on the proposed correct implementation. All the numerical results demonstrate that
using the existing state-of-the-art implementation reduces the time accuracy to be first-order accurate in time,
while the proposed implementation preserves the correct time accuracy to yield second-order.
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1 Introduction

In order to numerically describe the behavior of granular materials (not continuous body)
represented as a collection of large number of distinct particles, the discrete/distinct element method
(DEM), proposed in [1], is being widely used for its ease of implementation and versatility. In the DEM
technique, each particle element can undergo large displacement and rotation, and the deformations
of individual particle elements are assumed to be small, compared with their displacements; hence
we can treat the elements as rigid bodies and the deformation is usually described in terms of the
relative normal displacement and the relative tangential displacement between the particles in contact.
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Consequently, the evaluation of those two displacements has a significant influence on both the
dynamic response of particles and the numerical accuracy of the simulation.

One of the common applications for the DEM is particle packing. Various packing methods using
DEM have been studied previously such as, Formation of a pile, i.e., sand piling process [2–6], pouring
or depositing particles under gravity [7–12]. The DEM particle packing is also used in pharmaceutical
field for powder tableting [13,14]. Another field of application using DEM is simulating particle flow;
and a commonly studied example is ball mill mixer simulation; some of which include, horizontally
rotating drums [15–18], tumbling ball mill [19–21]. Drum and mill are commonly used in industries
for mixing, drying or coating subjects; thus, there is extensive interest among researchers in this study.
Besides, the DEM is still studied and utilized in recent studies such as solid-liquid flow simulation [22],
impact disruption of cohesive soft sphere simulation [23], granular shear flows of dry flexible fibers
[24] and non-spherical complex granular simulation [25].

Furthermore, the DEM not only simulates granular flow, but it can also be used for solid body
analysis and assessing fracture as studied in [26]. Recently, the DEM has been expanded to be able
to solve multi-physics applications where granular particles interact with a continuous body, be it
structural or thermodynamics. An Extended Discrete Element Method (XDEM) has been proposed
in [27] which couples continuous body analysis method and DEM together without losing small scale
information from commonly used volume averaging concept. The XDEM allows those microscale
information from particles to accurately influence a macroscopic body. The XDEM opens up a wide
variety of possible physical applications in many fields of study.

In transient dynamic simulation of the DEM type problems, contact forces and particle motion
need to be evaluated and updated at every time step. The widely used time integrations in the DEM
numerical simulations include the explicit Euler method, fourth-order Runge-Kutta (RK-4) method,
and central difference method/velocity verlet method, etc. It is straightforward to implement these
methods in the DEM simulation; however, these explicit time stepping techniques possess several
numerical disadvantages in addition to the conditionally stable features; for example, the Euler
methods are first-order accurate in time, RK-4 method requires additional computations of high-
order derivatives of differential variables [28,29], and the central difference method is a non-dissipative
scheme, i.e., it cannot introduce numerical dissipation if one needs to. Also, past practices poorly
model the tangential physics of particle interactions. Recently, a unified time integration framework,
under the umbrella of the so-called generalized single-step single-solve (GSSSS) family of algorithms,
including not only implicit, but also explicit single-step single-solve algorithms, which can also be
written in a linear three-step form, has been proposed in [30]. This single simulation tool kit, which
has been originally developed in the field of computational structural dynamics, encompasses not
only most existing algorithms that are second-order time accurate and are commonly used over
the past 50 years or so, but it additionally inherits a wide variety of new implicit and explicit time
integration schemes also with second-order time accuracy, including the explicit central difference
method as a special case. To implement these time integrations in DEM and preserve the numerical
accuracy of the algorithms, the contact force is required to be evaluated in a consistent way with
the selected time integrations in both normal and tangential directions. According to our knowledge,
most of the existing literature have been embedding the first-order accurate updating evaluation of
tangential displacement into the first/second-order accurate time integrations. The specifics are shown
in Section 2, leading to reduced accuracy.

In this work, the main objective is to show the consistent implementation of the GSSSS family
of algorithms to the simulation of granular assemblies with DEM while retaining all the advantages
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of numerous methods within the present framework of algorithms. It is worthy to mention that one
major drawback of the DEM technique, as well as the other particle based methods or meshless
methods [31–35], is contact detection or neighboring particle search. To circumvent this issue, the
linked list is employed to detect the contacting neighbor particles. In addition, Open Multi-Processor
(Open MP) is implemented to reduce the simulation computational time. The outline of the rest of the
paper is as follows. Section 2 presents the basic theory of DEM formulations and both the linear and
the nonlinear model of contact forces and torques are presented in detail. The GSSSS unified time
integrators are highlighted in Subsection 2.2 and the specifics of the proposed consistent tangential
displacement evaluation is derived and compared with the existing tangential displacement evaluation
technique carefully. The effectiveness of the proposed consistent tangential displacement evaluation is
demonstrated and illustrated using simple numerical examples in Section 3. Finally, the conclusions
are drawn and presented in Section 4. This study shows that the DEM with explicit schemes within
the GSSSS family of algorithms achieves and consistently preserves second-order time accuracy; the
consistent time level implementation and preserving the second-order time accuracy for the presented
results for a wide variety of time integrators in the present unified framework include features such as
no overshoot in displacement or no overshoot in velocity or no overshoot in both displacement and
velocity for a given set of initial conditions of the particles and differs from algorithm to algorithm.

