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ABSTRACT

A novel continuum-based fast projection scheme is proposed for cloth simulation. Cloth geometry is described by
NURBS, and the dynamic response is modeled by a displacement-only Kirchhoff-Love shell element formulated
directly on NURBS geometry. The fast projection method, which solves strain limiting as a constrained Lagrange
problem, is extended to the continuum version. Numerical examples are studied to demonstrate the performance
of the current scheme. The proposed approach can be applied to grids of arbitrary topology and can eliminate
unrealistic over-stretching efficiently if compared to spring-based methodologies.

KEYWORDS
Cloth simulation; isogeometric analysis; strain limiting; fast projection

1 Introduction

Cloth simulation has many practical applications, such as computer-aided garment design,
character animation, and electronic e-commerce. Terzopoulos et al. [1] were among the first to develop
a physical model for use in the simulation of cloth. Breen et al. [2–4] developed a spring-based model,
and their initial motivation was to accurately represent complex fabric behaviors using nonlinear
springs. Provot [5] modeled cloth by employing linear springs characterized by low stiffness and
he achieved acceptable results with high efficiency. Eischen et al. [6] modeled cloth using finite-
element shell theory. Baraff et al. [7] proposed to employ implicit time integration to increase the
time step, while the Newton iteration was suggested to be halted at the first step to achieve high
efficiency. Choi et al. [8] proposed an immediate buckling model to ensure that the Jacobi matrix
in the implicit method was definite. Bridson et al. employed a velocity Verlet algorithm [9] to increase
the time increment. In addition to the cloth model, the collision response was also largely improved.
Baraff et al. [7] simulated collision as a velocity constraint and Bridson et al. [10] proposed a decoupled
bullet-proof collision scheme.

The garment industry is now beginning to use virtual simulation for prototyping [11,12]. However,
as reported in [13], there are still many challenges in the application of virtual simulation. One of the
challenges is to develop a high-efficiency continuum approach. The continuum approach has many
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advantages over the spring-based approach. For example, the material properties of the continuum
approach are independent of the topology of the grid. Another attraction of the continuum approach
is that many studies of material and geometric nonlinearity have been conducted in this field. However,
conventional finite-element shell theory has low efficiency due to two reasons: (1) it needs more degrees
of freedom for the same grid, and (2) the collision response is more complex.

Another challenge of cloth simulation is how to efficiently enforce realistic strain on cloth. One
of the characteristics of fabric is that the bending stiffness is far lower than the in-plane stiffness. A
consequence of this property is that in-plane deformation of practical cloth in most cases is negligible if
compared to the out-of-plane deformation. However, using high physical in-plane stiffness introduces
significant difficulty in simulation. For explicit methods, higher in-plane stiffness requires smaller time
increments. In Barraf et al. [7] semi-implicit method, the frictional damping is proportional to the
in-plane stiffness. Thus, to reduce the computational burden, in many practical cloth simulations, the
value of the in-plane stiffness is artificially reduced to enable the simulation of more complex problems
in reasonable time. However, this approach can introduce unrealistic overstretching of the cloth.

To overcome this undesired side effect, Provot [5] proposed an explicit method of strain limiting
that restores the over-stretched springs by adjusting the particle position directly. Because adjusting
the position of one spring may result in over-stretching of another spring, an iteration is required.
Both Jacobi and Gauss-Seidel iterations [10] are utilized, but neither one can guarantee convergence.
Implicit methods of strain limiting have also been proposed [4,14]. These approaches are mainly
based on the constrained Lagrange method and consider in-plane strain as a constraint condition.
Goldenthal et al. [15] proposed a fast projection method that can solve the constrained Lagrange
problem much more efficiently. The implicit method requires solving a linear system for each iteration,
but it can converge very quickly. The fast projection method in [15] constrains the spring length of
a weft and warp aligned quadrilateral grid, but this kind of grid is difficult to obtain for practical
garments. To obtain a grid-independent strain-limiting scheme, one must resort to a continuum model.
Studies of continuum-based strain limiting are limited at present. Thomaszewski et al. [16] proposed
explicit strain limiting for triangular elements.