2 Discrete Element Method with the Explicit GSSSS Family of Algorithms
2.1 Basic DEM Formulations

DEM is a numerical simulation technique for a system of small “distinct” particles/elements,
such as powders and granular materials. For the sake of simplicity, we assume the shape of every
particle/element in a system is a disk in the two-dimensional Euclidean space E

2 or a sphere in the
three dimensional Euclidean space E3, although DEM can treat any shapes of elements in general, see
[36]. In DEM, we assume that each particle is rigid, i.e., no deformation; however, particles are allowed
to overlap slightly one another at the contact points.

Let qi(t) : [0, ∞) → R
ndim denote the position component vector of the ith particle (i =

1, 2, · · · , nele) with respect to the Cartesian coordinate frame B, where nele and ndim denote the number
of particles/elements in the system and number of dimension, respectively. Suppose that the ith and jth

particles are in contact at time t as shown in Fig. 1a. The overlap (penetration) between particle i and
j, which is denoted by nδij ∈ R, is defined as

nδij = (ri + rj) − dij (1)

where ri and rj denote the radii of the ith and jth particles, respectively; and dij is the center distance
between the particles i and j and dij := ‖qj − qi‖ = √

(qj − qi) · (qj − qi) is the center distance between
the particles i and j. We assume the overlap is sufficiently small relatively to the particle sizes. If the
inequality dij < ri + rj is met, the overlap nδij > 0 occurs; and the contact forces between patricles i and
j are taken into consideration. Define the unit normal vector between these particles as nij := qj−qi

‖qj−qi‖ =
qj−qi

dij
, ‖nij‖ = 1. The translational velocity component vectors of particles i and j (at the center points

Ci ∈ E
ndim and Cj ∈ E

ndim, respectively) with respect to B are given as the (total) time derivatives of the
position components vectors, i.e., vi = q̇i and vj := q̇j, respectively (�̇ ≡ d�/dt denotes the total time
derivative of �). Let ωi and αi denote the angular velocity and angular acceleration vectors of particle
i, respectively (for i = 1, 2, . . . , nele). Therefore, the velocity at point Pi ∈ E

ndim, as shown in Fig. 1a, vPi ,
can be written as vPi = vi + ωi × ri = vi + riωi × nij, where ri = rinij. Similarly, vPj , the velocity of point
Pj, can be written as vPj = vj + ωj × rj = vj − rjωj × nij, where rj = −rjnij. Hence, the relative velocity
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vector at point Pi with respect to point Pj is obtained as

vPi/Pj = vPi − vPj = vi/j + (riωi + rjωj) × nij (2)

where vi/j := vi − vj denotes the relative translational velocities of particle i with respect to j. Since the
projection of vPi/Pj parallel to nij is given as

nvPi/Pj = (vPi/Pj · nij)nij = (vi/j · nij)nij, (3)

the projection of vPi/Pj perpendicular to nij, which is obtained by subtracting nvPi/Pj from vPi/Pj , can be
written as

svPi/Pj = vPi/Pj − (vPi/Pj · nij)nij (4)

Particle i

Particle j

(a) Contact Description

Particle i

Particle j

(b) Kelvin-Voigt Model

Figure 1: (a) Pictorial illustration of particles i and j in contact; and (b) the Kelvin-Voigt model for
particles i and j in contact. O ∈ E

3 is an origin of a cartesian coordinate frame B for E3 with a right-
handed orthonormal basis for the associated vector space

Note that nvPi/Pj and svPi/Pj are the relative velocity vector of point Pi with respect to point Pj in the
normal (nij) and tangential (tij) directions, respectively. Substituting Eqs. (2) into (4) yields:

svPi/Pj = vi/j − (vi/j · nij)nij + (riωi + rjωj) × nij (5)

Hence, tij = svPi/Pj

||svPi/Pj
|| , ‖tij‖ = 1.

Similarly, we can derive the relative acceleration vectors of point Pi with respect to point Pj in
the normal (nij) and tangential (tij) directions. Since the accelerations at Pi and Pj are given as aPi =
ai + ωi × (ωi × ri) + αi × ri = ai + riωi × (ωi × nij) + riαi × nij and aPj = aj + ωj × (ωj × rj) + αj × rj =
aj − rjωj × (ωj × nij) − rjαj × nij, where ai ∈ R

ndim and aj ∈ R
ndim are the linear acceleration vectors of

particles i and j, respectively, the relative acceleration vector at point Pi with respect to point Pj may
be obtained as
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aPi/Pj = aPi − aPj

= ai/j + (riαi + rjαj) × nij

+ ri

[
(ωi ⊗ ωi) − (ωi · ωi)Indim

]
nij + rj

[
(ωj ⊗ ωj) − (ωj · ωj)Indim

]
nij (6)

where ai/j := ai − aj denotes the relative translational accelerations of particle i with respect to j, and
Indim

∈ R
ndim×ndim denotes the identity tensor. Hence, the relative acceleration vector of point Pi with

respect to point Pj in the normal (nij) and tangential (tij) directions are obtained as

naPi/Pj = (aPi/Pj · nij)nij and saPi/Pj = (aPi/Pj · tij)tij (7)

respectively.

Contact Forces and Torques

The resultant contact force and torque acting on particle i are defined as the summations of the
contact forces and torques, respectively, acting on particle i from all particles j( �= i) that are in contact
with particle i. The contact forces due to particle(s) j can be modeled as follows.

Linear Model: The contact force acting on particle i from particle j can be uniquely decomposed
into the contact forces in the normal direction (nij) and tangential direction (tij) as fij=nfij+sfij ∈ R

ndim.
In DEM, the contact forces are usually modeled by the Kelvin-Voigt model, as shown in Fig. 1b; hence,
both the normal and tangential contact forces on particle i due to particle j have the stiffness/spring
and damping terms, and the friction on the surface is also considered. For the normal contact force,
nfij, using the stiffness and damping constants in the normal direction, kn and ηn, respectively, we have

nfij = kn(−nδij) + ηn(−nvPi/Pj) = − [
kn(nδij) + ηn(vi/j · nij)

]
nij (8)

where nδij is the relative displacement vector between particle i and j in the normal direction, i.e.,
nδij ∈ R

ndim, may be defined as the displacement while the particles i and j are in contact for the time
interval, [tc1

, tc2
] ⊂ [0.∞), i.e.,

nδij =
∫ tc2

tc1

nvPi/Pj dt=nδijnij = [(ri + rj) − dij]nij (9)

The viscous damping coefficient ηn in Eq. (8) is usually selected as ηn = −2 ln CR

√
m̂ijkn

π2+(ln CR)2
, where

CR ∈ [0, 1] ⊂ R+ denotes the coefficient of restitution, and m̂ij, which is sometimes called the reduced
mass, is defined as

m̂ij := [
m−1

i + m−1
j

]−1 = mimj

mi + mj

(10)

Similarly, the tangential contact force, sfij, can be written as

sfij = ks(−sδij) + ηs(−svPi/Pj) (11)

where ks and ηs are the stiffness and damping coefficients in the tangential direction, respectively. The
tangential relative velocity, svPi/Pj , in the equation above is given by Eq. (5). The relative displacement
vector between particles i and j in the tangential direction, i.e., sδij ∈ R

ndim, may be defined as the
displacement while the particles i and j are in contact for the time interval, [tc1

, tc2
] ⊂ [0.∞), i.e.,

sδij =
∫ tc2

tc1

svPi/Pj dt (12)
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We usually take ηs 
 ηn unless otherwise the values of the damping coefficients are critical in the
simulation. If the condition ||sfij|| > μ||nfij||, where μ > 0 denotes the coefficient of friction, is met, the
“slip” between particles i and j on the surface at the contact point occurs, and therefore, the tangential
contact force, given in Eq. (11), is replaced with the frictional force, sfij = −μ||nfij||tij with nfij, given in
Eq. (8). Once we get all the contact forces, fij, acting on particle i, we can finally obtain the resultant

contact force on particle i as fi =
ni

cont∑
j �=i

fij, where ni
cont denotes the number of the particles that are in

contact with particle i at time t. On the other hand, the resultant torque on particle i can be written in

the form hi =
ni

cont∑
j �=i

ri×sfij.

Nonlinear Model: There exist several nonlinear models developed for DEM in the literature to
obtain more accurate, realistic simulation results. A common nonlinear model of DEM, proposed in
[37], is based on the classical Hertzian contact theory and Mindlin theory [38,39]. The normal contact
force, nfij, based on the Hertizian contact theory for two spheres, is still defined in the same form as
Eq. (8),

nfij = −kn(nδij) − ηn(nvPi/Pj) (13)

However, as opposed to the linear model, nδij and stiffness kn are defined as

nδij = (
nδ

3/2
ij

)
nij (14)

kn = 4
3

√
r̂ijÊij (15)

with nδij, defined as in Eq. (1), r̂ij := [
r−1

i + r−1
j

]−1 = rirj

ri+rj
, and Êij :=

[
1−ν2

i
Ei

+ 1−ν2
j

Ej

]−1

= EiEj

(1−ν2
i )Ej+(1−ν2

j )Ei

where Ei and νi are the Young modulus and Poisson ratio of particle i, respectively. For two spherical
particles with the same radius (r = ri = rj) and the same material properties (E = Ei = Ej and
ν = νi = νj), the stiffness defined in Eq. (15) may be written in the form, kn = E

√
2r

3(1−ν2)
. In the case of a

spherical particle i with a wall, we assume rj → +∞, i.e., r̂ → ri; and thereby, kn = 4
√

ri
3

EiEwall
(1−ν2

i )Ewall+(1−ν2
wall)Ei

,

where Ewall and νwall are the Young modulus and Poisson ratio of the wall. According to [37], the normal
damping coefficient ηn in Eq. (13) is suggested to be ηn = κ

√
m̂ijkn

(
nδ

1/4
ij

)
, in which m̂ij is as defined in

Eq. (10). For κ > 0, which can be regarded as dependent on the coefficient of restitution between two
sphere particles or between a sphere particle and a wall, it is to be determined empirically by analysts
(Usually, α ∈ [0.01, 1]). Note that the nvPi/Pj in Eq. (13) is still defined as given in Eq. (3).