Isogeometric analysis has been proposed to bridge computer-aided design (CAD) and analysis
seamlessly [17]. The IGA owns the salient features such as higher-order continuity and exact geometry
preservation etc., which provides an effective solution for problems that conventional finite element
methods are not proper qualified to solve [18–20], thus it has received much attention in many fields.
For cloth simulation, a systematic method is proposed by the authors [21]. This method uses the
rotational-free Kirchhoff-Love shell model [22,23], wherein CAD geometry is directly utilized in
analysis. Recent developments in cloth-like simulation involve large deformation shells or membrane
modeling [24–26]. The present work proposes a continuum version of a strain-limiting scheme by
applying the fast projection method, such that the shell model for cloth simulation can be solved
quickly with an acceptable resultant shape. Another advantage of this model is that it performs the
simulation directly on the NURBS surface, which is widely implemented in CAD software. This
property ensures the high fidelity of the simulated cloth and provides convenience of interactive design
in three-dimensional (3D) space.

The rest of this paper is organized as follows. Section 2 briefly reviews the rotation-free Kirchhoff-
Love Shell on a NURBS basis. Section 3 outlines the continuum-based fast projection method for
(trimmed) NURBS geometry. Finally, four example problems are solved to validate the proposed
approach and their results are presented in Section 4. Conclusions are presented in Section 5.



CMES, 2023, vol.134, no.3 1839

2 NURBS Kirchhoff-Love Shell

Kirchhoff-Love shell theory assumes the following:

• The normal to the undeformed middle surface remains straight and perpendicular to the
deformed middle surface.

• The transverse normal stress is small compared with other normal stress components and may
be neglected.

• The thickness of the shell is small compared to the other dimensions.

• The displacements of any given point on the shell are small in comparison to the thickness.

These assumptions are a good approximation for fabrics in which the energetic contribution
from transverse shear is negligibly small compared to the bending and in-plane energy. Hence, the
kinetics are completely characterized by the surface strain and curvature, which are determined by the
surface geometry. For numerical computation, the theory can lead to a displacement-only formulation,
which does not involve rotational degrees of freedom, thus increasing the efficiency of the method.
A Kirchhoff-Love shell element is not commonly used in traditional finite-element analysis because
constructing a C1 continuous surface is difficult for some element topologies. However, with NURBS
geometry, it is straightforward to construct surfaces of C1 or even higher-order continuity. For this
and other considerations, the NURBS Kirchkoff-Love shell is utilized for cloth modeling.

In the present NURBS Kirchkoff-Love shell element, the primary unknowns are the displace-
ments of the control points. No rotational degree-of-freedoms are introduced.

2.1 Kinematics
The NURBS formulation below follows that of Kiendl et al. [22]. We use the same set of NURBS

basis functions to parameterize the reference and current configurations of the cloth surface:

X =
n∑

I=1

NI(ξ
1, ξ 2)QI (1a)

x =
n∑

I=1

NI(ξ
1, ξ 2)qI (1b)

Here, the QIs are the reference coordinates of control points and the qI are the current coordinates.
The NIs are the basis functions of the NURBS surface. The knot parameters ξ = (ξ 1, ξ 2) serve
as the convected coordinates whereby a fixed pair ξ represents the same material point throughout
deformation. These two coordinates induce two convected surface basis vectors a1 = x,ξ1 and a2 = x,ξ2

spanning the tangent plane at every point of the surface. A line element in the current configuration is
thus represented as dx = a1dξ 1 + a2dξ 2. In the reference configuration, the surface bases are denoted
{A1, A2}, and a line element is given by dX = A1dξ 1 + A2dξ 2. The basis vectors are illustrated in Fig. 1.