On the other hand, the tangential contact force, sfij, for a nonlinear model is defined, based on
the Hertzian contact theory and Mindlin theory [38,39] with the assumption that “no-slip” is allowed
between two sphere particles i and j, as

sfij = −ks(sδij) − ηs(svPi/Pj) (16)

with

ks =
[

1
8bij

2 − νi

Gi

+ 2 − νj

Gj

]−1

, bij :=
√

r̂ij nδij (17)

where Gi := Ei/[2(1+νi)] is called the shear modulus of particle i, and bij is the radius of a contact area
between sphere particles i and j. For two sphere particles with the same radius (r = ri = rj) and the
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same material properties (E = Ei = Ej and ν = νi = νj, i.e., G := Gi = Gj), we have ks = 2G
2−ν

√
2r

(
nδij

)
.

In the case of the contact between sphere particle i and a wall, we assume the wall (rj → +∞) is rigid,
i.e., Ej → +∞, since the elastic tangential displacement of the wall due to the contact with particle

i is usually negligible; hence, Eq. (17) leads to the following expression: ks = 8Gi
2−νi

√
ri

(
nδij

)
. For most

applications, we take the same value for the normal and tangential damping coefficients: ηs 
 ηn.

2.2 Transient Analysis: A Consistent Time Level Implementation of Unified Time Integrators
Applying the Newton-Euler equation to particle i for i = 1, 2, . . . , nele, we get

Miai = fappl
i (18)

Jiαi = happl
i (19)

where Mi = miIndim
∈ R

ndim×ndim, with the identity tensor Indim
∈ R

ndim×ndim, and ai ∈ R
ndim denote the mass

tensor and the acceleration vector of particle i, respectively; and Ji ∈ R
ndim×ndim and αi ∈ R

ndim denote
the inertia tensor (with respect to the center of mass) and the angular acceleration vector of particle i,
respectively. The right-hand side of Eq. (18), i.e., fappl

i ∈ R
ndim, is the applied force on particle i, and it

includes any force acting on the particle, including conservative and nonconservative forces, as well as
the contact forces described in the previous subsection. Likewise, happl

i ∈ R
ndim in Eq. (19) is the applied

torque vector of particle i.

In a unified format for all particles (i = 1, 2, . . . , nele) in the system, Eqs. (18) and (19) can be
written in the form Ma = fappl and Jα = happl, respectively, where M = diag(M1, M2, . . . , Mnele

) ∈
R

N×N, J = diag(J1, J2, . . . , Jnele
) ∈ R

N×N, a = (aT
1 , aT

2 , . . . , aT
nele

)T ∈ R
N, α = (αT

1 , αT
2 , . . . , αT

nele
)T ∈ R

N,
fappl = (fappl T

1 , fappl T
2 , . . . , fappl T

nele
)T ∈ R

N, h = (happl T
1 , happl T

2 , . . . , happl T
nele

)T ∈ R
N with N := ndimnele. Or simply,[

M 0
0 J

]
︸ ︷︷ ︸

∗M

(
a
α

)
︸ ︷︷ ︸

∗a

=
(

fappl

h

)
︸ ︷︷ ︸

∗f

∀t ∈ [0, ∞) (20)

Time Discretization

Consider the temporal discretization of the governing equations for a time interval I = [t0, tf ] ⊂
[0, ∞) split into subintervals, i.e., I = [t0, tf ] = ⋃f −1

n=0[tn, tn+1], in which t0 and tf denote the initial and
final time levels of simulation, respectively. The time step size is defined as �t := tn+1 − tn > 0, and it is
assumed to be constant for simplicity. Temporally discretizing Eq. (20) by way of the normalized time
weighted residual methodology [40] results in the following algorithmic framework:
∗M∗ãn+1 = ∗f(∗q̃n+1,∗ṽn+1, tn+W1

) (21)

where the algorithmic acceleration, velocity, and configuration vectors are defined as
∗ãn+1 = ∗an + W1	6�

∗an+1

∗ṽn+1 = ∗vn + �tW1
∗an, ∗q̃n+1 = ∗qn + �tW1

∗vn + �t2

2
W2

∗an
(22)
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respectively, for n = 0, 1, . . . , f − 1. The associated update equations to advance from t = tn to t = tn+1

are

∗qn+1 = ∗qn + �t∗vn + �t2

2

∗
an + λ3�

∗an+1�t2

∗vn+1 = ∗vn + �t∗an + �tλ5�
∗an+1, ∗an+1 = ∗an + �∗an+1

(23)

The algorithmic parameters, also known as the DNA [discrete numerically assigned] markers, are
defined with the input scalar algorithmic parameters (ρmin

∞ , ρmax
∞ , ρs

∞), denoting the minimum principal
root, the maximum principal root, and the spurious root [41], respectively, together with η, as

W1 = W2 = 1
1 + ρs

∞
, W1	6 = 2 + ρmin

∞ + ρmax
∞ + ρs

∞ − ρmin
∞ ρmax

∞ ρs
∞

(1 + ρmin
∞ )(1 + ρmax

∞ )(1 + ρs
∞)

λ3 = η

(1 + ρmin
∞ )(1 + ρmax

∞ )
, λ5 = 3 + ρmin

∞ + ρmax
∞ − ρmin

∞ ρmax
∞

2(1 + ρmin
∞ )(1 + ρmax

∞ )
(24)

for the U0(ρmin
∞ , ρmax

∞ , ρs
∞) family, and

W1 = 3 + ρmin
∞ + ρmax

∞ − ρmin
∞ ρmax

∞
2(1 + ρmin

∞ )(1 + ρmax
∞ )

, W2 = 2
(1 + ρmin

∞ )(1 + ρmax
∞ )

W1	6 = 2 + ρmin
∞ + ρmax

∞ + ρs
∞ − ρmin

∞ ρmax
∞ ρs

∞
(1 + ρmin

∞ )(1 + ρmax
∞ )(1 + ρs

∞)
, λ3 = η

2(1 + ρs
∞)

, λ5 = 1
1 + ρs

∞
(25)

for the V0(ρmin
∞ , ρmax

∞ , ρs
∞) family. The U0 and V0 represent zero-order overshooting behaviors in the

configuration and the velocity fields, respectively. Note that no two schemes within the algorithmic
framework can have the same DNA markers that completely distinguish one scheme from another. Any
scheme within this framework is guaranteed to be second-order accurate by approximating ∗qn≈∗q(tn),
∗vn≈∗ .

q(tn), and ∗an≈∗ ..
q(tn−φ) at the time step n where the acceleration time level shifting parameter is

defined by φ := W1	6−W1; see [42] for the details. At time t = t0, the acceleration need to be computed
from ∗a0 = ∗M−1∗

f(∗q0,∗v0, t0) where ∗q̃0 = ∗q(t0) and ∗ṽ0 = ∗ .
q(t0) are given initial conditions. In DEM

simulation, we update from n to n + 1 via Eqs. (21)–(23) after evaluating the force vectors, as shown
in the previous subsection, at time tn.

Algorithmic Evaluation of sδij :

Suppose particles i and j are in contact during a time interval Ic = [tc1
, tc2

] ⊂ I and split it into
subintervals, Ic = [tc1

, tc2
] = ⋃c̄

n=c1
[tn, tn+1] with tc+1 ≡ tc2

. Following the temporal discretization as given

in Eq. (21), the tangential contact force, sf̃ij, is evaluated at q = q̃n+1, v = ṽn+1, and ω = ω̃
n+1. That is,

the algorithmic tangential force may be written as

sfij

∣∣
q̃n+1, ∗ ṽn+1 = :sf̃

n+1

ij = ks(−sδ̃
n+1

ij ) + ηs(−sṽ
n+1

Pi/Pj
) (26)

where sṽ
n+1

Pi/Pj
and sδ̃

n+1

ij are the algorithmic relative tangential velocity vector and the algorithmic relative

tangential displacement vector defined as follows: sṽ
n+1

Pi/Pj
:= ṽn+1

i/j −(ṽn+1

i/j ·ñn+1

ij )ñn+1

ij +(riω̃
n+1
i +rjω̃

n+1
j )×ñn+1

ij ,

where ṽn+1

i/j = vn
i/j + �tW1	4an

i/j, ñn+1

ij = q̃j−q̃i

‖q̃j−q̃i‖ , and

sδ̃
n+1

ij =
∥∥∥�

s δ̃
n+1

ij

∥∥∥ t̃
n+1

ij (27)
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where
�
s δ̃

n+1

ij : =sδ
n
ij + �tW1	1 svn

Pi/Pj
+ �t2W2	2 san

Pi/Pj
(28)

t̃
n+1

ij = sṽ
n+1

Pi/Pj

||sṽ
n+1

Pi/Pj
|| (29)

Note that sδ
n
ij in Eq. (28) is given by

sδ
n
ij = ∥∥�

s δ
n
ij

∥∥ tn
ij (30)

where

�
s δ

n
ij : =sδ

n−1
ij + �tsvn−1

Pi/Pj
+ �t2

2 san−1
Pi/Pj

+ �t2λ3�san
Pi/Pj

, �san
Pi/Pj

: =san
Pi/Pj

−san−1
Pi/Pj

(31)

tn
ij := svn

Pi/Pj

||svn
Pi/Pj

|| (32)

Remark

1. If the contact starts at time tn, i.e., t = tn = tc1
, we have sδ

n
ij = 0 in Eq. (28).