The unit normal a3 (in the current configuration) is

a3 = a1 × a2

‖ a1 × a2 ‖ (2)

With respect to the convected basis vectors, the surface deformation tensor C and Green-
Lagrangian strain E take the forms

Cαβ = aα · aβ , α, β = 1, 2 (3a)
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Figure 1: Illustration of shell kinematics

Eαβ = 1
2
(aα · aβ − Aα · Aβ) α, β = 1, 2 (3b)

respectively. The surface curvature tensor κ is defined by

καβ = − ∂a3

∂ξα
· aβ = a3 · ∂2x

∂ξα∂ξ β
, α, β = 1, 2 (4)

It is convenient to use a local ortho-normal basis to perform the element computations presented
later. To this end, we introduce a pair of orthonormal bases {E1, E2} point-wise in the tangent plane
spanned by {A1, A2}. With respect to the new bases, we express a line element as dX = E1dX̄1 + E2dX̄2.
Locally, (dX̄1, dX̄2) are related to (dξ 1, dξ 2) via[

dX̄1

dX̄2

]
=

[
E1 · A1 E1 · A2

E2 · A1 E2 · A2

] [
dξ 1

dξ 2

]
:= Jdξ (5)

Derivatives of a basis function N in local physical coordinates follow the chain rule:[
N,X̄1

N,X̄2

]
= J−T

[
N,ξ1

N,ξ2

]
(6)

In the current configuration, the bases (a2, a2) convected from the physical basis {E1, E2} are

aα := ∂x
∂X̄1

=
∑

I

NI ,X̄α qI , α = 1, 2 (7)

With respect to the physical basis, the Green-Lagrangian strain assumes the form Ēαβ = 1
2
(aα ·

aβ − δαβ). The physical components of the curvature tensor can be obtained by the transformation

κ̄αβ = ∂ξ δ

∂X̄α

κδγ

∂ξ γ

∂X̄β

.

The local bases {Ei} can be selected in many ways, but we suggest aligning the local bases with the
weft and warp direction of the fibers, which are pre-defined by users.

2.2 Constitutive Law
Cloth response is typically inelastic, exhibiting anisotropic properties and a small to moderate

amount of hysteresis [27–29]. Since the focus of the present work is on geometry, we simplify the
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constitutive description by using an isotropic elastic model. The in-plane strain of fabrics is usually
small (<2%); however, since large rotation is involved, the use of finite strain is necessary. Because
of the small strain range, any mechanically sound finite-strain constitutive model should reasonably
describe the in-plane response. Here, we use a linear anisotropic relation [7] between the (in-plane)
Piola-Kirchhoff stress S and Green-Lagrangian strain E:

SI = kIEI (8)

in which I can be replaced by “weft,” “warp,” or “shear,” and kI is a material constant.

For the bending model, we employ a nonlinear bending function [29] for curvatures in weft and
warp directions,

mI =
{

sign(κI)2B0

√
κ0|κI |, |κI | ≤ κ0

sign(κI)(B0|κI | + B0κ0), |κI | > κ0
(9)

where I can be replaced by “weft” or “warp,” and B0 and κ0 are material constants. The bending curve
is depicted in Fig. 2. The shape mimics the ascending portion of a typical fabric bending in a Kawabata
test [30]. The bending moment, in general, depends on curvature change; here, the reference curvature
is taken to be zero.

Figure 2: Moment-curvature curve in principal space

2.3 Element Equation
External forces acting on a piece of cloth normally include a body force ρb and damping force

fd (per unit surface area); that is, in general, a function of the cloth velocity, and traction forces t̄
prescribed on the boundary edge. Following the textile community convention, we use the surface
density ρ to describe the mass distribution; ρ = ρ0h, where ρ0 is the 3D density and h is cloth thickness.
The weak form of the dynamics equilibrium equation is given by∫




ρδuTadA +
∫




(hδETS + δκTm)dA =
∫




(δuT(ρb + fd)dA +
∫

�t

(δuTt)hds (10)

In the NURBS representation, u = x − X = ∑
I

NI(qI − QI), and thus

δu = Nδq, N = [N1I N2I · · · ] (11)



1842 CMES, 2023, vol.134, no.3

where I is the 3 × 3 identity matrix. The variation of Green-Lagrangian strain, in Voigt form, δE =
(δE11, δE22, 2δE12), is derived as

δE = Bmδq, Bm =
⎛
⎝ Bm1

11 Bm2
11 . . .

Bm1
22 Bm2

22 . . .

2Bm1
12 2Bm2

12 . . .