2. When sṽ
n+1

Pi/Pj
= 0, the algorithmic tangential unit vector, t̃

n+1

ij , defined by Eq. (29), becomes
singular. In this case, we assume that particle j is sliding on the surface of particle i, and

therefore use t̃
n+1

ij = �
s δ̃

n+1
ij∥∥∥∥�s δ̃
n+1
ij

∥∥∥∥
instead; and we have sδ̃

n+1

ij = �
s δ̃

n+1

ij . Similarly, if svn
Pi/Pj

= 0, use

tn
ij =

�
s δn

ij∥∥∥�s δn
ij

∥∥∥ instead of Eq. (32).

3. When slip occurs at the algorithmic time level tn+W1
∈ Ic, i.e., ‖sf̃

n+1

ij ‖ > μ‖nf̃
n+1

ij ‖, in which nf̃
n+1

ij

is the algorithmic normal contact force defined as nf̃
n+1

ij := −kn

[
(ri + rj) − ‖q̃n+1

j − q̃n

i ‖
]

ñn+1

ij −
ηn(ṽ

n+1

i/j · ñn+1

ij )ñn+1

ij , and the algorithmic tangential force sf̃
n+1

ij defined in Eq. (26) is replaced with

the following algorithmic frictional force, sf̃
n+1

ij = ks(sδ̃
n+1

ij ) = −μ‖nf̃
n+1

ij ‖t̃
n+1

ij . Therefore, the

algorithmic tangential displacement vector, sδ̃
n+1

ij , defined in Eq. (27), should be replaced with

sδ̃
n+1

ij = − μ

ks
‖nf̃

n+1

ij ‖t̃
n+1

ij . Similarly, in the case of ‖sf
n
ij‖ > μ‖nf

n
ij‖, employ sδ

n
ij = − μ

ks
‖nf

n
ij‖tn

ij instead
of Eq. (30).

4. The evaluations of �
s δ̃

n+1

ij and �
s δ

n
ij, as given in Eqs. (28) and (31), respectively, are crucial and

necessary to ensure the second-order accuracy of the family of algorithms in time. For the
central difference method [43], which is equivalent to the U0(1, 1, 0) scheme with η = 1, i.e.,
a scheme obtained by selecting (ρmin

∞ , ρmax
∞ , ρs

∞) = (1, 1, 0) with η = 1 in Eq. (24), the algorithm

simplifies to sf̃
n+1

ij = sf
n+1
ij = −ks(sδ

n+1
ij ) − ηs(svn+1

Pi/Pj
) with

sδ
n+1
ij =

∥∥∥∥sδ
n
ij + �tsvn

Pi/Pj
+ �t2

2 san
Pi/Pj

∥∥∥∥ tn+1
ij (33)

svn+1
Pi/Pj

=svn
Pi/Pj

+ �tsan
Pi/Pj

+ �t
2

�san+1
Pi/Pj

, �san+1
Pi/Pj

: =san+1
Pi/Pj

−san
Pi/Pj

(34)
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It is worth noting that the tangential acceleration is usually not included during the computations
of the tangential contact forces, i.e., for the central difference method, for example,

sδ
n+1
ij =

∥∥∥sδ
n
ij + �tsvn

Pi/Pj

∥∥∥ tn+1
ij

is inconsistently used instead of Eq. (33) of the most literature; in this case, the order of accuracy of a
scheme within the algorithmic framework presented reduces to only one.

5. For the evaluation of the tangential displacement sδij in Eq. (16) for the nonlinear model in the
discrete time system, the approach presented here may be applied in the same manner to ensure
the second-order time accuracy of the schemes.

3 Numerical Experiments and Discussion

To verify and validate the concepts described in the previous section, two numerical experiments
are given in this section. The main objective of Section 3.1 is to compare the numerical results
by traditional tangential displacement evaluation and the proposed consistent evaluation method
employing the Central Difference Method. It is worth noting that Central Difference Method is
the most widely used explicit second-order time accurate integrator in solving dynamic problems.
Therefore, we simply use it as the benchmark in the following simulations. The accuracy in time with
different tangential displacement evaluations are given as well. In Section 3.2, a simple 3D granular
cube falling problem is simulated with several selected second-order time accurate schemes from
the GSSSS unified time integrators. The numerical performances of different schemes with different
tangential displacement evaluations are discussed. The linked list algorithm is used to improve the
particle searching process and parallel computing is also used in this work. In addition, the calculation
time for the 3D case is provided to demonstrate the computational efficiency of the proposed method.

3.1 Validations
To valid our proposed approach and the DEM code, two cases are designed to test the performance

of the proposed tangential displacement evolution. Case I is designed to extract the tangential
displacement calculation in the general discrete element method. The influence of normal direction is
avoided in Case I via fixing a two dimensional disk with only initial angular velocity and constant
normal force. Case II gives a general ball falling problem with gravity and the comparisons of
traditional and consistent tangential displacement evolution.