⎞
⎠ (12)

where

(BmI
αβ

)T = ∂Eαβ

∂qI

= 1
2
(NI ,βaα + NI ,αaβ) (13)

Similarly, from the definition of curvature, we can derive

δκ = Bbδq, Bb =
⎛
⎝ Bb1

11 Bb2
11 . . .

Bb1
22 Bb2

22 . . .

2Bb1
12 2Bb2

12 . . .

⎞
⎠ (14)

where

(BbI
αβ

)T = ∂καβ

∂qI

= NI ,αβa3 + 1
j

[
NI ,1(a2 × x,αβ) + NI ,2(x,αβ × a1)

]
− (x,αβ · a3)(NI ,1a1 + NI ,2a2) (15)

In the above, j = ||a1 × a2|| is the area stretch, and (a1, a2) are the bases dual to (a1, a2) satisfying
aα · aβ = δα

β
and aα · a3 = 0.

Substituting Eqs. (11), (12), and (14) into Eq. (10) yields the discrete dynamic equation

M
..
q −fdamp

.
q +fintq = fext (16)

where

M =
∫




NTNρdA (17a)

fint =
∫




(
hBT

mS + BT
b m

)
dA (17b)

fext =
∫




NTρbdA +
∫

�t

NTthds (17c)

fdamp =
∫




NTfd dA (17d)

For low-speed air drag, we assume that fd = −η
.
x, where η is a viscosity constant; in this case,

fdamp = − η

ρ
M

.
q := −D

.
q.

2.4 Time Integration
Our strain-limiting scheme is independent of time integration. Here, we use the velocity Verlet

scheme that was first applied to cloth simulation by [9]. The flow process for time integration is as
follows:
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1. Predict average velocity and candidate configuration at tn+1,⎧⎨
⎩

.
qn+ 1

2
= .

qn + 1
2

..
qnt,

qn+1 = qn + .̃
qn+ 1

2
t

(18)

2. Compute q̇n+1, q̈n+1 from⎧⎨
⎩

M
..
qn+1 + C

.
qn+1 + f int(qn+1) = f ext(tn+1)

.
qn+1 = .

qn+ 1
2
+ t

2
..
qn+1

(19)

3 Continuum-Based Fast Projection Method
3.1 Constrained Lagrange Method

The fast projection method begins with the constrained Lagrange problem. For the general
coordinates r = (qT , λT), the constraint Lagrange potential is given by

L(r, ṙ) = 1
2

T

q̇Mq̇ − V(q) − C(q)Tλ (20)

in which C is a set of constraint conditions that stops in-plane stretching.

The Euler-Lagrange equation is:

∂L
∂r

− d
dt

∂L

∂
.
r

= 0 (21)

Thus, we have,

M
..
q = −∂V

∂q
− ∂CT

∂q
λ (22a)

C = 0 (22b)

Supposing that we check the constraint condition at the end of a time step, C(qn+1 = 0), and use
the velocity Verlet scheme for internal dynamics, we then have:

qn+1 = qn + h
(

.
qn − h

2
M−1 ∂V(qn)

∂q

)
− h2M−1

(
∂C(qn+1)

T

∂q
λn+1

)
(23a)

C(qn+1) = 0 (23b)

Now, we use the splitter:

1. Predict candidate configuration q̃n+1 by internal dynamics (without constraints)

q̃n+1 = qn + h
(

.
qn − h

2
M−1 ∂V(qn)

∂q

)
(24)

This sub-step can be replaced by any time-integration scheme.

2. Correct the candidate configuration by qn+1 = q̃n+1 + q, and solve q from

q = −h2M−1 ∂C(qn+1)
T

∂q
λn+1 (25a)

C(qn+1) = 0 (25b)
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Eqs. (25a) and (25b) are equivalent to δW = 0, where

W = 1
2h2

qTMq + C(qn+1)
Tλn+1 (26)

The second term of W projects q into the constraint manifold, while the first term minimizes the
change of kinematic energy in this projecting process. All together, q will be projected to the “closest”
point on the constraint manifold.