Case I: The equation of the tangential motion can be derived to yield a second-order ODE
(ordinary differential equation) from Eq. (17), which has an analytical solution for the linear equation.
To test our new proposed tangential displacement evaluation method, a very simple and specific
physical problem is designed as a 2-D disk with fixed translational movement. As illustrated in Fig. 2
(left), although the normal force is involved, the tangential movement can be easily extracted. The
disk is fixed at the origin O, the initial angular velocity ω0 is set as 0.5 and the tangential stiffness ks

is 1,000. Both the proposed and traditional tangential displacement evaluation method are applied
with the central difference method, which has been proved to be equivalent as U0 (1, 1, 0) within the
GS4-family, is used in the simulation.
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Figure 2: Schematic of the problem. Left: Case I and right: Case II

The comparison of the results with different tangential displacement evaluation methods is given
in Fig. 3. Both the proposed consistent time level method and the traditional method show good
agreement with the analytical solutions in angular position, velocity and acceleration. In this part,
our interest is to simply show that the proposed method has the improved or same performance as the
traditional method in the sense of capturing physical phenomena.
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Figure 3: The time history of tangential motion with different tangential displacement evaluation
methods

Case II: To complete the validation of our code, a general single ball falling problem shown in
Fig. 2 (right), is simulated by different tangential displacement evaluation methods. To be consistent
with the previous numerical simulation case, the central different method is used to solve the governing
equation. The time history of ball’s translational trajectory of the center point and rotational motion
are given in Fig. 4, and the time convergence plots for both methods are given in Fig. 5. The top row
in Fig. 5 provides the convergence plots of position/angular displacement (D), velocity (V), and accel-
eration (A) evaluated by the central difference scheme with the traditional tangential displacement
evaluation method, while the bottom row provides the one evaluated by the GSSSS U0(1, 1, 0) with the
proposed tangential displacement evaluation method. As expected, the results of both methods show
excellent agreement as shown in Fig. 4. However, as Fig. 5 (top) shows, the order of convergence in time
for the traditional method is only one, in sharp contrast to the proposed method which is of order two.
In other words, the well-known second-order accurate central difference method obtains first-order
convergence in the case when using the traditional tangential displacement evaluation method. Hence,
the superiority of the proposed consistent tangential displacement evaluation over the traditional
method is evident with respect to the time accuracy; it also yields improved physics, which can be
observed for applications where the tangential effects dominate.
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Figure 4: The time history of ball’s motion with different tangential displacement evaluation methods:
(a) Translational motion of ball’s center (b) Angular displacement
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Figure 5: Time accuracy plots of the central difference method with traditional tangential displacement
evaluation method (top) and consistent tangential displacement evaluation method (bottom)

3.2 Numerical Experiment
Problem Description: The numerical example chosen in this section is that of a simple granular

cube drop of particles in three-dimensional space, as shown in Fig. 6. The granular cube has
dimensions of 0.3 length × 0.3 width × 0.3 height, and the container has dimensions of 0.6 length
× 0.6 width × 0.8 height with a cube shape hole (0.2 length × 0.2 width × 0.2 height) at the bottom.
Initially, the particles are packed together and the particle distance (l) and diameter of particles are set
to be 0.02, and the total number of particles is 3,375. The mass of each particle is 0.008. The normal
and tangential stiffness are chosen as kn = 1,500 and ks = 100, respectively.
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Figure 6: Schematic of the problem (Numerical example)

In this section, the consistent time level implementation and preserving the second-order time
accuracy for the presented results in this section are as follows for a wide variety of time integrators in
the present unified framework. They yield no overshoot in displacement or no overshoot in velocity
or no overshoot in both displacement and velocity for a given set of initial conditions:

• CDM-T: Central Difference Method with traditional tangential displacement evaluation. Note
that the central difference method has been proved to be equivalent to the GS4-II U0-based
family with (ρmin

∞ , ρmax
∞ , ρs

∞) = (1, 1, 0).

• CDM-C: Central Difference Method with consistent tangential displacement evaluation.

• V0(1, 1, 0)-C: GS4-II V0-based family with (ρmin
∞ , ρmax

∞ , ρs
∞) = (1, 1, 0) and consistent tangential

displacement evaluation.

• U0/V0(0, 1, 0)-C: GS4-II U0-based family or V0-based family with (ρmin
∞ , ρmax

∞ , ρs
∞) = (0, 1, 0)

and consistent tangential displacement evaluation.