Linearizing Eqs. (25a) and (25b) by the Newton method, we have the following flow process:

q[0] = 0, λ[0] = 0, for j = 0, 1, 2, . . . , do

1. Solve q and dλ from⎡
⎢⎢⎣I + h2M−1

∂C[j]Tλ[j]

∂q∂q
h2M−1

∂C[j]T

∂q
∂C[j]

∂q
0

⎤
⎥⎥⎦

[
dq
dλ

]
=

⎡
⎣−q[j] − h2M−1

∂C[j]T

∂q
λj

−C[j]

⎤
⎦ (27)

2. Correct q and λ by

q[j+1] = q[j] + dq, λ[j+1] = λ[j] + dλ (28)

The iteration exits when the C is smaller than a given tolerance. We note here that we must solve
a (3n + m)-dimensional asymmetric linear system for each iteration.

3.2 Fast Projection Scheme

We note that Eq. (25a) keeps the property of “closest” and Eq. (25b) keeps the constraint
conditions. In the actual problem, we have a high requirement on constraint conditions but a low
requirement on the property of “closest.” Goldenthal et al. [15] suggested solving Eq. (25a) using the
Euler method while solving Eq. (25b) using the Newton method. We expand C by a Taylor series at
q[j] and ignore the quadratic and higher-order terms

C[j+1] = C[j] + ∂C
∂q

dq (29)

Substituting Eq. (29) into Eq. (25a) yields

dq = −h2M−1 ∂C[j]T

∂q
dλ (30)

Eq. (25b) is still linearized by the Newton method

∂C[j]

∂q
dq = −C[j] (31)

Substituting Eq. (30) into Eq. (31) yields the basic equation of the fast projection method

h2 ∂C[j]

∂q
M−1 ∂C[j]T

∂q
dλ = Cj (32)

The iterative fast projection process flow is as follows:

q[0] = 0, for j = 0, 1, 2, . . .
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1. Solve dλ from

h2 ∂C[j]

∂q
M−1 ∂C[j]T

∂q
dλ = Cj (33)

2. Correct q by

q[j+1] = q[j] − h2M−1 ∂C[j]T

∂q
dλ (34)

The iteration exits when the C is smaller than the given tolerance. The advantage of the fast
projection method is that: (1) we only need to solve an m-dimensional S.P.D. linear system for each
iteration, and (2) it converges faster.

3.3 Spring-Based Fast Projection

For the spring-mass method, the length of each spring is a constraint, C = [C1, C2, . . .], and

Ci = li/Li − 1 (35)

in which li and Li are the current and referent lengths of the ith spring, respectively. For triangular
mesh, because the total number of springs is approximately 3 times the total number of nodes, the
deformation of the entire mesh is locked and even curvature is not allowed. Thus, quad-dominated
mesh is required.

3.4 Continuum-Based Fast Projection

For the continuum-based approach, the first task is to select sampling points. We tried to select the
Gaussian points as sampling points, but that does not work well. Because the number of cells are close
to the number of control points, and if there are three or more constraint conditions on each cell, the
model will be locked. Thus, 2 × 2 or more Gaussian points are not allowed. We then tried one Gauss
point and the average strain, but both schemes display the hourglass problem. By adding a certain
term to the averaged strain scheme, we might have been able to eliminate the hourglass problem, but
instead we decided to try a different approach. We selected vertices of a knot mesh as sampling points,
as shown in Fig. 3. For trimmed NURBS, we constrain the intersection points between the trimming
curve and knot mesh as well. The benefit of this scheme is that it does not have locking or hourglass
problems, and it can minimize the bandwidth of the coefficient matrix ∂C[j]

∂q
M−1 ∂C[j]T

∂q
.

The constraint condition C is expressed as CT = [CT
1 , CT

2 . . .], in which Ci is a constraint on one
sampling point. For each sampling point, we can set, at most, two constraints. Considering that the
shear stiffness of fabric is far lower than the stretch stiffness in weft and warp directions, we constrain
the strain in weft and wart directions, given by:

Ci = [
Eweft, Ewarp

]T
(36)

in which Eweft and Ewarp are the strains in the weft and warp directions of the fabric, respectively. Noting
that the local bases E1 and E2 are defined as any pair of orthogonal vectors in the tangent plane spanned
by A1 and A2, a simple way to compute Eweft and Ewarp is to set E1 and E2 aligned with the weft and warp
directions.
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Figure 3: Constraint points

3.5 Stress Reconstruction

The constraint energy term λ · C, in essence, is the nodal integration form of strain energy. Thus,
the stress Ŝ should include two terms: the stress from strain S(E) and that from constraint force. The
stress on grid point i after fast projection is given by

Ŝi = Si(Ei) + λi/ai (37)

where ai is the nodal area.

However, we found a checkerboard pattern in the values of λ. This is mainly due to the lack of
domain integration. Introducing the integration version of constraint energy may resolve the problem,
but we believe that is to costly as the bandwidth will be heavily enlarged. Therefore, we introduced a
simple way to reconstruct the stress: by an interpolation, which makes it easy to obtain the stress
on Gaussian points. Then, by an extrapolation from Gaussian points, we can obtain the nodal stress
without a checkerboard problem.

4 Examples
4.1 Corner Kidnapped Cloth

A piece of cloth in the x-y plane is subject to constraints at two corners and will swing under gravity
in the z direction. The cloth is represented by a second-order NURBS patch with 100 control points.
The bending parameters are B0 = 3.3 × 10−3 N · m, κ0 = 30 m−1. The mass density is ρ = 0.117 kg/m2

and the damping constant is η = 0.351 kg/(m2 ·s). Fabric thickness is h = 0.001177 m. For the in-plane
model, we assume k = kweft = kwarp = 2.5 kshear and test three cases: (a) k/ρ = 100, strain limit = 0.01;
(b) k/ρ = 5000 without strain limiting; and (c) k/ρ = 100 without strain limiting.

The simulation results of different Young’s moduli at t = 0.6 s (the cloth passes the vertical plane
for the first time near this time) are shown in Fig. 4. The simulation time and strain summary are
shown in Table 1. It is observed that case (c) has obvious unrealistic stretching. The results of cases
(a) and (b) are close, but the time increment of case (a) is much smaller than that of case (b). Because
there is no contact involved, the time savings of a large time increment is not very obvious; however,
strain limiting still obtains a speedup of 2.5 times.
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EYY

0.002
0

-0.002
-0.004
-0.006
-0.008
-0.01
-0.012
-0.014

(a)

EYY

0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002
0

(b)

EYY

0.3
0.25
0.2
0.15
0.1
0.05
0

(c)

Figure 4: Corner kidnapped cloth at t = 0.6 for cases (a)–(c)

Table 1: Summary of corner kidnapped cloth simulation

Case (a) Case (b) Case (c)

CPU time (s/frame) 0.13 0.325 0.054
Maximum Eweft 0.015 0.0828 2.24
Maximum Ewarp 0.013 0.0512 2.20
Average Eweft 9.61 × 10−4 4.07 × 10−3 0.081
Average Ewarp 1.30 × 10−3 6.78 × 10−3 0.111

4.2 Draping of Soft Armor
The draping of a soft armor was simulated in this example. The armor is represented by a second-

order NURBS patch with 1,616 control points. The initial configuration is obtained by virtual try-on
simulation and is shown in Fig. 5. The bending parameters are B0 = 1 × 10−4 N · m, κ0 = 30 m−1. The
mass density is ρ = 0.1177 kg/m2 and the damping constant is η = 0.353 kg/(m2 ·s). Fabric thickness is
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h = 0.001177 m. The friction coefficient is assumed to be μ = 0.2. For the in-plane model, we assume
k = kweft = kwarp = 2.5 kshear and create three cases: (a) k/ρ = 50, strain limit = 0.01; (b) k/ρ = 5000
without strain limiting; and (c) k/ρ = 50 without strain limiting.

Figure 5: Initial configuration of soft armor

To more clearly show the results, the simulation results of upper- and lower-body armor at t = 0.5 s
are shown in Figs. 6 and 7, respectively. The simulation time and strain summary are shown in Table 2.
For the upper-body armor, case (c) obtains an unacceptable shape, while for lower-body armor all
three schemes obtain an acceptable shape. By checking the maximum and average strain, it is found
that both cases (a) and (b) obtain a low level of strain, but the time cost of case (b) is much greater
than case (a). This demonstrates that the strain-limiting method can reduce strain level by reducing
extra CPU cost rather than by pure high stiffness.