Numerical Setting and Computational Cost

In order to capture particle contacts, the time step size used in DEM type simulations is always
required to be very small. This implies that the implicit time integration schemes are not necessary
in the general DEM simulations. Therefore, in this work, all the schemes listed are explicit and the
time step size is �t = 0.0001 within the total simulation duration from t0 = 0 to tf = 2. As
mentioned before, the neighborhood particle-detecting process in any particle-based method is the
most expensive step in the simulation. In this paper, the linked list algorithm is used to optimize the
neighboring particle searching and decrease the computational time, and parallel computing is also
applied to improve the computational performance of our code. Our 3D cases were run on a 1.80 GHz,
Intel(R) Core(TM) i7-8565K CPU with 8 GB RAM. Table 1 summarizes the specific timings used for
all our 3D examples and shows that our proposed GSSSS family of algorithms does not increase
computationally cost in comparison to the traditional algorithms, while our proposed method can
obtain better computational accuracy (see Fig. 5).
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Table 1: Parameters that vary across simulations: n: number of particles, kn: normal stiffness coeffi-
cient; ks: tangential stiffness coefficient; Time: average time per 100 time steps

Schemes n kn ks Time

CDM-C (Fig. 7) 3375 1500 100 0.740
CDM-T (Fig. 8) 3375 1500 100 0.732
V0 (1, 1, 0)-C (Fig. 9) 3375 1500 100 0.725
U0/V0 (0, 1, 0)-C (Fig. 10) 3375 1500 100 0.737

Numerical Results and Discussion

Three-dimensional snapshots with the granular velocity filed values at six different times (t =
0.20, 0.25, 0.30, 0.40, 0.50 and 1.25) by different schemes are shown in Figs. 7 to 10, respectively. The
specifics of particle filling process is observed from 0.2 to 0.5 and the final particle distribution is
obtained at time 1.25. The process of particle filling the bottom space corresponds to the evolution of
total kinetic energy of the system shown in Fig. 11 (left). As expected, the results of different schemes
are very close at each time and the particle distribution shows good physical reliability of the simulation
results. In order to better understand the dynamic responses of the granular cube falling process and
the computational performance of different schemes, the time history of the total kinetic energy with
different schemes are given in Fig. 11 (left). Because the central portion of the granular cube keeps
charging into the bottom empty space, the total kinetic energy does not decrease immediately, but a
short duration (from 0.17 to 0.23) of energy relaxing instead. After the bottom space is filled with
particles, the total kinetic energy decreases sharply though some particles on the top layers still keep
bouncing. As the frictional force and damping are considered in the particle contact model, the total
kinetic energy converges to zero as time goes.

Figure 7: Velocity fields at different time by CDM-C
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Figure 8: Velocity fields at different time by CDM-T

Figure 9: Velocity fields at different time by V0(1, 1, 0)-C
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Figure 10: Velocity fields at different time by U0/V0(0, 1, 0)-C

0.0 0.5 1.0 1.5 2.0
0

40

80

120

160

T
ot

al
K

in
et

ic
E

ne
rg

y

Time

CDM-T
CDM-C
V0(1,1,0)-C
U0/V0(0,1,0)-C

1E-5 1E-4
1E-11

1E-9

1E-7

1E-5

lo
g(

E
rr

or
)

log(Time Step Size)

q
v
a

1

Figure 11: Left: total kinetic energy. Right: time accuracy plots of central different method with
traditional tangential displacement evaluation

The time accuracy for translational and rotational position, velocity and acceleration of the central
difference method with the traditional tangential displacement evaluation shows only first-order time
accuracy in Fig. 11 (right). However, alternately, Fig. 12 shows the second-order time accuracy for
translational position, velocity and acceleration of different time integration schemes selected within
the GS4-II family with the proposed consistent tangential displacement evaluation. All the schemes
show the second-order time accuracy in both translational and rotational motion. It is to be noted
however, that using central difference method in solving the second-order ODE, it is supposed to yield
second-order accuracy in time. According to the time convergence order from different tangential
displacement evaluations, it implies that the drawback via the traditional tangential displacement
evaluation in DEM type method is not at the same time level as the algorithm and has significant
influence on the whole system’s time accuracy. In other words, only when the tangential displacement
evaluation is evaluated at a consistent time level corresponding to the selected time integration scheme
within the unified framework described, the results are completely reliable and the time integration
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schemes are implemented correctly and efficiently maintaining second-order time accuracy with
improvement in physics.
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Figure 12: Time accuracy plots of different selected schemes within GS4-II family: q, v and a are
translational position, velocity and acceleration, respectively. θ , ω and α are angular displacement,
velocity and acceleration, respectively

4 Concluding Remarks

In this work, a consistent tangential displacement evaluation approach is proposed under the
framework of the unified second-order time integrators GS4-II family for improving discrete element
method (DEM) simulations. The newly proposed approach is derived and designed to maintain
the simplicity and generalization of the GS4-II family. Comparing it with the traditional tangential
displacement evaluation method, the proposed consistent time level implementation approach can
be easily implemented and yields the correct algorithmic tangential displacement at the same time
level as in the time integrations via using the same parameters (ρmin

∞ , ρmax
∞ , ρs

∞) as the GS4-II family.
The improved time accuracy of both the translational and rotational motions by using the proposed
method gives second-order accuracy in time, which is consistent with the time integration schemes;
whereas, the traditional second-order time integration method such as the central difference can only
obtain first-order accuracy in time via using the traditional tangential displacement evaluation.
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