Figure 6: Upper-body armor after draping simulation for cases (a)–(c)
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Figure 7: Lower-body armor after draping simulation for cases (a)–(c)

Table 2: Summary of soft armor draping simulation

Case (a) Case (b) Case (c)

CPU time (s/frame) 5.69 25.25 3.47
Maximum Eweft 6.61 × 10−3 0.097 0.41
Maximum Ewarp 0.018 0.075 0.34
Average Eweft 2.15 × 10−4 5.22 × 10−3 0.037
Average Ewarp 1.91 × 10−4 3.02 × 10−3 0.043

4.3 Draping of a Skirt
This example simulates the draping process of a skirt. The initial configuration of the skirt is

obtained by a try-on simulation and is shown in Fig. 8. The entire model contains 960 control points.
The woman’s body is represented by a discrete mesh of 17,068 cells. The bending parameters are B0 =
1.0 × 10−5 N · m and κ0 = 30 m−1. The mass density is ρ = 0.118 kg/m2 and the damping constant
is η = 0.354 kg/(m2 · s). The fabric thickness is h = 0.001177 m. A friction coefficient μ = 0.8 is
assumed. For the in-plane model, we assume k = kweft = kwarp = 2.5 kshear and create three cases: (a)
k/ρ = 50, strain limit = 0.01; (b) k/ρ = 3000 without strain limiting; and (c) k/ρ = 50 without strain
limiting.

The garment shape at t = 0.8 s, when the vibrations are mostly damped out, is shown in Fig. 9.
The simulation time and strain summary are shown in Table 3. It is observed that low stiffness without
strain limiting obtains an unacceptable shape. When E/ρ = 3000 and strain limiting is turned off, the
simulation shape looks better, but local over-stretching still occurs. We did not try a higher stiffness
because it takes too much time. However, by using the proposed strain-limiting scheme, both the
simulation shape and strain values satisfied requirements while keeping the time cost very low.

4.4 Patch Test
Finally, we conducted a standard patch test to check the stress obtained from the fast projection

method. A 1 m-by−1 m square was fixed on the top edge and we applied 1 N/m of uniform force on
the bottom edge. As the problem itself is based on dynamic analysis, we modeled the static patch test
by applying a large damping factor and waiting until the vibration was damped out. Fig. 10 shows
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the static stress obtained from analysis with or without the fast projection method. It is observed that
for both cases the stresses are close to 1 Pa, which means that the fast projection method cannot only
eliminate unrealistic strain, but can also provide a reliable stress field.

Figure 8: Initial configuration of skirt

Figure 9: Skirt after draping simulation for cases (a)–(c)

Table 3: Summary of skirt draping simulation

Case (a) Case (b) Case (c)

CPU time (s/frame) 7.4 20.4 8.2
Maximum Eweft 0.0093 0.26 0.64
Maximum Ewarp 0.012 0.13 0.65
Average Eweft 4.12 × 10−4 1.42 × 10−2 0.073
Average Ewarp 3.79 × 10−4 1.04 × 10−2 0.10
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Figure 10: Patch test stress

5 Conclusions

In this work, a rotational-free Kirchhoff-Love shell-based isogeometric analysis was outlined for
cloth simulation. To overcome the numerical burden caused by high in-plane stiffness, a continuum
version of the fast projection method was applied. The highlights of this work are the following:

• Compared with spring-based models, the constraint directions of strain limiting are indepen-
dent of grid lines. This implies that the fast projection method can be applied to a grid with
arbitrary topology.

• Examples show that the present scheme can eliminate unrealistic over-stretching efficiently,
while the stress field remains reliable.

• The trimmed NURBS patches are used directly for geometry, indicating seamless application
of CAD and analysis.

Future work will focus on developments of efficient numerical methods to handle localized
features, e.g., wrinkles, to facilitate a “real-time” simulation of cloth.
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